自由变形技术在RAE2822翼型优化设计中的应用

第40卷第5期国防科技大学学报Vol.40No.52018年10月JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY Oct.2018doi:10.11887/j.cn.201805008http://journal.nudt.edu.cn 自由变形技术在RAE2822翼型优化设计中的应用*

陈立立,郭正,侯中喜

(国防科技大学空天科学学院,湖南长沙 410073)

摘要:采用自由变形技术实现对RAE2822跨声速翼型表面的参数化,采用试验设计方法对设计参数进行计算流体力学数值模拟样本训练,最后采用Kriging代理模型和MIGA、NLPQL优化算法进行优化分析,将得到的优化变量进一步进行计算流体力学分析获得最后的优化结果。计算结果显示,自由变形参数化方法简单易行,可实现直接对网格的变形;优化的结果相比于原始翼型,升阻比增加了57.2%,从而证明了本文方法的可行性和有效性。

关键词:RAE2822;自由变形;代理模型;升阻比;优化设计

中图分类号:TP211.3 文献标志码:A文章编号:1001-2486(2018)05-045-09

Applicationoffree-formdeformationtechniquefor

RAE2822airfoiloptimizationdesign

CHENLili,GUOZheng,HOUZhongxi

(College of Aeronautics and Astronautics,National University of Defense Technology,Changsha410073,China)Abstract:FFD(free-form deformation)technique was applied to achieve the parameterization of RAE2822transonic airfoil.Then the method of DoE(design of experiment)was used to obtain the sample values of design parameters by CFD(computational fluid dynamics)numerical simulation.Lastly,the optimization analysis was carried out by using the Kriging surrogate model and MIGA,NLPQL optimization algorithm.The CFD values with optimized design parameters were regarded as the final results.The results show that the FFD parametric method can directly realize deformation on airfoil mesh.Compared with original airfoil,the lift-to-drag ratio of optimized airfoil increases by57.2%,therefore,the proposed method is feasible and effective.

Keywords:RAE2822;free-form deformation;surrogate model;lift-to-drag ratio;optimization design

自由变形(Free-Form Deformation,FFD)方法由Sederberg和Parry[1]于1986年首次提出。在模型参数化方法中,FFD和计算机辅助设计(Computer Aided Design,CAD)参数化法都具有高效率和普适性等优势[2],得到了广泛应用。

CAD参数化可以实现较大范围的外形变化,但是CAD参数化对复杂外形的参数化依然比较困难。对于计算流体力学(Computational Fluid Dynamics,CFD)而言,外形参数化后还要进行网格的划分,这无疑增加了设计的流程和时间,虽然FFD技术只能实现较高质量的小范围到中等尺度网格变化,不太适合较大尺度的变形,但是FFD 是在同一套网格上进行变形,有效减少了CAD参数化重建模和网格划分的工作量,在细致优化阶段相比于CAD参数化具有非常明显的优势,同时具有控制变量少的优势。文献[3-4]通过类型函数(Class-Shape Transformation,CST)参数化的方法研究了RAE2822翼型的优化问题,可以有效提升翼型的升阻比。朱雄峰等[5]采用动网格实现翼型的优化设计,增加了优化结果的鲁棒性和可信度。白俊强等[6]采用CST参数化和径基函数(Radial Basis Function,RBF)神经网络模型优化显著提高了RAE2822翼型的气动性能。陈颂等[7-8]建立由翼型表面控制点位移反求各个FFD控制点位移的求解模式实现翼型参数化,优化结果显著减小了设计状态下的翼型阻力。王科雷等[9]采用解析形状函数法对RAE2822翼型进行参数化建模,采用Kriging代理模型进行优化得到的翼型升阻比增加了约31%。Kenway等[10]采用FFD 方法实现了对CRM(common research model)机翼的优化设计,取得了较好的优化结果。Koo等[11]运

*收稿日期:2017-08-14

基金项目:湖南省研究生科研创新资助项目(CX2016B004)

作者简介:陈立立(1990—),男,陕西礼泉人,博士研究生,E-mail:724043509@qq.com;

