受弯构件的破坏有正截面受弯破坏和斜截面破坏两种

受弯构件的破坏有正截面受弯破坏和斜截面破坏两种
受弯构件的破坏有正截面受弯破坏和斜截面破坏两种

受弯构件的破坏有正截面受弯破坏和斜截面破坏两种。正截面是指与混凝土构件纵轴线相垂直的计算截面,为了保证正截面有足够的受弯承载力,不产生受弯破坏,由承载力极限状态知应满足M ≤ M u

M ----正截面的弯矩设计值,M

----正截面的受弯承载力设

u

计值,M相当于荷载效应组合S,是由内力计算得到的,M u 相当于截面的抗力R。

从截面受力性能看,可归纳为单筋矩形截面、双筋矩形截面和T形(I形、箱形)截面等三种主要截面形式。

1)梁的截面尺寸

梁高和跨度之比h/l称为高跨比,《高层建筑混凝土结构技术规程》(JGJ3-2002)规定框架结构主梁的高跨比为1/10~1/18。

梁高与梁宽(T形梁为肋宽)之比h/b,对矩形截面梁取2~3.5,对T形截面梁取2.5~4.0。

梁高h在200mm以上,按50mm模数递增,达到800mm以上,按100mm模数递增。

梁宽b通常取150、180、200、250mm,其后按50mm模数递增。

2)梁中钢筋的布置

梁中的钢筋有纵向钢筋、弯起钢筋、纵向构造钢筋(腰筋)、架立钢筋和箍筋,箍筋、纵筋和架立钢筋绑扎(或焊)在一起,形成钢筋骨架,使各种钢筋得以在施工时维持正确的位置。

纵向受力钢筋主要是指受弯构件在受拉区承受拉力的钢筋,或在受压区承受压力的钢筋。梁内纵向受力钢筋宜采用HRB400或RRB400级和HRB335级钢筋

为了保证钢筋和混凝土有良好的握裹能力,构件的外缘应当保证保护层的厚度大于钢筋直径,并满足表4-1的规定。

构件的内部钢筋的间距

4.2.1 配筋率对构件破坏特征的影响

假设受弯构件的截面宽度为b,截面高度为h,纵向受力钢筋截面面积为A s,从受压边缘至纵向受力钢筋截面重心的距离h o为截面的有效高度,截面宽度与截面有效高度的乘积bh o为截面的有效面积(图4-6)。构件的截面配筋率是指纵向受力钢筋截面面积与截面有效面积的百分比,即

(4-1)

图4-6 矩形截面受弯构件

构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但是以配筋率对构件破坏特征的影响最为明显。试验表明,随着配筋率的改变,构件的破坏特征将发生质的变化。下面通过图4-7所示承受两个对称集中荷载的矩形截面简支梁说明配筋率对构件破坏特征的影响。

图4-7 简支试验梁

※(1)当构件的配筋率低于某一定值时,构件不但承载能力很低,而且只要其一开裂,裂缝就急速开展,裂缝截面处的拉力全部由钢筋承受,钢筋由于突然增大的应力屈服,构件立即发生破坏(图4-7a)。这种破坏称为少筋破坏。

※(2)当构件的配筋率不是太低也不是太高时,构件的破坏首先是由于受拉区纵向受力钢筋屈服,然后受压区混凝土被压碎,钢筋和混凝土的强度都得到充分利用。这种破坏称为适筋破坏。适筋破坏在构件破坏前有明显的塑性变形和裂缝预兆,破坏不是突然发生的,呈塑性性质(图4-7b)。

※(3)当构件的配筋率超过某一定值时,构件的破坏特征又发生质的变化。构件的破坏是由于受压区的混凝土被压碎而引起,受拉区纵向受力钢筋不屈服,这种破坏称为超筋破坏。超筋破坏在破坏前虽然也有一定的变形和裂缝预兆,但不象适筋破坏那样明显,而且当混凝土压碎时,破坏突然发生,钢筋的强度得不到充分利用,破坏带有脆性性质(图4-7c)。

由上所述可见,少筋破坏和超筋破坏都具有脆性性质,破坏前无明显预兆,破坏时将造成严重后果,材料的强度得不到充分利用。因此应避免将受弯构件设计成少筋构件和超筋构件,只允许设计成适筋构件。在后面的讨论中,我们将所讨论的范围限制在适筋构件范围以内,并且将通过控制配筋率和相对受压区高度等措施使设计的构件成为适筋构件。

试验表明,对于配筋量适中的受弯构件,从开始加载到正截面完全破坏,截

面的受力状态可以分为下面三个大的阶段:

图4-8 适筋梁工作全过程的应力—应变图

◆第一阶段——截面开裂前的阶段

当荷载很小时,截面上的内力很小,应力与应变成正比,截面的应力分布为直线(图4-8a),这种受力阶段称为第I阶段。

当荷载不断增大时,截面上的内力也不断增大,由于受拉区混凝土出现塑性变形,受拉区的应力图形呈曲线。当荷载增大某一数值时,受拉区边缘的混凝土可达其实际的抗拉强度和抗拉极限应变值。截面处在开裂前的临界状态(图4-8b),这种受力状态称为第Ia阶段。

◆第二阶段——从截面开裂到受拉区纵向受力钢筋开始屈服的阶段

截面受力达Ⅰa阶段后,荷载只要稍许增加,截面立即开裂,截面上应力发生重分布,裂缝处混凝土不再承受拉应力,钢筋的拉应力突然增大,受压区混凝土出现明显的塑性变形,应力图形呈曲线(图4-8c),这种受力阶段称为第Ⅱ阶段。

荷载继续增加,裂缝进一步开展,钢筋和混凝土的应力不断增大。当荷载增加到某一数值时,受拉区纵向受力钢筋开始屈服,钢筋应力达到其屈服强

度(图4-8d),这种特定的受力状态称为Ⅱa阶段。

◆第三阶段——破坏阶段

受拉区纵向受力钢筋屈服后,截面的承载能力无明显的增加,但塑性变形急速发展,裂缝迅速开展,并向受压区延伸,受压区面积减小,受压区混凝土压力应力迅速增大,这是截面受力的第Ⅲ阶段(图4-8e)。

在荷载几乎保持不变的情况下,裂缝进一步急剧开展,受压区混凝土出现纵向裂缝,混凝土被完全压碎,截面发生破坏(图4-8f),这种特定的受力状态称为第Ⅲa阶段。

试验同时表明,从开始加载到构件破坏的整个受力过程中,变形前的平面,变形后仍保持平面。

进行受弯构件截面受力工作阶段的分析,不但可以使我们详细地了解截面受力的全过程,而且为裂缝、变形变形以及承载能力的计算提供了依据。往后将会看到,截面抗裂验算是建立在第Ⅰa阶段的基础之上,构件使用阶段的变形和裂缝宽度验算是建立在第Ⅱ阶段的基础之上,而截面的承载能力计算则是建立在第Ⅲa阶段的基础之上的。

§4-3建筑工程受弯构件正截面承载能力计算方法

4.3.1 基本假定

◆建筑工程在进行受弯构件正截面承载能力计算时,引入了如下几个基本假定:

