矢量与张量常用公式的证明

矢量与张量常用公式的证明
矢量与张量常用公式的证明

附录矢量与张量运算

附录 矢量与张量运算 1标量﹑矢量与张量 1.1基本概念 在本书中所涉及的物理量可分为标量、矢量和张量。 我们非常熟悉标量,它是在空间没有取向的物理量,只有一个数就可以表示其状态。例如质量、压强、密度、温度等都是标量。 矢量则是在空间有一定取向的物理量,它既有大小、又有方向。在三维空间中,需要三个数来表示,即矢量有三个分量。考虑直角坐标右手系,三个坐标轴分别以1、2和3表示,、2和3分别表示1、2和3方向的单位矢量。如果矢量a 的三个分量分别为a 1、、a 2、a 3,则可以表示为 也可以用以下符号表示 a =(a 1,a 2,a 3) 矢量a 的大小以a 表示 a =(a 12+a 22+a 32)1/2 我们还会遇到张量的概念,可将标量看作零阶张量,矢量看作一阶张量,在此将主要讨论二阶张量的定义。 二阶张量w 有9个分量,用w ij 表示。张量w 可用矩阵的形式来表示: w 其中下标相同的元素称为对角元素,下标不同的元素称为非对角元素。若w ij =w ji ,则称为对称张量。如果将行和列互 相交换就组成张量w 的转置张量,记作w T ,则 w T = 显然,若w 是对称张量,则有w =w T 。另外,如果w T =-w ,w 被称为反对称张量,同时有w ij =-w ji 。任何一个二阶张量都可以写成两部分之和,一部分为对称张量,另一部分为反对称张量。 w =(w +w T )+ (w -w T ) 单位张量是对角分量皆为1,非对角分量皆为0的张量 是最简单的对称张量。 张量对角分量之和称为张量的迹 t r w = 张量的迹是标量,如果张量的迹为零,称此张量为无迹张量。 1.2基本运算 1.2.1矢量加法与乘法运算 在几何上,矢量的加法满足平行四边形法则和三角形法则。如图附-1所示,减法为加法的逆运算。 1e e e a 332211e e e a a a a ++=??????????=3332 31232221131211w w w w w w w w w ??????????3323 13 322212312111w w w w w w w w w 2121 δ?? ??? ?????=100010001δδ ∑i ii w

矢量张量公式及推导

矢量及张量 1. 协变基矢量:321g g g a 3 21a a a ++=,i a 称为逆变基分量,i g 是协变基矢量。 2. 逆变基矢量:3 21g g g a 321a a a ++=,i a 称为协变基分量,i g 是逆变基矢量。 3. 爱因斯坦求和约定:省略求和符号,i i g g a i i a a == 4. 逆变基于协变基的关系:j i δ=?j i g g 5. 标积:i i j i j i b a b a =?=?g g b a 6. 坐标转换系数i i 'β : i i i i i i i i i i i x x x x x x g g r r g '''''β=??=????=??= 7. 转换系数的性质:i j k j i k δββ='',因为'' ''m l m j i l j i i j g g g g ?=?=ββδ 8. 张量:分量满足坐标转换关系的量,比如矢量''''''i i i i i i k k i i v v v ββ=?=?=g g g v 9. 置换张量:ijk k j i ijk e g ==][g g g ε,其中][321g g g =g ,同理有 ijk k j i ijk e g 1][= =g g g ε 由 行 列 式 的 性 质 及 线 性 ][][]['''''''''n m l n k m j l i n n k m m j l l i k j i g g g g g g g g g ββββββ==,因此ijk ε是张量分量。 定义置换张量:k j i ijk k j i ijk g g g g g g εεε== 10. 基的叉积:k l ijl ijk k j i g g g g g ?==??εε,所以l ijl j i g g g ε=?,l ijl j i g g g ε=? 11. 叉积:k ijk j i j i j i b a b a g g g b a ε=?=?,或写成实体形式ε:ab ab :εb a ==?,双标 量积用前前后后规则完成。 12. 混和积:abc εg g g g g g c b a ====ijk k j i k j i k j i k k j j i i c b a c b a c b a ε],,[],,[],,[ 13. rst ijk rst ijk k t k s k r j t j s j r i t i s i r e e εεδδδδδδδδδ==,有以上关系可得 14. 重要关系: k s j t k t j s ist ijk δδδδεε-=

矢量与张量

一.矢量与张量 1.1矢量及其代数运算公式 1.1.1矢量 在三维Euclidean 空间中,矢量是具有大小与方向且满足一定规律的实体,用黑体字母表示,例如u,v,w 等。它们所对应的矢量的大小(称模、值)分别用|u |,|v |,|w |表示。称模为零的矢量为零矢量,用0表示。称与矢量u 模相等而方向相反的矢量为u 的负矢量,用-u 表示。矢量满足以下规则: (1)相等:两个矢量相同的模和方向,则称这两个矢量相等。即,一个矢量做平行于其自身的移动则这个矢量不变。 (2)矢量和:按照平行四边形定义矢量和,同一空间中两个矢量之和仍是该空间的矢量. 矢量和满足以下规则: 交换律: u +v =v +u 结合律: (u +v )+w =u +(v +w ) 由矢量和与负矢量还可以定义矢量差: u -v =u +(-v ) 并且有 u +(-u )=0 (3)数乘矢量:设a,b 等为实数,矢量u 乘数实数a 仍是同一空间的矢量,记作v =a u 。 其含义是:v 与u 共线且模为u 的a 倍,当a 为正值时v 与u 同向,当a 为负值时v 与u 反向,a 为零时v 为零矢量。数乘矢量满足以下规则: 分配律: (a+b)u =a u +b u a(u +v )=a u +a v 结合律: a(b u )=(ab)u 由矢量关于求和与数乘两种运算的封闭性可知,属于同一空间的矢量组),,2,1(I i u i =的线性组合i I i i u a ∑=1仍为该空间的矢量, 此处i a 是实数。矢量组I u u u ,,21线性相关是指存在一组不全为零的实数I a a a ,,21,使得 i I i i u a ∑=1=0 线性无关:若有矢量组J u u u ,,21,当且仅当0=j a (j=1,2,…,J)时,才有j J j j u a ∑=1 =0,