郭正(通信作者),男,教授,博士,博士生导师,E-mail:guozheng@nudt.edu.cn 万方数据

变形缝在建筑中的应用

变形缝在建筑中的应用 摘要:在建设工程中,大量设缝的建筑物因变形缝的施工方法错误、施工质量控制不严等原因导致建筑物交付使用后短时间内就出现渗 漏的现象.变形缝的施工质量好坏直接影响建筑物的使用年限和外观.根据缝的宽度大小,缝可分为变形缝(伸缩缝、沉降缝及防震缝)和小 变形缝(后浇带、施工缝及混凝土裂缝).本文针对如何保证建筑物变 形缝的施工质量,就变形缝、后浇带的施工方法和质量控制谈谈自己的看法. 关键词:建筑物变形缝设置方法 随着人类文明的发展,人们居住环境的改变,建筑物已不再是人们简单的居所,而逐渐成为人们生存空间中的一个个景点,建筑物的 形态越见参差不齐,错落有致了。丰富的立面使设计工作者需要考 虑的问题越来越多,变形缝就是其中之一。有些建筑物由于长度过长,或平面曲折变化较多,或者同一建筑物中个别部分高度、荷载 或所处地基土承载能力差异悬殊,往往使建筑物在受到温度变化、 地基不均匀沉降、地震等作用时产生变形、裂缝,甚至使建筑物遭 到破坏,因此在进行建筑设计时就需要人为地设置相应的构造缝, 使建筑物能相对位移,以防止或减轻建筑物可能受到的损坏,这种 人为设置的使建筑物可以自由变形的竖向缝就是通常所说的变形缝。 一、变形缝概述 人们居住环境的改变,建筑物已不再是人们简单的居所,而逐渐成为人们生存空间中的一个个景点,建筑物的形态越见参差不齐,错 落有致了。丰富的立面使设计工作者需要考虑的问题越来越多,变 形缝就是其中之一。有些建筑物由于长度过长,或平面曲折变化较多,或者同一建筑物中个别部分高度、荷载或所处地基土承载能力

差异悬殊,往往使建筑物在受到温度变化、地基不均匀沉降、地震 等作用时产生变形、裂缝,甚至使建筑物遭到破坏,因此在进行建 筑设计时就需要人为地设置相应的构造缝,使建筑物能相对位移, 以防止或减轻建筑物可能受到的损坏,这种人为设置的使建筑物可 以自由变形的竖向缝就是通常所说的变形缝。 变形缝按其作用不同,可分为伸缩缝、沉降缝和防震缝三种。 1.伸缩缝也叫温度缝,作用是将过长的建筑物分成几个长度较短的单元来减少温度应力产生的破坏。为使伸缩缝两侧的建筑物能自由 伸缩,须将基础顶面以上的地面、墙体、楼板层、屋顶等完全断开,埋于地面以下的基础因受温度影响小而无需断开。伸缩缝设置间距 及缝宽根据不同的结构形式,在《混凝土结构设计规范》和《砌体 结构设计规范》中已有明确的规定。 2.沉降缝是为了防止建筑物的各部分由于不均匀沉降引起破坏设置的竖向缝,它将整个建筑物分隔成若干个自行独立沉降的单元,从 而可以避免建筑物因不均匀沉降而引起的开裂。沉降缝的设置部位 及缝的宽度在《建筑地基基础设计规范》中已有具体规定,这里就 不再重复了。