※截面应变保持平面;

※不考虑混凝土的抗拉强度;

※混凝土受压的应力与应变关系曲线(图4-9)按下列规定取用:

图4-9 混凝土的应力—应变计算曲线

当εc≤εo时

(4-2)

当εo<εc≤εcu时

(4-3)

(4-4)

(4-5)

(4-6)

式中:σc——对应于混凝土应变为εc时的混凝土压应力;

εo——对应于混凝土压应力刚达到f c时的混凝土压应变,当计算的εo 值小于0.002时,应取为0.002;

εcu——正截面处于非均匀受压时的混凝土极限压应变,当计算的εcu 值大于0.0033时,应取为0.0033;

f cu,k——混凝土立方体抗压强度标准值;

n ——系数,当计算的n大于2.0时,应取为2.0。

n、εo和εcu的取值见表4-1。

n、εo和εcu的取值表4-1

※钢筋的应力取等于钢筋应变与其弹性模量的乘积,但其绝对值不应大于相

应的强度设计值。受拉钢筋的极限拉应变取0.01。

4.3.2 单筋矩形截面承载能力计算

矩形截面通常分为单筋矩形截面和双筋矩截面两种形式。只在截面的受拉区配有纵向受力钢筋的矩形截面,称为单筋矩形截面(图4-10)。不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。需要说明的是,为了构造上的原因(例如为了形成钢筋骨架),受压区通常也需要配置纵向钢筋。这种纵向钢筋称为架立钢筋。架立钢筋与受力钢筋的区别是:架立钢筋是根据构造要求设置,通常直径较细、根数较少;而受力钢筋则是根据受力要求按计算设置,通常直径较粗、根数较多。受压区配有架立钢筋的截面,不是双筋截面。

图4-10 单筋矩形截面

根据4.3.1的基本假定,单筋矩形截面的计算简图如图4-11所示。

图4-11 单筋矩形截面计算简图

为了简化计算,受压区混凝土的应力图形可进一步用一个等效的矩形应力图代替。矩形应力图的应力取为α1f c(图4-12),f c为混凝土轴心抗压强度设计值。所谓“等效”,是指这两个图不但压应力合力的大小相等,而且合力的作用位置完全相同。

图4-12 受压区混凝土等效矩形应力图

按等效矩形应力计算的受压区高度x与按平截面假定确定的受压区高度x o之间的关系为:

(4-7)

系数α1和β1的取值见表4-2。

系数α1和β1的取值表表4-2

◆基本计算公式

由于截面在破坏前的一瞬间处于静力平衡状态,所以,对于图4-12 的受力状态可建立两个平衡方程:一个是所有各力的水平轴方向上的合力为零,即

(4-8)

式中b——矩形截面宽度;

A s——受拉区纵向受力钢筋的截面面积。

另一个是所有各力对截面上任何一点的合力矩为零,当对受拉区纵向受力钢筋的合力作用点取矩时,有:

(4-9a)

当对受压区混凝土压应力合力的作用点取矩时,有:

(4-9b)

式中M——荷载在该截面上产生的弯矩设计值;

h o——截面的有效高度,按下计算h o=h-a s。

h为截面高度,a s为受拉区边缘到受拉钢筋合力作用点的距离。

按构造要求,对于处于室内正常使用环境的梁和板,当混凝土的强度等级不低于C20时,梁内钢筋的混凝土保护层最小厚度(指从构件边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝土保护层不得小于15mm(当混凝土的强度等级小于和等于C20时,梁和板的混凝保护层最小厚度分别为30mm和

20mm)。因此,截面的有效高度在构件设计时一般可按下面方法估算(图4-13)。

图4-13 梁板的计算高度

梁的纵向受力钢筋按一排布置时,h o=h-35 mm ;

梁的纵向受力钢筋按两排布置时,h o=h-60 mm ;

板的截面有效高度h o=h-20mm。

对于处于其它使用环境的梁和板,保护层的厚度见表4-8。

式(4-8)和式(4-9)是单筋矩形截面受弯构件正截面承载力的基本计算公式。但是应该注意,图4-12b的受力情况只能列两个独立方程,式(4-9a)和式(4-9b)不是相互独立的,只能任意选用其中一个与式(4-8)一起进行计算。

◆基本计算公式的适用条件

式(4-8)和式(4-9)是根据筋构件的破坏简图推导出的。它们只适用于适筋构件计算,不适用于少筋构件和超筋构件计算。在前面的讨论中已经指出,少筋构件和超筋构件的破坏都属于脆性破坏,设计时应避免将构件设计成这两类构件。为此,任何设计的受弯构件必须满足下列两个适用条件:

▲为了防止将构件设计成少筋构件,要求构件的配筋率不得低于其最小配筋率最小配率是少筋构件与适筋构件的界限配筋率,它是根据受弯构件的破坏弯矩等于其开裂弯矩确定的。受弯构件的最小配筋率ρmin按构件全截面面积扣除位于受压边的翼缘面积(b f'-b)h f'后的截面面积计算,即

(4-10)式中 A ——构件全截面面积;

b f',h f' ---- 分别为截面受压边缘的宽度和翼缘高度;

A s,min——按最小配筋率计算的钢筋面积。

ρmin 取0.2%和45f t /f y (%)中的较大值。ρmin (%)的值如表4-3所示。

建筑工程受弯构件最小配筋率ρmin 值(%) 表4-3

▲为了防止将构件设计成超筋构件,要求构件截面的相对受压区高度ξ不得超过其相对界限受压区高度ξb 即

(4-11)

相对界限受压区高度ξb 是适筋构件与超筋构件相对受压区高度的界限值,它需要根据截面平面变形等假定求出。下面分别推导有明显屈服点钢筋和无明显屈服点钢筋配筋受弯构件相对界限受压区高度ξb 的计算公式。

※有明显屈服点钢筋配筋的受弯构件破坏时,受拉钢筋的应变等于钢筋的抗拉强度设计值f y 与钢筋弹性量E s 之比值,即ξs =f y /E s ,由受压区边缘混凝土的应变为ξcu 与受拉钢筋应变ξs 的几何关系(图4-14)。可推得其相对界限受压区高度ξb 的计算公式为

(4-12)

图4-14 截面应变分布

为了方便使用,对于常用的有明显屈服点的HPB235、HRB335、HRB400和RRB400钢筋,将其抗拉强度设计值f y和弹性模量E s代入式(4-12)中,可算得它们的相对界限受压区高度ξb如表4-4所示,设计时可直接查用。当ξ≤ξb时,受拉钢筋必定屈服,为适筋构件。当ξ>ξb时,受拉钢筋不屈服,为超筋构件。

建筑工程受弯构件有屈服点钢筋配筋时的ξb值表4-4

※无明显屈服点钢筋配筋受弯构件的相对界限受压区高度ξb

对于碳素钢丝、钢绞线、热处理钢筋以及冷轧带肋钢筋等无明显屈服点的钢筋,取对应于残余应变为0.2%时的应力σ0.2作为条件屈服点,并以此作为这类钢筋的抗拉强度设计值。对应于条件屈服点σ0.2时的钢筋应变为(图4-15):