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计

第一章-矢量和张量(1)

矢量与张量 为什么学习张量 1. 物理量: 标量 矢量 张量 2. 客观性: 客观规律与坐标系(观察者)无关 第一章:矢量 矢量:1.方向性 2.合成结果与顺序无关 不符合这两点要求的不是矢量。转动具有大小和方向 但由于不满足交换律(第2要素),因而不是矢量。 基本运算: 1. 点积 abcos ?=θa b a 与b 在a 上的投影之积。 分配律:()?+=?+?a b c a b a c 证明: +b c 的投影等于b 的投影与c 的投影之和 推论: ① ()()α+β?λ+γ=αλ?+αγ?+βλ?+βγ?a b c d a c a d b c b d ② ()111223311b b b b ?=++?=b e e e e e ③ ()()()3 3 3 i i j j i i i 1 i 1 i 1 a b a b ===?=?=∑∑∑a b e e 2.叉积 absin ?=θa b n

有方向的平行四边形面积 3混合积 ()??u v w 六面体体积 改变六面体底、高顺序 可证: ()()()??=??=??u v w v w u w u v 推论: ① 叉积分配律:()?+=?+?a b c a b a c 证明: ()()()()()()()??+=+??=??+??=??+?v a b c b c v a b v a c v a v a b a c 上式对任何矢量v 都成立,所以 ()?+=?+?a b c a b a c ② ()()α+β?λ+γ=αλ?+αγ?+βλ?+βγ?a b c d a c a d b c b d ③ ()()112233112233a a a b b b ?=++?++a b e e e e e e 123 2 31312 1 2 31 232 31312 12 3a a a a a a a a a b b b b b b b b b ==-+e e e e e e ④ ()??=a b c 2313121 2 3 2 3 13 12 a a a a a a c c c b b b b b b -+ 1 2 312 3123c c c a a a b b b = ⑤ ()() 2 1232 1 2312 3 u u u v v v w w w ??=u v w w u v

电动力学——矢量和张量课件(DOC)

矢量和张量 vectors and tensors 中山大学理工学院黄迺本教授 (2005级,2007年3月) 如果不理解它的语言,没有人能够读懂宇宙这本书,它的语言就是数学. ——Galileo 经典电动力学的研究对象 ——电磁相互作用的经典场论 ——狭义相对论 ——电动力学的相对论协变性 主要数学工具 微积分、线性代数、矢量与张量分析、数学物理方程、级数等. 教材和参考书 教材:郭硕鸿《电动力学》(第二版)高等教育出版社,1997 参考书: [1]黄迺本,方奕忠《电动力学(第二版)学习辅导书》,高等教育出版社,2004 [2]J.D.杰克孙《经典电动力学》人民教育出版社,1978 [3]费恩曼物理学讲义,第2卷,上海科技出版社,2005 [4]朗道等《场论》人民教育出版社,1959 [5]蔡圣善等《电动力学》(第二版),高等教育出版社,2003 [6]尹真《电动力学》(第二版),科学出版社,2005 [7]Daniel R Frankl,ELECTROMAGNETIC THEORY,Prentice-Hall,Inc.,1986 矢量和张量

目录(contens) 1.矢量和张量代数(the algebra of vectors and tensors) 2.矢量和张量分析(the analysis of vectors and tensors) 3.δ函数(δ function) 4.球坐标系和柱坐标系 1 矢量和张量代数 在三维欧几里德空间中,按物理量在坐标系转动下的变换性质,可分为标量(零阶张量),矢量(一阶张量),二阶张量,及高阶张量.(见郭硕鸿,电动力学,P258)分为: 0 阶张量,即标量(scalar),在3维空间中,只有30 = 1个分量.标量是 空间转动下的不变量. 例如,空间中任意两点之间的距离r ,就是坐标系转动下的不变量.温度、任一时刻质点的能量、带电粒子的电荷、电场中的电势,等等,都是标量. 1阶张量,即矢量(vector),在3维空间中,由31 = 3个分量构成有序集 合. 例如,空间中任意一点的位置矢量r ,质点的速度v 和加速度a ,作用力F 和 力矩M ,质点的动量p 和角动量L 、电流密度J ,电偶极矩p ,磁偶极矩m ,电场强度E ,磁感应强度B ,磁场矢势A ,等等都是矢量. 2阶张量(tow order tensor ),在3维空间中,由32 = 9个分量构成有序 集合. 例如,刚体的转动惯量→→ I ,电四极矩→→ D ,等. 3阶张量,在3维空间中,由33 = 27个分量构成有序集合. 矢量表示 印刷——用黑体字母,如 r , A 书写——在字母上方加一箭头,如 A r , 正交坐标系的基矢量 正交坐标系(如直角坐标系,球坐标系,柱坐标系)基矢量321,e e e ,的正交性可表示为 ?? ?≠===?j i j i ij 0 1 δj i e e (1.1) 一般矢量A 有三个独立分量A 1,A 2,A 3,故可写成

相关文档
最新文档