变形监测技术与应用

1.什么是变形? .什么是变形监测?变形监测的目的是什么?变形监测的意义? 变形监测的主要内容有哪些? 答:变形是物体在外来因素作用下产生的形状和尺寸的改变。 变形监测是对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。 目的:1、分析和评价建筑物的安全状态。2、验证设计参数。3、反馈设计施工质量。4、研究正常的变形规律和预报变形的方法。 意义:1、对于机械技术设备:则保证设备安全、可靠、高效地运行:为改善产品质量和新产品的设计提供技术数据。 2、对于滑坡:通过监测其随时间的的变化过程:可进一步研究引起滑坡的成因:预报大的滑坡灾害。 3、通过对矿山由于矿藏开挖引起的实际变形的观测:可以控制开挖量和加固等方法:避免危险性变形的发生:同时可以改进变形预报模型。 4、在地壳构造运动监测方面:主要是大地测量学的任务。但对于近期地壳垂直和水平运动等地球动力学现象、粒子加速器、铁路工程也具有重要的工程意义。 内容:现场巡视、环境量监测、位移监测、渗流监测、应力、应变监测、周边监测。 2.变形监测技术的发展趋势。 答:由于变形监测的特殊要求:一般不允许监测系统中断监测:就要求监测系统能精确、安全、可靠长期而又实时地采集数据:而传统的设备难以满足要求:因此:科研人员在现有自动化监测技术的基础上:有针对性的研发精度高、稳定性好自动化监测仪器和设备。这方面成果有:自动化监测技术、光纤传感检测技术、CT技术的应用、GPS 在变形监测中应用、激光技术的应用、测量机器人技术、渗流热监测技术、安全监控专家系统 3. 变形监测工作有何特点:常用变形监测技术方法有哪些? 答:特点:1、周期性重复观测2、精度要求高3、多种观测技术的综合运用4、监测网着重于研究点位的变化。 测量技术:1、常规大地测量方法。如:三角测量、交会测量、水准测量。2、专门的测量方法。如:视准线、引张线测量方法。3、自动化监测方法。4、摄影测量方法。5、GPS等新技术的应用。 4. GPS用于变形测量有何优点? 答:速度快、全天候观测、测点间无需通视、自动化程度高:能进行同步变形监测:并实现了数据采集、传输、处理、分析、显示、存储等:测量精度可达到亚毫米级。6.变形观测中观测精度是如何确定的? 变形观测中确定观测周期的原则: 答:如果观测的目的是为了使变形值不超过某一允许的数值而确保建筑物的安全:则其观测的中误差应小于允许变形值的十分之一~二十分之一:如果观测的目的是为了研究其变形的过程:则其中误差应比这个数小得多。当存在多个变形监测精度要求时:应根据其最高精度选择相应的精度等级:当要求精度低于规范最低精度要求时:宜采用规范中规定的最低精度。变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则:根据单位时间内变形量的大小及外界影响因素确定。 7.为什么要对变形监测资料进行检核?检核的方法有哪些? 答:资料分析工作必须以准确可靠的的监测资料为基础:在计算分析之前:必须对实测资料进行校核检验:对监测系统和原始资料进行考证。这样才能得到正确的分析成果:发挥监测资料应有的作用。 校核方法:任意观测元素:如高差、方向值、偏离值。倾斜值等/:在野外观测中均具有本身的观测校核方法:可参考有关的规范要求。进一步校核是在室内所进行的工作:具体有:1、校核各项原始记录检查各次变形值的计算是否有误。可通过不同方法的验算、不同人员的重复计算来消除监测资料中可能带有的错误。2、原始资料的统计分析。可采用统计方法进行粗差检验。3、原始实测值的逻辑分析。根据监测点的内在物理意义来分析原始实测值的可靠性。 8.如何用一元线性回归分析法对变形资料进行检核? 答:1、利用式求得变量y和x的相关系数:查阅相关系数的临界值表:判断y和x线性相关是否密切。2、利用式na+[x]b-[y]=0[x]a+[xx]b-[xy]=0 (n:观测值的个数、[]:求和计算:求回归方程=a+bx的回归系数a,b,建立回归方程。3、在回归直线两侧根据2s画两条平行线:检查新的变形值是否出现在这两条直线所夹的区间内:当观测值超出这一区间时:应作专门分析。 9.变形观测资料整理的主要内容包括哪些?成果表达的形式有哪些? 答:内容:1、收集资料:如工程或观测对象的资料、考证资料、观测资料及有关文件等。2、审核资料:如检查收集的资料是否齐全:审查数据是否有误或精度是否符合要求:对间接资料进行转换计算:对各种需要修正的资料进行计算修正:审查平时分析的结论性意见是否合理等。3、填表和绘图:将审核过的数据资料分类填入成果统计表:绘制各种过程线、相关线、等值线图等:按一定顺序进行编排。 4、编写整理成果说明:如工程或其他观测对象情况、观测工作情况、观测成果说明等。 成果:文字、表格、图形:也可采用现代科技如多媒体技术、仿真技术、虚拟现实技术进行表达。变形监测、分析、预报的技术报告和总结是最重要的成果。 13.工程建筑物变形的原因是什么?工程建筑物变形监测的内容及意义是什么? 答:原因:建筑的自重、使用中的动载荷、振动或风力因素引起的附加载荷、地下水位的升降、地质勘探不充分、设计错误、施工质量差、施工方法不当等。 内容:1、垂直位移监测2、水平位移监测3、倾斜观测4、裂缝观测5、挠度观测6、摆动和转动观测 意义:1、掌握建筑物的稳定性:为安全运行诊断提供必要的信息:以便及时发现问题并采取措施。2、理解变形的

传感器技术与应用第3版习题答案

《传感器技术与应用第3版》习题参考答案 习题1 1.什么叫传感器?它由哪几部分组成? 答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。传感器通常由敏感元件和转换元件组成。其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。 2. 传感器在自动测控系统中起什么作用? 答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。自动测控系统是完成这一系列技术措施之一的装置。一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。 3. 传感器分类有哪几种?各有什么优、缺点? 答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。 按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。 按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。 4. 什么是传感器的静态特性?它由哪些技术指标描述? 答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。 5. 为什么传感器要有良好的动态特性?什么是阶跃响应法和频率响应法? 答:在动态(快速变化)的输入信号情况下,要求传感器能迅速准确地响应和再现被测信号的变化。因此,需要传感器具有良好的动态特性。 测试和检验传感器的动态特性有瞬态响应法和频率响应法。阶跃响应法即瞬态响应法,是给传感器输入一个单位阶跃函数的被测量,测量其输出特性。动态特性优良的传感器的输出特性应该上升沿陡,顶部平直。 频率响应法是给传感器输入各种频率不同而幅值相同,初相位为零的正弦函数的被测量,测量其输出的正弦函数输出量的幅值和相位与频率的关系。动态特性优良的传感器,输出的正弦函数输出量的幅值对于各频率是相同的,相位与各频率成线性关系。