图4-15 无明显屈服点钢筋的应力—应变曲线

(4-13)

式中 f y ——无明显屈服点钢筋的抗拉强度设计值;

E s ——无明显屈服点钢筋的弹性模量。

根据截面平面变形等假设,可以求得无明显屈服点钢筋受弯构件相对界限受压区高度ξb 的计算公式为:

(4-14)

截面相对受压区高度ξ与截面配筋率ρ之间存在对应关系。ξb 求出后,可以求出适筋受弯构件截面最大配筋率的计算公式。由式(4-8)可写出:

(4-

15)

(4-16)

式(4-16)即为受弯构件最大配筋率的计算公式。为了使用上的方便起见,将

常用的具有明显屈服点钢筋配筋的普通钢筋混凝土受弯构件的最大配筋率ρmax 列在表4-5中。

建筑工程受弯构件的截面最大配筋率ρmax (%) 表4-5

当构件按最大配筋率配筋时,由(4-9a )可以求出适筋受弯构件所能承受的最大弯矩为:

(4-17)

式中 αsb ——截面最大的抵抗矩系数,αsb =ξb (1-ξb /2) 。

对于具有明显屈服点钢筋配筋的受弯构件,其截面最大的抵抗矩系数见表4-6。

建筑工程受弯构件截面最大的抵抗矩系数αsb 表4-6

由上面的讨论可知,为了防止将构件设计成超筋构件,既可以用式(4-11)进行控制,也可以用:

(4-18)

(4-19)

进行控制。式(4-11 )、式(4-18)和式(4-19)对应于同一配筋和受力状况,因而三者是等效的。

设计经验表明,当梁、板的配筋率为:

实心板:ρ=0.4%~0.8%

矩形梁:ρ=0.6%~1.5%

T形梁: ρ=0.9%~1.8%

时,构件的用钢量和造价都较经济,施工比较方便,受力性能也比较好。因此,常将梁、板的配筋率设计在上述范围之内。梁、板的上述配筋率称为常用配筋率,也有人称它们为经济配筋率。

由于不考虑混凝土抵抗拉力的作用,因此,只要受压区为矩形而受拉区为其它形状的受弯构件(如倒T形受弯构件),均可按矩形截面计算。

◆计算例题

在受弯构件设计中,通常会遇见下列两类问题:一类是截面选择问题,即假

定构件的截面尺寸、混凝土的强度等级、钢筋的品种以及构件上作用的荷载或截面上的内力等都是已知的(或各种因素虽然暂时未知,但可根据实际情况和设计经验假定),要求计算受拉区纵向受力钢筋所需的面积,并且参照构造要求,选择钢筋的根数和直径。另一类是承载能力校核问题,即构件的尺寸、混凝土的强度等级、钢筋的品种、数量和配筋方式等都已确定,要求验算截面是否能够承受某一已知的荷载或内力设计值。利用式(4-8)、式(4-9)以及它们的适用条件式,便可以求得上述两类问题的答案。

例[4-1]现浇简支板计算

例[4-2]矩形简支梁计算

例[4-3]预制走道板计算

◆计算表格的制作及使用

▲计算表格的制作

由上面的例题可见,利用计算公式进行截面选择时,需要解算二次方程式和联立方程式,还要验算适用条件,颇为麻烦。如果将计算公式制成表格,便可以使计算工作得到简化。

计算表格的形式有两种:一种是对于各种混凝土强度等级以及各种钢筋配筋的梁板都适用的表格,另一种是对某种混凝土强度等级和某种钢筋的梁板专门制作的表格。前一种表格通用性好,后一种表格使用上较简便。下面只介绍通用表格的制作及使用方法。

式(4-9a)可写成:

(4-20)

(4-21)

则式(4-20)可写成:

(4-22)

式中,αs bh2o可以认为是截面在极限状态时的抵抗矩,因此可以将αs称为截面抵抗矩系数。

同样,式(4-9b)可写成:

(4-23)

(4-24)

则式(4-23)可写成:

(4-25)

式中γs——内力臂系数。

由式(4-21)可得:

(4-26)

代入式(4-24)可得:

(4-27)

因此,单筋矩形截面受弯构件正截面的配筋计算可以按照图4-16的框图进行。

图4-16 单筋矩形截面受弯构件正截面配筋计算框图

式(4-26)和式(4-27)表明,ξ和γs与αs之间存在一一对应的关系,给定一个αs值,便有一个ξ值和一个γs值与之对应。因此,可以事先给出一串αs值,算出与它们对应的ξ值和γs值,并且将它们列成表格(见附表4-1和附表4-2),设计时查用这个表格,既可以避免解算二次方程式和联立方程式,又不必按式(4-26)或(4-27)计算ξ或γs,一般情况下还不必验算构件是少筋还是超筋,因而使计算工作得到简化。

单筋矩形截面受弯构件的截面选择和承载力校核还可以用图4-17的框图表示。对于学习过算法语言的读者来说,按照这个框图,不难编写出相应的计算机程序。

4.3.3 双筋矩形截面承载力计算

如前所述,不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。双筋矩形截面适用于下面几种情况:※结构或构件承受某种交变的作用(如地震),使截面上的弯矩改变方向;※截面承受的弯矩设计值大于单筋截面所能承受的最大弯矩,而截面尺寸和材料品种等由于某些原因又不能改变;

※结构或构件的截面由于某种原因,在截面的受压区预先已经布置了一定数量的受力钢筋(如连续梁的某些支座截面)。

应该说明,双筋截面的用钢量比单筋截面的多,因此,为了节约钢材,应尽可能地不要将截面设计成双筋截面。

◆计算公式及适用条件

双筋矩形截面受弯构件正截面承载力计算中,除了引入单筋矩形截面受弯构件承载力计算中的各项假定以外,还假定当x≤2a's时受压钢筋的应力等于其抗压强度设计值f'y(图4-18)。

图4-18 双筋矩形截面计算简图

对于图4-18的受力情况,可以像单筋矩形截面一样列出下面两个静力平衡方程式:

(4-28)

(4-29) 式中:

A's——受压区纵向受力钢筋的截面面积;

a's——从受压区边缘到受拉区纵向受力钢筋合力作用之间的距离。对于梁,当受压钢筋按一排布置时,可取a's=35mm;当受拉钢筋按两排布置时,可取a's=60mm。对于板,可取a's=20mm。

式(4-28)和式(4-29)是双筋矩形截面受弯构件的计算公式。它们的适用条件是:

(4-30)

(4-31) 满足条件式(4-30),可防止受压区混凝土在受拉区纵向受力钢筋屈服前压碎。满足条件式(4-31),可防止受压区纵向受力钢筋在构件破坏时达不到抗压强度设计值。因为当x<2a's时,由图4-18可知,受压钢筋的应变ε'y 很小,受压钢筋不可能屈服。

当不满足条件式(4-31)时,受压钢筋的应力达不到f'y而成为未知数,这时可近似地取x=2a's,并将各力对受压钢筋的合力作用点取矩得

(4-32) 用式(4-32)可以直接确定纵向受拉钢筋的截面面积A s。这样有可能使求得的A s比不考虑受压钢筋的存在而按单筋矩形截面计算的A s还大,这时应按单筋截面的计算结果配筋。