建筑物内的变形缝

⑤建筑物内的变形缝 , 应按其自然层合并在建筑物面积内计算。 变形缝是伸缩缝 ( 温度缝 ) 、沉降缝和抗震缝的总称。规范所指建筑物内的变形缝是与建筑物相连通的变形缝 , 即暴露在建筑物 内 , 在建筑物内可以看得见的变形缝。 2. 走廊、檐廊、橱窗、门斗 走廊是建筑物的水平交通空间 ; 挑廊是挑出建筑物外墙的水平 交通空间 ; 檐廊是设置在建筑物底层出檐下的水平交通空间 ; 架空走廊是指建筑物与建筑物之间 , 在二层或二层以上专门为水平交通 设置的走廊。( 如图 1-8) 落地橱窗是指突出外墙面根基落地的橱窗 ; 门斗是指在建筑物 出入口设置的起分隔、挡风、御寒等作用的建筑过渡空间。 (1) 架空走廊 ①建筑物间有围护结构的架空走廊 , 应按其围护结构外围水平面积计算 , 并以层高划分。 ②有永久性顶盖无围护结构的应按其结构底板水平面积的 1/2 计算。 (2) 橱窗、门斗、挑廊、走廊、檐廊 ①建筑物外有围护结构的落地橱窗、门斗、挑廊、走廊、檐廊 ,

应以层高的相关规定 , 按其围护结构外围水平面积计算。 ②有永久性顶盖无围护结构的应按其结构底板水平面积的 l/2 计算。 3. 楼梯、井道、建筑物顶部范围的建筑面积 (1) 楼梯、井道 ①建筑物内的室内楼梯间、电梯井、观光电梯井、提物井、管道井、通风排气竖井、垃圾道、附墙烟囱应按所依附的建筑物的自然层计算 , 并入建筑物面积内。 自然层是指按楼板、地板结构分层的楼层。 ②如遇跃层建筑 , 其共用的室内楼梯应按自然层计算面积 ; 上下两错层户室共用的室内楼梯 , 应选上一层的自然层计算面积。( 如图 1-10)

智能变形飞行器进展及关键技术研究

智能变形飞行器进展及关键技术研究

作者: 日期:

智能变形飞行器进展及关键技术研究 像鸟儿一样灵活自由的飞翔,一直是人类梦寐以求的理想。人类很早就认识到鸟儿可以根据飞行状态适时调整飞行姿态,以最佳效率完成滑翔、盘旋、攻击等动作。随着飞行器设计对于高机动性、高飞行效率和多任务适应能力等综合设计需求的不断提高,像鸟儿一样高效灵活的智能变形飞行器研究逐渐成为学术界和工程界的研究热点。 北大西洋公约组织对智能变形飞行器做出过如下定义:通过局部或整体改变飞行器的外形形状,使飞行器能够实时适应多种任务需求,并在多种飞行环境保持效率和性能最优。由此可见,智能变形飞行器是一种具有飞行自适应能力的新概念飞行器,其研究涉及非定常气动力、时变结构力学、气动伺服弹性力学、智能材料与结构力学、非线性系统动力学、智能感知与控制科学等多个学科前沿和热点,代表了未来先进飞行器的一种发展方向。智能变形飞行器具有巨大的应用前景,以美国航空航天局设想的未来智能变形飞机为例,通过新型智能材料、作动器、传感器和控制系统的综合运用,飞机可以随着外界环境变化,柔顺、平滑、自主地不断改变外形,不仅保持整个飞行过程中的性能最优,更能提高舒适性并降低成本。

美国航空航天局设想的未来智能变体飞机概念 机翼平面形状合理改变可改善飞行器的气动性能。下表列出了机翼参数变化对气动性能的影 响,可以看出,通过合理改变机翼形状参数,可以改善飞行器的气动特性和操纵性能,带来增大升力、减小阻力、增大航程与航时等好处,可使飞行器能够高效地完成多种飞行任务。 由于机翼形状参数带来的影响多样,机翼变形的设计方式也多种多样。本文针对研究最多的 变展长、变弦长、变厚度、变后掠和变弯度等变形形式,分别展开介绍。

变形缝设置要求

变形缝设置要求 Prepared on 24 November 2020

变形缝设置要求 变形缝 基本概念及相关规定: 1. 伸缩缝:连续地设置在建、构筑物应力比较集中的部位,将建、构筑物分割成两个或若干个独立单元,彼此能自由伸缩的竖向或水平缝。建筑物伸缩缝在地面以下的结构可不断开。伸缩缝的宽度应满足结构可能的最大伸缩变形的要求,以及其他的要求。伸缩缝最大间距详见《混凝土结构设计规范》(GB 50010-2002)第9.1.1 2. 防震缝:设置在建筑中层数、质量、刚度差异过大等、而可能在地震时引起应力或变形集中造成破坏的部位的竖向缝。防震缝应在地面以上设置。防震缝的宽度应根据设防烈度和房屋高度确定,对多层房屋可采用50~100mm,对高层房屋可采用100~150mm。钢结构防震缝的宽度不应小于相应混凝土房屋缝宽的倍。 3. 沉降缝:设置在同一建筑中因基础沉降产生显着差异沉降和可能引起结构难以承受的内力和变形的部位的竖直缝。沉降缝不但应贯通上部结构,而且也应贯通基础本身。沉降缝的宽度不宜小于120mm,并应考虑缝两侧结构非均匀沉降倾斜和地面高差的影响。 4. 抗震缝、伸缩缝在地面以下可不设缝,连接处应加强。但沉降缝两侧墙体基础一定要分开。 5. 另外,还有墙体控制缝及屋盖分割缝,均需用弹性密封材料填嵌或防护。 6. 施工中留设后浇带或采取专门的预加应力措施可适当增加规范规定的伸缩缝最大间距。

15m(与规范规定的12m不一致)。伸缩缝宽不小于20mm,缝隙内宜用油膏或其他防渗漏措施处理。 8. 水池、地沟、涵洞、地下室等地下结构的变形缝尚应设置止水带及用其他防渗漏措施处理。具体详见《地下工程防水技术规范》(GB 50108-2001)第5节。

现代变形监测重点内容与思考题答案

第1章变形监测概述 一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。 分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测 五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。(二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。

变形监测技术在桥梁监测中的应用

变形监测技术在桥梁监测中的应用 摘要:桥梁的建设展示了我国大桥梁发展的最新技术水平和成就,代表了大桥梁发展方向,使我国公路桥梁建设步人世界先进行列,并对促进区域经济繁荣和发展,完善国道主干线网起到十分重要作用,并产生了巨大的经济效益和社会效益。本应用研究通过对江阴长江公路大桥的沉降和水平位移监测,探讨变形监测理论在实际工程问题中的应用,通过合适的数据处理方法,分析和总结桥梁变形的规律,为桥梁的养护、管理和决策提供依据和指导。 关键字:变形监测技术、桥梁监测、应用 一、引言 近年来,随着我国桥梁建设事业的迅猛发展,桥梁结构和形势日趋复杂,规模也越来越大,桥梁的施工正朝着超大化的方向发展,对其进行变形监测也就显得尤为重要。变形监测是对被监测的对象或物体进行测量,以确定其空间位置及内部形态随时间的变化特征。其主要意义是分析和评价建筑物的安全状态、验证设计参数、反馈设计施工质量、研究正常的变形规律和预报变形。桥梁的变形监测是对桥梁整体性能的监测,其基于工程测量的原理、技术和精密测量仪器,对桥梁在垂直方向和水平方向的位移变形进行定期或实时监测,并通过绘制相应的位移变形影响线或影响面来监测桥梁各部位位移的变形状态,预测其变形规律,为桥梁的维修、养护和管理决策提供依据和指导。 二、桥梁变形监测发展现状 2.1桥梁结构变形监测内容 2.1.1垂直位移监测内容 桥梁结构竖向位移主要包括梁式桥施工期间桥墩、梁体以及运营期间桥墩、桥面的竖向位移测量;拱桥施工期间的桥墩、拱圈以及运营期间的桥墩、桥面垂直位移;悬索桥、斜拉桥施工期间索塔、梁体、锚碇以及运营期间索塔、桥面垂直位移;桥梁两岸边坡垂直位移。 2.1.2水平位移监测内容 桥梁结构水平位移监测主要包括梁式桥施工期间梁体以及运营期间桥面的水平位移监测;拱桥施工期间的拱圈以及运营期间的桥面水平位移监测;悬索桥、斜拉桥施工期间索塔倾斜,塔顶、梁体、锚碇以及运营期间索塔倾斜、桥面水平位移;桥梁两岸边坡水平位移。 2.2 桥梁结构变形监测控制测量 2.2.1 垂直位移监测控制测量 高程控制测量等级的划分,依次为二、三、四、五等。各等级高程控制宜采用水准测量;四等及以下等级可采用电磁波测距三角高程测量,五等也可采用GPS 拟合高程测量。 首级高程控制网的等级,应根据工程规模、控制网的用途和精度要求合理选择。首级网应布设成环形网,加密网应布设成符合路线或节点网。 特级沉降观测的高程基准点数不应少于4个;其他级别沉降观测的高程基准点数不应少于3个。高程工作基点可根据需要设置。基准点和工作基点应形成闭合环或形成由附合路线构成的结点网。 高程基准点应选设在变形影响范围以外且稳定、易于长期保存的地方。高程基准点、工作基点之间宜便于进行水准测量。当使用电磁波测距三角高程测量方法进行观测时,宜使各点周围的地形条件一致。当使用静力水准测量方法进行沉

photoshop教案——选区工具与自由变换

Photoshop教案――选区工具&自由变换 【教学目标】 1、知识与技能:掌握自由变换工具的使用 掌握滤镜的使用 掌握图层样式的使用 掌握新建图层的使用 掌握选择菜单变换选区使用技巧 2、过程与方法:通过体验photoshop软件的基本操作了解在图片处理平面设置的魅力,能够在今后的学习生活中运用此技术解决问题 3、情感态度价值观:提升运用信息技术快捷解决生活的能力,并以此为契机养成探究信息技术其它领域的兴趣 【教学重点难点】 重点:掌握自由变换工具的使 掌握选择菜单变换选区使用技巧 难点:掌握图层样式的使用 【教学方法】演示法和操作练习法结合 【教学过程】 步骤1.打开“素材.jpg”图像,在工具箱中选择“矩形选框工具”,在图上拖选出你想要的区域。 图1