第三章__受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行正截面承载力 、 抗弯,抗剪 验算。 2、简支梁中的钢筋主要有丛向受力筋 、 架立筋 、 箍筋 、 弯起 四种。 3、钢筋混凝土保护层的厚度与 环境 、 混凝土强度等级 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 0.002 、=cu ε 0.0033 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时ho=h-40 、两排钢筋时 ho=h-60 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 ho=h-35 、两排钢筋时 。 7、单筋梁是指 只在受拉区配置纵向受力筋 的梁。 8、双筋梁是指 受拉区和受拉区都配置纵向受力钢筋 的梁。 9、梁中下部钢筋的净距为 25MM ,上部钢筋的净距为 30MM 和1.5d 。 10、受弯构件min ρρ≥是为了防止 少梁筋 ,x a m .ρρ≤是为了防止 超梁筋 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 b ξξ≤ 和 m i n 0 ρρ≥= bh A s 。 12、受弯构件正截面破坏形态有 少筋破坏 、 适筋破坏 、 超筋破坏 三种。 13、板中分布筋的作用是 固定受力筋 、 承受收缩和温度变化产生的内力 、 承受分布板上局部荷载产生的内力,承受单向板沿长跨方向实际存在的某些弯矩 。 14、双筋矩形截面的适用条件是 b ξξ≤ 、 s a x '≥2 。

15、单筋矩形截面的适用条件是 b ξξ≤ 、 min 0 ρρ≥= bh A s 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 b ξξ= 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 0.614 、 0.550 、 0.518 。 18、受弯构件梁的最小配筋率应取 %2.0m in =ρ 和 y t f f /45m in =ρ较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。 二、判断题: 1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s = ρ。( )

受弯构件斜截面破坏的机理与研究

受弯构件斜截面破坏的机理与研究

高等结构试验 学院:土木工程学院 班级: 5班

姓名:魏亚男 学号:1622071187

受弯构件斜截面破坏的机理与研究本科的时候由于学习过混凝土结构设计原理这门课程,所以对受弯构件的斜截面的承载力和受剪破坏形态有一定的了解。现在上了高等结构试验这门课程,着重对试件的实验过程进行分析和从根本上有更为深入的理解。今天去观察了庭院内往届师兄做过的试验构件,也让我对试验的破坏形态有了更近一步的研究。 如图可以很直观的观察 到梁的端部有一条斜裂缝的 存在。由《混凝土结构设计 原理》可知,钢筋混凝土梁 在剪力和弯矩共同作用的剪 弯区段内,会产生斜裂缝。 斜截面受剪破坏主要有三种 形态,斜压破坏,剪压破坏 和斜拉破坏,而这三种破坏都是在无腹筋梁或者箍筋数量配置过少时产生的。 钢筋混凝土受弯构件斜截面破坏理论分析 无腹筋梁斜裂缝受力情况与破坏形态 在钢筋混凝土梁中,我们一般把箍筋和弯起(斜)钢筋统称为梁的腹筋。把配有纵向受力钢筋和腹筋的梁称为有腹梁筋,而把仅有纵向受力钢筋而不设腹筋的梁称为无腹筋梁,现先从相对较简单的无腹筋梁入手分析。 斜裂缝出现前构件的受力状态 下图为一个只配设受拉主筋(无腹筋)的矩形截面简支梁,现研究其在剪力和弯矩共同作用下的典型破坏过程。梁上作用有两个对称的集中荷载,荷载和支座之间的剪力 V 为一常数,弯矩为线性变化。图中 AC 段和 DB 段称为剪弯段,长度 a 为剪跨,与截面有效高度h0 之比称为剪跨比(λ=h0/ a ),CD 段称为纯弯段。

当梁上荷载较小时,裂缝尚未出现,钢筋和混凝土的应力-应变关系都处在弹性阶段,所以,把梁近似看作匀质弹性体,可用材料力学方法来分析它的应力状态。在剪弯区段截面上任一点都有剪应力和正应力存在,由单元体应力状态通过 Mohr 应力圆计算,可以得到各点主应力的数值和方向,并绘制梁的主拉、主压应力轨迹。 从主应力轨迹线可以看出,剪弯区段主拉应力方向是倾斜的,与梁轴线的交角约为45度,而在梁的下边缘主拉应力方向接近于水平。在矩形截面梁中,主拉应力的数值是沿着某一条主拉应力轨迹线自上向下逐步增大的。混凝土的抗压强度较高,但其抗拉强度较低。 斜裂缝出现后的受力状态 在梁的剪弯段中,当主拉应力超过混凝土的极限抗拉强度时,就会出现斜裂缝。梁的剪弯段出现斜裂缝后,截面的应力状态发生了质变,或者说发生了应力重分布。这时,不能用材料力学公式来计算梁截面上的正应力和剪应力,因为这时梁已不再是完整的匀质弹性梁了。 图 2.2 为斜裂缝出现前后Ⅰ-Ⅰ和Ⅱ-Ⅱ截面的应变分布图。截面应变差异表明,斜裂缝出现后,将梁分成上、下两个部分,梁内应力发生了重分布,其主要表现为斜裂缝起始端的纵筋拉应力突然增大,大部分荷载将由斜裂缝上

受弯构件正截面题共8页

第4章 受弯构件正截面受弯承载力计算 一、判断题 1.界限相对受压区高度ξb 与混凝土等级无关。 ( √ ) 2.界限相对受压区高度ξb 由钢筋的强度等级决定。 ( √ ) 3.混凝土保护层是从受力钢筋外侧边算起的。 ( √ ) 4.在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。 ( × ) 5.在适筋梁中增大截面高度h 对提高受弯构件正截面承载力的作用不明显。 ( × 6.在适筋梁中其他条件不变时ρ越大,受弯构件正截面承载力也越大。 √ ) 7.梁板的截面尺寸由跨度决定。 ( × ) 8,在弯矩作用下构件的破坏截面与构件的轴线垂直,即正交,故称其破坏为正截面破坏。 ( √ ) 9.混凝土保护层厚度是指箍筋外皮到混凝土边缘的矩离。 ( × ) 10.单筋矩形截面受弯构件的最小配筋率P min =A s,min /bh 0。 ( × ) 11.受弯构件截面最大的抵抗矩系数αs,max 由截面尺寸确定。 ( × ) 12.受弯构件各截面必须有弯矩和剪力共同作用。 ( × ) 13.T 形截面构件受弯后,翼缘上的压应力分布是不均匀的,距离腹板愈远,压应力愈小。 ( √ ) 14.第一类T 形截面配筋率计算按受压区的实际计算宽度计算。 ( × ) 15.超筋梁的受弯承载力与钢材强度无关。 ( × ) 16.以热轧钢筋配筋的钢筋混凝土适筋粱,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入强化阶段。( × ) 17.与素混凝土梁相比钢筋混凝土粱抵抗混凝土开裂的能力提高很多。( × ) 18.素混凝土梁的破坏弯矩接近于开裂弯矩。( √ ) 19.梁的有效高度等于总高度减去钢筋的保护层厚度。( × ) 二、填空题 1.防止少筋破坏的条件是___ρ≥ρmin _______,防止超筋破坏的条件是__ρ≤ρmax ____。 2.受弯构件的最大配筋率是__适筋_________构件与___超筋________构件的界限配筋率。 3.双筋矩形截面梁正截面承载力计算公式的适用条件是 (1)0h x b ξ≤,保证____防止超筋破坏____________; (2) ____s a x 2≥________,保证____受压钢筋达到屈服____________。 4.受弯构件正截面计算假定的受压区混凝土压应力应变分布图形中,ε0=__0.002,εcu =__0.0033___。 5.受弯构件ρ≥ρmin 是为了__防止少筋破坏;ρ≤ρmax 是为了__防止超筋破坏______。 6.第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必验算的条件分别是_超筋破坏_____及__少筋破坏_____。 8.界限相对受压区高度ξb 需要根据__平截面假定___等假定求出。 9.单筋矩形截面梁所能承受的最大弯矩为_)5.01(20 1max ,b b c u bh f M ξξα-=,否则应____采用双筋截面_。 10.在理论上,T 形截面梁,在M 作用下,b f ’越大则受压区高度x 的内力臂_愈大__,因而 可__减少______受拉钢筋截面面积。 11.梁下部钢筋的最小净距为__25__mm 及≥d ,从上部钢筋的最小净距为___30_mm 及≥1.5d 。

混凝土结构设计原理-第四章斜截面受弯习题

第四章小结 1、斜截面强度计算是钢筋混凝土结构的一个重要问题。设计受弯构件时,必须同时解决正截面强度和斜截面强度的计算与构造问题。 2、梁沿斜截面破坏的主要形态有斜压、剪压和斜拉三种。影响斜截面抗剪强度的主要因素有:剪跨比、混凝土强度、纵向受拉钢筋配筋率和箍筋数量及强度等。 3、斜截面抗剪强度的计算公式是以剪压破坏为基础建立的。对于斜压和斜拉破坏,一般采用截面限制条件和构造措施予以避免。斜截面抗剪强度的计算图式、基本计算公式和适用条件,斜截面抗剪设计和复核的方法及步骤。 4、斜截面强度有两个方面:一是斜截面抗剪强度,通过计算配置箍筋或配置箍筋和弯起钢筋来保证,一是斜截面抗弯强度,通过采用一定的构造措施来保证。

第四章 受弯构件斜截面承载力计算 一、填空题: 1、在钢筋混凝土受弯构件中,( ) 和 ( )称为腹筋或剪力钢筋。 2、影响受弯构件斜截面抗剪力的主要因素( ) 、( ) 、( )和( )。 3、受弯构件斜截面破坏的主要形态( )、( ) 和( )。桥规抗剪承 载力公式是以( )破坏形态的受力特征为基础建立的。 4、梁中箍筋的配箍率公式:( )。 5、纵筋的配筋率越大,受剪承载力越高,这是由于( )和( )。 6、梁式结构受拉主钢筋应有不少于( )根并不少于( )的受拉主钢筋通 过支点。 7、支座中心向跨径方向长度在一倍梁高范围内,箍筋间距应不大于( )。 8、控制最小配箍率的目的( ),限制截面最小尺寸的目的( )。 9、影响有腹筋梁斜截面抗剪能力的主要因素有:( )、 ( ) 、 ( )、 ( ) 。 10、钢筋混凝土梁沿斜截面的主要破坏形态有斜压破坏、斜拉破坏和剪压破坏等。在设计时,对于斜压和斜拉破坏,一般是采用( ) 和 ( ) 予以避免,对于常见的剪压破坏形态,梁的斜截面抗剪能力变化幅度较大,故必须进行斜截面抗剪承载力的计算。 《公路桥规》规定,对于配有腹筋的钢筋混凝土梁斜截面抗剪承载力的计算采用下属半经验半理论的公式: s sb sd sv sv k cu u d A f f f p bh V V θραααγsin )1075.0()6.02()1045.0(3,033210∑?++?=≤--11、对于已经设计好的等高度钢筋混凝土简支梁进行全梁承载能力校核,就是进一步检查梁沿长度上的截面的( )、 ( )和 ( 是否满足要求。 12、梁内纵向受力钢筋的弯起点应设在按正截面抗弯计算该钢筋强度全部发挥作用的截面以外h0/2处,以保证( ) ;同时弯起钢筋与梁中心线的交点应位于按计算不需要该钢筋的截面以外。 13、在一定范围内加大配箍率可提高梁的 ( ) 承载力。

受弯构件正截面例题

例题一、某教学楼钢筋混凝土矩形截面简支梁,安全等级为二级,截面尺寸b×h=250×550mm,承受恒载标准值10kN/m(不包括梁的自重),活荷载标准值12kN/m,计算跨度=6m,采用C20级混凝土,HRB335级钢筋。试确定纵向受力钢筋的数量。 【解】查表得f c=9.6N/mm2,f t=1.10N/mm2,f y=300N/mm2,ξb=0.550,α1=1.0, 结构重要性系数γ0=1.0,可变荷载组合值系数Ψc=0.7 1.计算弯矩设计值M 钢筋混凝土重度为25kN/m3,故作用在梁上的恒荷载标准值为: g k=10+0.25×0.55×25=13.438kN/m 简支梁在恒荷载标准值作用下的跨中弯矩为: M gk=g k l02=×13.438×62=60.471kN.m 简支梁在活荷载标准值作用下的跨中弯矩为: M qk=q k l02= ×12×62=54kN〃m 由恒载控制的跨中弯矩为: γ0(γG M gk+ γQΨc M qk)=1.0×(1.35×60.471+1.4×0.7×54) =134.556kN〃m 由活荷载控制的跨中弯矩为: γ0(γG M gk+γQ M qk) =1.0×(1.2×60.471+1.4×54) =148.165kN〃m 取较大值得跨中弯矩设计值M=148.165kN〃m。 2.计算h0

假定受力钢筋排一层,则h0=h-40=550-40=510mm 3.计算x,并判断是否属超筋梁 =140.4mm<=0.550×510=280.5mm 不属超筋梁。 4.计算A s,并判断是否少筋 A s=α1f c bx/f y=1.0×9.6×250×140.4/300=1123.2mm2 0.45f t /f y =0.45×1.10/300=0.17%<0.2%,取ρmin=0.2% ρmin bh=0.2%×250×550=275mm2<A s =1123.2mm2 不属少筋梁。 5.选配钢筋 选配218+220(As=1137mm2),如图3.2.6。

第四章受弯构件斜截面受剪承载力计算

第4章 受弯构件的斜截面承载力 教学要求: 1深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。 2熟练掌握梁的斜截面受剪承载力计算。 3理解梁内纵向钢筋弯起和截断的构造要求。 4知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。 4.1 概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜截面受弯承载力两方面。工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。 图4-1 箍筋和弯起钢筋 图4-2 钢筋弯起处劈裂裂缝 工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。由于弯起钢筋承受的拉力比较大,且集中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。弯起钢筋的弯起角宜取45°或60° 4.2 斜裂缝、剪跨比及斜截面受剪破坏形态 4.2.1 腹剪斜裂缝与弯剪斜裂缝 钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。 主拉应力:22 42τσσ σ++=tp ,