步骤2.点击菜单栏“选择”→“变换选区”,然后点击菜单栏“编辑”→“变换”→“旋转”命令将选框旋转到自己满意的角度,最后按“回车键”确定。 图2 步骤3.点击菜单栏“编辑”→“拷贝”复制选中的区域,然后再创建一个新图层(右图层面板的下方按钮),接着点击菜单栏“编辑”→“粘贴”将刚才选中的区域粘贴到新图层上,可以在“图层调板”中看到效果,如图3。 图3 步骤4.为“图层1”应用“描边”图层样式。 ·单击菜单栏“图层”→“图层样式”→“描边”,在其中设置“大小”为9,“位置”为内部,“颜色”为白色。

图4 步骤5.为“图层1”应用“投影”图层样式。 ·单击菜单栏“图层”→“图层样式”→“投影”,在其中设置“角度”为56,“距离”为14。点击确定 图5 步骤6.在“图层调板”中选择“背景”图层,然后为“背景”图层应用“径向模糊”滤镜。 ·单击菜单栏“滤镜”→“模糊”→“径向模糊”,在其中设置“数量”为12,“模糊方法”为缩放。 图6

变形监测技术要求

针对目前变形监测项目应符合以下规范要求 基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。 变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。 1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助

点传递高程。实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。起始点高程宜采用测区原有高程系统。较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。n为测站数。用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。首次观测应独立观测2次取平均值作为初始值。监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。水准仪i角的测定办法,如图所示:

变形监测的若干新技术

变形监测的若干新技术 秦滔 摘要:主要介绍了光纤监测技术、卫星合成孔径雷达差分干涉测量技术及GPS 伪卫星组合定位技术在变形监测中的应用,同时分析了使用这些新技术的优势和应用前景。 关键词:变形监测 GPS伪卫星组合定位 光纤监测合成孔径雷达差分干涉测量 Abstract:Mainly introduce the fiber-optic monitoring technology, D-InSAR and integration of GPS and Pseudolite positioning technology in the application of deformation monitoring, and analysis of the use of the advantages of these new technologies and applications. Keywords: deformation monitoring integration of GPS and Pseudolite positioning fiber-optic monitoring D-InSAR 1 引言 我国的变形监测工作起步于20世纪50年代,经过半个世纪的发展,形成了完成的理论体系和技术方法。尤其近20年来,许多大型工程开工建设,各种先进的仪器设备飞速发展,变形监测工作也取得了很大的进步。 早期的变形监测,主要采用精密的光学测量仪器进行观测,例如精密水准测量、经纬仪、垂线及视准线等。随着电子仪器的发展,应变计、无应力计、测缝计、钢筋计、测压计、渗压计等广泛应用于变形监测中。另外,用于监测环境量的电子温度计、水位计等也开始使用。电子计算机的广泛应用和发展,促使变形监测工作提高效率,走向自动化、智能化之路,尤其是全站仪、GPS等先进仪器出现,计算机技术不断发展,数据处理技术不断优化,变形监测工作走上了数据采集、传输、存储、处理自动化的道路。 近年来,变形监测工作中又出现了若干新的技术方法,这些新技术拥有广阔的应用前景,本文主要介绍以光纤传感器为基础的光纤监测技术、以卫星合成孔径雷达为基础的差分干涉测量技术(D-InSAR)及以GPS伪卫星组合定位技术在变形监测中的应用。 2 光纤监测技术 光纤技术是一种集光学、电子学为一体的新兴技术,其核心技术是光纤传感

建筑物变形缝的种类及设置方法

论述建筑物变形缝的种类及设置方法 【摘要】本文通过分析变形缝的特点,针对其种类及设置方法进行探讨,以期通过本文的阐述在以后的结构设计工作中把变形缝处理得更完美,有效提高建筑工程质量。 【关键词】建筑;变形缝;种类;设置方法 一、变形缝的特点 在工业与民用建筑中,由于受气温变化、地基不均匀沉降以及地震等因素的影响,建筑结构内部将产生附加应力和变形,如处理不当,将会造成建筑物的破坏,产生裂缝甚至倒塌,影响使用与安全。其解决办法有:加强建筑物的整体性,使之具有足够的强度与刚度来克服这些破坏应力,而不产生破坏;预先在这些变形敏感部位将结构断开,留出一定的缝隙,以保证各部分建筑物在这些缝隙中有足够的变形宽度而不造成建筑物的破损。这种将建筑物垂直分割开来的预留缝隙被称为变形缝。 变形缝的材料及构造应根据其部位和需要分别采取防水、防火、保温、防虫害等安全防护措施,并使其在产生位移或变形时不受阻、不被破坏(包括面层)。 二、建筑物变形缝的种类 1、伸缩缝 伸缩缝亦称温度缝,是指为防止建筑构件因温度变化而热胀冷缩使建筑物出现裂缝或破坏的变形缝。伸缩缝可以将过长的建筑物分

成几个长度较短的独立的部分来减少由于温度的变化而对建筑物产生的破坏。在建筑施工中设置伸缩缝时,一般是每隔一定的距离设置一条伸缩缝,或者是在建筑变化较大的地方预留缝隙,将基础以上建筑构件全部断开,分为各自独立的能在水平方自由伸缩的部分,通过这些做法来使伸缩缝两侧的建筑物能自由伸缩。在具体的建筑施工中,伸缩缝设置的间距一般为60m,伸缩缝宽度在20~30mm 之间。 2、沉降缝 沉降缝是指当建筑物的建筑基层土质差别较大或者是与建筑物相邻的其他部分的高度、荷载和结构形式差别较大时设置的变形缝,因为如果建筑物地基土质差别较大或者是与周围的建筑环境不统一,就会造成建筑物的不均匀的沉降,甚至会导致建筑物中一些部位出现位移。为了预防上述不良情况的出现,建筑物在施工过程中一般会在适当的位置设置垂直缝隙,把一个建筑物按刚度不同划分为若干个独立的部分,从而使建筑物中刚度不同的各个部分可以自由的沉降,沉降缝与伸缩缝不同,沉降缝可以从建筑物基础到屋顶在构造上完全断开,而伸缩缝则不能这样,同时沉降缝的宽度也可以随着建筑物地基状况和建设高度的不同而不同。 3、防震缝 防震缝是指将形体复杂和结构不规则的建筑物划分成为体型简单、结构规则的若干个独立单元的变形缝,变形缝的主要目的是为

变形监测考试资料

变形监测定义 是指对被监测的对象或物体进行测量以确定其空间位置几内部形态随时间的变化特征。 变形监测的目的 1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工4)研究正常的变形监测规律和预报变形的方法 变形监测的意义 对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。 变形监测的特点 1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化 变形监测的主要内容 现场巡视;环境监测;位移监测;渗流监测;应力、应变监测;周边监测 变形监测的精度和周期如何确定,有何依据 精度:1917年国际测量工作者联合会(FIG)第十三届会议上工程测量组提出:如果观测的目的是为了使变形值不超过某一允许数值而确保建筑物的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测的目的是为了研究其变形的过程,则其中误差应比这个数小的多。 周期:变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。 变形监测系统设计的原则 1)针对性2)完整性3)先进性4)可靠性5)经济性 变形监测系统设计主要内容 1)技术设计书2)有关建筑物自然条件和工艺生产过程的概述3)观测的原则方案4)控制点及监测点的布置方案5)测量的必要精度论证6)测量的方法及仪器7)成果的整理方法及其它要求或建议8)观测进度计划表9)观测人员的编制及预算 变形监测点的分类及每类要求 1)基准点:埋设再稳固的基岩上或变形区外,尽可能长期保存。每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。当确认基准点稳定可靠时,也可以少于3个,应进行定期观测。2)工作点:埋设再被研究对象附近,要求在观测期间保持点位的稳定,其点位由基准点定期监测。3)变形观测点:埋设再建筑物内部,0 变形呢监测点标石埋设后,应在其稳定后方可开始观测。稳定期一般不宜少于15天。 变行监测技术在哪几方面取得了较好的发展? ①自动化监测技术②光纤传感检测技术③CT(计算机层析成像)技术的应用④GPS在变形监中的应用⑤激光技术的应用⑥测量机器人技术⑦渗流热监测技术⑧安全监控专家系统 什么是垂直位移和沉降?建筑物沉降与哪些因素有关? 从词面来说,垂直位移能同时表示建筑物的下沉或上升,而沉降只能表示建筑物的下沉,对大多数建筑物来说特别是施工阶段,由于垂直方向上的变形特征和变形过程主要表现为沉降变化,因此实际应用中通常采用沉降一词。 影响建筑物沉降的因素有:(1)建筑物基础的设计(2)建筑的上部结构(3)施工中地下水的升降 监测方法与技术要求有哪些 视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 精密水准测量的误差来源有哪些?如何减弱i角误差对沉降观测结果的影响? 误差来源:1)仪器误差:水准仪i角误差;水准尺长与名义尺长不符2)外界环境引起的误差:高压输电线和变电站等强磁场的影响;温度和大气折光影响3)人为引起的误差 方法:减小i角误差的影响,必须严格控制前后视距差和前后视距累计差,又由于i角误差会受温度等影响,减弱其影响的有效方法是减少仪器受辐射热的影响;若i角误差与时间成比例地均匀变化,则可以采用改变观测程序(奇数站—后前前后;偶数站—前后后前)的方法减小i角误差影响。 精密水准测量监测方法与技术要求有哪些 方法:采用精密水准测量方法进行沉降监测时,从工作基点开始经过若干监测点,形成一个或多个闭合或附合路线,其中以闭合路线为佳,特别困难的监测点可以采用支水准路线往返测量。 要求:视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 测点布设原则与方法 建筑物水平位移监测的测点宜按两个层次布设,即由控制点组成控制网,由观测点及所联测的控制点组成扩展网;对单个建筑物上部或构件的位移监测,可将控制点连同观测点按单一层次布设。 水平位移监测常用的观测方法有 1)大地测量法2)基准线法3)专用测量法4)GPS测量法 交会观测方法有几种及什么情况用哪种方法 1)测角交会法:采用测角交会法时,交会角最好接近90°若条件限制,也可设计在60°~120°,工作基点到测点的距离不宜大于300m。2)侧边交会法:r角通常应保持60°~120°,测距仔细,交会边长度a和b应力求相等,一般不大于600m;3)后方交会法 精密导线测量方法 1)边角导线法 2)弦矢导线法 数据处理和分析主要内容 1)粗差检查及处理2)点温度条件检查3)数据可靠性检查。 挠度及挠度观测及方法 定义:测定建筑物受力后挠曲程度的工作称为挠度观测。建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂

现代变形监测重点内容与思考题答案

第1章变形监测概述一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。 (二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。 2.当实际观测中发现异常情况时,则应及时相应地增加观测次数。 八、简述变形监测的主要技术和数据处理分析的主要内容。

自由变形技术在RAE2822翼型优化设计中的应用

第40卷第5期国防科技大学学报Vol.40No.52018年10月JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY Oct.2018doi:10.11887/j.cn.201805008http://journal.nudt.edu.cn 自由变形技术在RAE2822翼型优化设计中的应用* 陈立立,郭正,侯中喜 (国防科技大学空天科学学院,湖南长沙 410073) 摘要:采用自由变形技术实现对RAE2822跨声速翼型表面的参数化,采用试验设计方法对设计参数进行计算流体力学数值模拟样本训练,最后采用Kriging代理模型和MIGA、NLPQL优化算法进行优化分析,将得到的优化变量进一步进行计算流体力学分析获得最后的优化结果。计算结果显示,自由变形参数化方法简单易行,可实现直接对网格的变形;优化的结果相比于原始翼型,升阻比增加了57.2%,从而证明了本文方法的可行性和有效性。 关键词:RAE2822;自由变形;代理模型;升阻比;优化设计 中图分类号:TP211.3 文献标志码:A文章编号:1001-2486(2018)05-045-09 Applicationoffree-formdeformationtechniquefor RAE2822airfoiloptimizationdesign CHENLili,GUOZheng,HOUZhongxi (College of Aeronautics and Astronautics,National University of Defense Technology,Changsha410073,China)Abstract:FFD(free-form deformation)technique was applied to achieve the parameterization of RAE2822transonic airfoil.Then the method of DoE(design of experiment)was used to obtain the sample values of design parameters by CFD(computational fluid dynamics)numerical simulation.Lastly,the optimization analysis was carried out by using the Kriging surrogate model and MIGA,NLPQL optimization algorithm.The CFD values with optimized design parameters were regarded as the final results.The results show that the FFD parametric method can directly realize deformation on airfoil mesh.Compared with original airfoil,the lift-to-drag ratio of optimized airfoil increases by57.2%,therefore,the proposed method is feasible and effective. Keywords:RAE2822;free-form deformation;surrogate model;lift-to-drag ratio;optimization design 自由变形(Free-Form Deformation,FFD)方法由Sederberg和Parry[1]于1986年首次提出。在模型参数化方法中,FFD和计算机辅助设计(Computer Aided Design,CAD)参数化法都具有高效率和普适性等优势[2],得到了广泛应用。 CAD参数化可以实现较大范围的外形变化,但是CAD参数化对复杂外形的参数化依然比较困难。对于计算流体力学(Computational Fluid Dynamics,CFD)而言,外形参数化后还要进行网格的划分,这无疑增加了设计的流程和时间,虽然FFD技术只能实现较高质量的小范围到中等尺度网格变化,不太适合较大尺度的变形,但是FFD 是在同一套网格上进行变形,有效减少了CAD参数化重建模和网格划分的工作量,在细致优化阶段相比于CAD参数化具有非常明显的优势,同时具有控制变量少的优势。文献[3-4]通过类型函数(Class-Shape Transformation,CST)参数化的方法研究了RAE2822翼型的优化问题,可以有效提升翼型的升阻比。朱雄峰等[5]采用动网格实现翼型的优化设计,增加了优化结果的鲁棒性和可信度。白俊强等[6]采用CST参数化和径基函数(Radial Basis Function,RBF)神经网络模型优化显著提高了RAE2822翼型的气动性能。陈颂等[7-8]建立由翼型表面控制点位移反求各个FFD控制点位移的求解模式实现翼型参数化,优化结果显著减小了设计状态下的翼型阻力。王科雷等[9]采用解析形状函数法对RAE2822翼型进行参数化建模,采用Kriging代理模型进行优化得到的翼型升阻比增加了约31%。Kenway等[10]采用FFD 方法实现了对CRM(common research model)机翼的优化设计,取得了较好的优化结果。Koo等[11]运 *收稿日期:2017-08-14 基金项目:湖南省研究生科研创新资助项目(CX2016B004) 作者简介:陈立立(1990—),男,陕西礼泉人,博士研究生,E-mail:724043509@qq.com; 郭正(通信作者),男,教授,博士,博士生导师,E-mail:guozheng@nudt.edu.cn 万方数据

相关文档
最新文档