主压应力22 42τσσ σ+-=cp 主应力的作用方向与构件纵向轴线的夹角a 可按下式确定: στ α22-=tg 图4-3 主应力轨迹线 图4-4 斜裂缝 (a)腹剪斜裂缝;(b)弯剪斜裂缝 这种由竖向裂缝发展而成的斜裂缝,称为弯剪斜裂缝,这种裂缝下宽上细,是最常见的,如图4-4(b)所示。 4.2.2 剪跨比 在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算截面的剪跨比,简称剪跨比,用λ表示,λ=a/h 0。

结构设计原理 第三章 受弯构件 习题及答案

结构设计原理第三章受弯构件习题及答案

第三章 受弯构件正截面承载力 一、填空题 1、受弯构件正截面计算假定的受压区混凝土压应力分布图形中,0ε= ,cu ε= 。 2、梁截面设计时,可取截面有效高度:一排钢筋时,0h h =- ;两排钢筋时,0h h =- 。 3、梁下部钢筋的最小净距为 mm 及≥d 上部钢筋的最小净距为 mm 及≥1.5d 。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。①抗裂度计算以 阶段为依据;②使用阶段裂缝宽度和挠度计算以 阶段为依据;③承载能力计算以 阶段为依据。 5、受弯构件min ρρ≥是为了 ;max ρρ≤是为了 。 6、第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必验算的条件分别是 及 。 7、T 形截面连续梁,跨中按 截面,而支座边按 截面计算。 8、界限相对受压区高度b ζ需要根据 等假定求出。 9、单筋矩形截面梁所能承受的最大弯矩为 ,否则应 。 10、在理论上,T 形截面梁,在M 作用下,f b '越大则受压区高度χ 。内力臂 ,因而可 受拉钢筋截面面积。 11、受弯构件正截面破坏形态有 、 、 3种。 12、板内分布筋的作用是:(1) ;(2) ;(3) 。 13、防止少筋破坏的条件是 ,防止超筋破坏的条件是 。 14、受弯构件的最小配筋率是 构件与 构件的界限配筋率,是根据 确定的。 15、双筋矩形截面梁正截面承载力计算公式的适用条件是:(1) 保证 ;(2) 保证 。当<2s a χ'时,求s A 的公式为 , 还应与不考虑s A '而按单筋梁计算的s A 相比,取 (大、小)值。 16、双筋梁截面设计时,s A 、s A '均未知,应假设一个条件为 ,

第4章受弯构件斜截面承载力的计算

第4章 受弯构件斜截面承载力的计算 1.无腹筋简支梁斜截面裂缝出现前后的受力状态及应力变化如何? 答:无腹筋简支梁斜截面裂缝出现前后的受力状态及应力变化情况主要表现为:裂缝出现前,混凝土 可近似视为弹性体,裂缝出现后就不再是完好的匀质弹性梁了,材料力学的分析方法也不再适用。从应力变化看,斜裂缝出现前,剪力由全截面承担,斜裂缝出现后剪力由裂缝处的剪压面承担,因此,剪压区的剪应力会显著增大。第二是纵向受力钢筋的应力,在裂缝出现前,数值较小,裂缝出现后,其应力会显著增大。 2.有腹筋简支梁斜裂缝出现后的受力状态如何? 答:对于有腹筋梁,在开裂前,腹筋的作用并不明显,在荷载较小时,腹筋中的应力很小。但斜裂缝 出现后,与斜裂缝相交的腹筋中的应力会突然增大,腹筋的存在,使梁的斜截面受剪承载力大大高于无腹筋梁。 3.有腹筋简支梁斜裂缝出现后,腹筋的作用主要表现在哪几方面? 答:在斜裂缝出现后,腹筋的作用主要表现为以下几点:(1)腹筋将齿块(被斜裂缝分开的混凝土块)向上拉住,可避免纵筋周围混凝土撕裂裂缝的发生,从而使纵筋的销栓作用得以继续发挥。这样,便可更有效的发挥拱体传递主压应力的作用。(2)把齿块的斜向内力传递到拱体上,从而减轻了拱体拱顶处这一薄弱环节的受力,增加了整体抗剪承载力。(3)腹筋可有效地减小裂缝开展宽度,从而提高了裂缝处混凝土的骨料咬合力。 4.有腹筋梁与无腹筋梁的受力机制有何区别? 答:有腹筋梁与无腹筋梁的受力机制区别在于:①箍筋和弯起钢筋的作用明显;②斜裂缝间的混凝土 参加了抗剪。 5.什么是剪跨比、“广义剪跨比”与“狭义剪跨比”?它有何意义? 答:所谓剪跨比就是指某一截面上弯矩与该截面上剪力与截面有效高度乘积的比值。一般用m 来表 示。用公式表示即为0 Qh M m =。一般把m 的该表达式称为“广义剪跨比”。对于集中荷载作用下的简支梁,由于000h a Qh Qa Qh M m ===,其中a 为集中荷载作用点至梁最近支座之间的距离,称为“剪跨”。把0 h a m =,称为“狭义剪跨比”。 剪跨比是一个无量纲常数,它反映了截面所受弯矩和剪力的相对大小。 6.梁斜截面破坏有哪三种形态,其发生的条件如何,各有何破坏特征 答:梁斜截面破坏的三种形态为斜拉破坏、剪压破坏和斜压破坏。 斜拉破坏:当剪跨比较大(m >3)时,或箍筋配置过少时,常发生这种破坏。 剪压破坏:当剪跨比约为1~3,且腹筋配置适中时,常发生这种破坏。 斜压破坏:当剪跨比m 较小(m <1)时,或剪跨比适中(1

钢筋混凝土受弯构件正截面的破坏机理

钢筋混凝土受弯构件正截面的破坏机理截面形式:梁、板常用矩形,T形,Ⅰ形,槽形等。 下面以单筋矩形截面梁为例进行分析,其余截面形状梁可参考单筋矩形截面梁。单筋截面梁又分为适筋梁,超筋梁,少筋梁。 适筋梁正截面受弯承载力的实验: 一、实验装置 二、实验梁

三、弯矩-曲率图 适筋梁正截面受弯的全过程划分为三个阶段——未裂阶段、裂缝阶段、破坏阶段。 第一阶段:从加载开始至混凝土开裂瞬间,也叫整体工作阶段。 荷载很小时,弯矩很小,各纤维应变也小,混凝土基本处于弹性阶段,截面变形符合平截面假设。(垂直 于杆件轴线的各平截面(即杆的横截面)在杆件受拉伸、压缩或纯弯曲而变形后仍然为平面,并且同变形 后的杆件轴线垂直。根据这一假设,若杆件受拉伸或压缩,则各横截面只作平行移动,而且每个横截面的 移动可由一个移动量确定;若杆件受纯弯曲,则各横截面只作转动,而且每个横截面的转动可由两个转角确定。利用杆件微段的平衡条件和应力-应变关系,即可求出上述移动量和转角,进而可求出杆内的应变和应力。如果杆上不仅有力矩,而且还有剪力,则横截面在变形后不再为平面。但对于细长杆,剪力引起的变形远 小于弯曲变形,平截面假设近似可用。)荷载-挠度曲线(弯矩-曲率曲线)基本接近直线。拉力由钢筋和混凝土共同承担,变形相同,钢筋应力很小。受拉受压区混凝土均处于弹性工作阶段,应力、应变分布均为三角形。继续加载,弯矩增大,应变也随之增大。混凝土受拉边缘出现塑性变形,受拉应力图呈曲线,中性轴上移。继续加载,受拉区边缘混凝土达到极限

拉应变,即将开裂。 第二阶段:从混凝土开裂到受拉钢筋应力达到屈服强度,又称带裂工作阶段。 在弯矩作用下受拉区混凝土开裂,退出工作,开裂前混凝土承担的拉力转移到钢筋上,钢筋承担的应力突增,中性轴大幅度上移。随着荷载不断增大,裂缝越来越到,混凝土逐步退出工作,截面抗弯刚度降低,弯矩-曲率曲线有明显的转折。 荷载继续增加,钢筋拉应力、挠度变形不断增大,裂缝宽度也不断开展,受压区混凝土面积不断减小,应力和应变不断增加,受压区混凝土弹塑性特性表现得越来越显著,受压区应力图形逐渐呈曲线分布。当钢筋应力达到屈服强度时,梁的受力性能将发生质变。 正常工作的梁一般都处于第二阶段,该阶段的应力状态为正常使用阶段和裂缝宽度计算的依据。 第三阶段:从受拉筋屈服至受压区混凝土被压碎,又称为破坏阶段。

最新实验二受弯构件斜截面破坏

实验二受弯构件斜截 面破坏

实验二受弯构件斜截面破坏 姓名班级学号 组别 组员: 试验日期报告日期 一、试验名称 受弯构件斜截面破坏 二、试验目的和内容 1、验证斜截面强度计算方法,加深认识剪压破坏、斜压破坏、斜拉破坏等 三种剪切破坏形态的主要破坏特征,以及产生这三种破坏特征的机理。 2、正确区分斜裂缝和垂直裂缝,弯剪斜裂缝和腹剪斜裂缝;在此基础上加 深了解这二种裂缝的形成原因和裂缝开展的特点。 3、加深了解箍筋在斜截面抗剪中的作用。 三、试验梁概况(列表) 四、材料强度指标 混凝土:设计强度等级 C20 试验实测值f c s= 9.6 N/mm2 E c= 2.55X104 N/mm2 钢筋:试验实测值:HPB235, f y s= 215 N/mm2 E s= 2.05X106 N/mm2 HRB335, f y s= 300 N/mm2 E s=2.05X106 N/mm2

五、试验数据记录 1、百分表记录表(表1) 2、电阻变仪记录表(表2) 3、观察斜裂缝的出现和发展,记录第二裂缝图形,记录破坏时受荷载值 六、试验结果分析 1、试验情况概述 剪压:实验加载至20kN时看见第一条斜裂缝,随后出现其他斜裂缝,并不断发展。40kN时一条斜裂缝发展接近顶端,裂缝宽度快速增 加。50kN时挠度已经很大,顶部混凝土逐渐被压酥。为保护仪 器,55kN停止试验。构件破坏时间在三者中最长。 斜压:最终破坏裂缝两侧的混凝土都被压酥,裂缝咬合较为紧密。 斜拉:裂缝开展迅速,很快就达到破坏。几乎没有延性发展过程 2、试验梁荷载——挠度曲线

*曲线最后一段梁已经接近破坏,千斤顶位移增加但实际力并未增加,故曲线反向。 3、试验梁荷载——箍筋应力曲线

受弯构件的正截面承载力习题答案Word版

第4章 受弯构件的正截面承载力 4.1选择题 1.( C )作为受弯构件正截面承载力计算的依据。 A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 2.( A )作为受弯构件抗裂计算的依据。 A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 3.( D )作为受弯构件变形和裂缝验算的依据。 A .Ⅰa 状态; B. Ⅱa 状态; C. Ⅲa 状态; D. 第Ⅱ阶段; 4.受弯构件正截面承载力计算基本公式的建立是依据哪种破坏形态建立的( B )。 A. 少筋破坏; B. 适筋破坏; C. 超筋破坏; D. 界限破坏; 5.下列那个条件不能用来判断适筋破坏与超筋破坏的界限( C )。 A .b ξξ≤; B .0h x b ξ≤; C .' 2s a x ≤; D .max ρρ≤ 6.受弯构件正截面承载力计算中,截面抵抗矩系数s α取值为:( A )。 A .)5.01(ξξ-; B .)5.01(ξξ+; C .ξ5.01-; D .ξ5.01+;

7.受弯构件正截面承载力中,对于双筋截面,下面哪个条件可以满足受压钢筋的屈服( C )。 A .0h x b ξ≤; B .0h x b ξ>; C .' 2s a x ≥; D .' 2s a x <; 8.受弯构件正截面承载力中,T 形截面划分为两类截面的依据是( D )。 A. 计算公式建立的基本原理不同; B. 受拉区与受压区截面形状不同; C. 破坏形态不同; D. 混凝土受压区的形状不同; 9.提高受弯构件正截面受弯能力最有效的方法是( C )。 A. 提高混凝土强度等级; B. 增加保护层厚度; C. 增加截面高度; D. 增加截面宽度; 10.在T 形截面梁的正截面承载力计算中,假定在受压区翼缘计算宽度范围内混凝土的压应力分布是( A )。 A. 均匀分布; B. 按抛物线形分布; C. 按三角形分布; D. 部分均匀,部分不均匀分布; 11.混凝土保护层厚度是指( B )。 A. 纵向钢筋内表面到混凝土表面的距离; B. 纵向钢筋外表面到混凝土表面的距离; C. 箍筋外表面到混凝土表面的距离; D. 纵向钢筋重心到混凝土表面的距离; 12.在进行钢筋混凝土矩形截面双筋梁正截面承载力计算中,若' 2s a x ≤,则说明 ( A )。 A. 受压钢筋配置过多; B. 受压钢筋配置过少; C. 梁发生破坏时受压钢筋早已屈服; D. 截面尺寸过大; 4.2判断题 1. 混凝土保护层厚度越大越好。( × ) 2. 对于' f h x ≤的T 形截面梁,因为其正截面受弯承载力相当于宽度为' f b 的矩形截面 梁,所以其配筋率应按

4受弯构件斜截面承载力计算(精)

4 受弯构件斜截面承载力计算 1 当仅配有箍筋时,对矩形、T 形和I 形截面的一般受弯构件斜截面受剪承载力计算采用下列公式: 0025.17.0h s A f bh f V V sv yv t cs +=≤ (4-1) 式中 V ——构件斜截面上的最大剪力设计值; V cs ——构件斜截面上混凝土和箍筋的受剪承载力设计值; A sv ——配置在同一截面内箍筋各肢的全部截面面积,A sv =nA sv1; n ——在同一截面内箍筋肢数; A sv1——单肢箍筋的截面面积; s ——沿构件长度方向的箍筋间距; f t ——混凝土轴心抗拉强度设计值; f yv ——箍筋抗拉强度设计值。 b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。 2 对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的 75%以上的情况)的矩形、T 形和I 形截面的独立梁,斜截面受剪承载力计算按下列公式计算: 00175.1h s A f bh f V V sv yv t cs ++=≤λ (4-2) 式中λ——计算截面的计算剪跨比,可取λ= a /h 0, a 为集中荷载作用点至支座截面或节点边缘的距离;当λ<l.5时,取入= 1.5;当λ>3时,取λ=3,此时,在集中荷载作用点与支座之间的箍筋应均匀配置。 3 对于配有箍筋和弯起钢筋的矩形、T 形和I 形截面的受弯构件,其受剪承载力按下列公式计算: V ≤sb cs u V V V +==V cs +0.8f y A sb sina s (4-3) 式中 V ——在配置弯起钢筋处的剪力设计值; V cs ——构件斜截面上混凝土和箍筋的受剪承 载力设计值; f y ——弯起钢筋的抗拉强度设计值; A sb ——同一弯起平面内弯起钢筋的截面面积; αs ——弯起钢筋与构件纵轴线之间的夹角 一般情况αs =45o ,梁截面高度较大时,()mm h 800≥取αs =60o 。 4 上限值——最小截面尺寸 (1) 对矩形、T 形和I 形截面的一般受弯构件,应满足下列条件: 当 4/≤b h w 时 025.0bh f V c c β≤ (4-4a ) 4(2) 当 6/≥b h w 时 02.0bh f V c c β≤ (4-4b ) 式中:V ——构件斜截面上的最大剪力设计值 c β——为高强混凝土的强度折减系数,当混凝土强度等级不大于C50级时,取 1=c β;当混凝土强度等级为C80时,8.0=c β,其间按线性内插法取值; h w ——截面腹板高度。 b ——矩形截面的宽度或T 形截面和工形截面的腹板宽度。

第03章受弯构件正截面承载力(精)

第三章 受弯构件正截面承载力 一、填空题 1、受弯构件正截面计算假定的受压区混凝土压应力分布图形中,0ε= 0.002 ,cu ε= 0.0033 。 2、梁截面设计时,可取截面有效高度:一排钢筋时,0h h =- 30 ;两排钢筋时,0h h =- 60 。 3、梁下部钢筋的最小净距为 25 mm 及≥d 上部钢筋的最小净距为 30 mm 及≥1.5d 。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。①抗裂度计算以 I a 阶段为依据;②使用阶段裂缝宽度和挠度计算以 II a 阶段为依据;③承载能力计算以 III a 阶段为依据。 5、受弯构件min ρρ≥是为了防止构件少筋破坏 ;max ρρ≤是为了 防止构 件超筋破坏 。 6、第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必 验算的条件分别是 b ξξ≤ 及 m i n >ρρ 。 7、T 形截面连续梁,跨中按 T 截面,而支座边按 矩形 截面计算。 8、界限相对受压区高度b ζ需要根据 平截面 等假定求出。 9、单筋矩形截面梁所能承受的最大弯矩为 210(10.5)c b b f b h αξξ- ,否则应 提高混凝土强度等级,增大截面尺寸(特别是0h ),采用较低级别的钢筋 。 10、在理论上,T 形截面梁,在M 作用下,f b '越大则受压区高度χ 越小 。 内力臂 越大 ,因而可 减少 受拉钢筋截面面积。 11、受弯构件正截面破坏形态有 少筋 、适筋 、 超筋 3种。 12、板内分布筋的作用是:(1) 在施工中固定受力钢筋的位置;(2)将板面的荷载更均匀地传递给受力钢筋;(3)抵抗该方向温度和混凝土的收缩应力。 13、防止少筋破坏的条件是 min >ρρ ,防止超筋破坏的条件是 b ξξ≤ 。 14、受弯构件的最小配筋率是 少筋 构件与 适筋 构件的界限配 筋率,是根据少筋构件的破坏弯矩等于相同截面的素混凝土构件的破坏弯矩 确定的。

(整理)实验二受弯构件斜截面破坏.

实验二受弯构件斜截面破坏 姓名班级学号 组别 组员: 试验日期报告日期 一、试验名称 受弯构件斜截面破坏 二、试验目的和内容 1、验证斜截面强度计算方法,加深认识剪压破坏、斜压破坏、斜拉破坏等 三种剪切破坏形态的主要破坏特征,以及产生这三种破坏特征的机理。 2、正确区分斜裂缝和垂直裂缝,弯剪斜裂缝和腹剪斜裂缝;在此基础上加深 了解这二种裂缝的形成原因和裂缝开展的特点。 3、加深了解箍筋在斜截面抗剪中的作用。 三、试验梁概况(列表) 四、材料强度指标 混凝土:设计强度等级C20 试验实测值f c s= 9.6 N/mm2 E c= 2.55X104N/mm2 钢筋:试验实测值:HPB235,f y s= 215 N/mm2E s= 2.05X106 N/mm2 HRB335,f y s= 300 N/mm2E s=2.05X106 N/mm2 五、试验数据记录 1、百分表记录表(表1) 2、电阻变仪记录表(表2) 3、观察斜裂缝的出现和发展,记录第二裂缝图形,记录破坏时受荷载值 六、试验结果分析 1、试验情况概述

剪压:实验加载至20kN时看见第一条斜裂缝,随后出现其他斜裂缝,并不断发展。40kN时一条斜裂缝发展接近顶端,裂缝宽度快速增加。50kN 时挠度已经很大,顶部混凝土逐渐被压酥。为保护仪器,55kN停止 试验。构件破坏时间在三者中最长。 斜压:最终破坏裂缝两侧的混凝土都被压酥,裂缝咬合较为紧密。 斜拉:裂缝开展迅速,很快就达到破坏。几乎没有延性发展过程 2、试验梁荷载——挠度曲线 *曲线最后一段梁已经接近破坏,千斤顶位移增加但实际力并未增加,故曲线反向。 3、试验梁荷载——箍筋应力曲线

受弯构件正截面的破坏

受弯构件正截面的破坏形式 前面所研究的时配筋量比较适中的梁的工作特点和破坏特征。试验研究表明,随着配筋量的不同,梁正截面的破坏形式也不同。梁正截面的破坏形式还与混凝土强度等级、钢筋级别,截面形式等并许多因素有关。当材料品种及截面形式选定以后,梁正截面破坏形式主要取决于配筋量的多少,矩形截面配筋量的多少是用配筋率p来衡量的。配筋率是指纵向受力钢筋截面面积与截面有效面积的百分比,即: P=As/bho 式中 b 梁的截面宽度: ho 梁截面的有效高度,取受力钢筋截面重心至售压力边缘的距离; As 纵向受力钢筋截面面积; P 梁的截面配筋率。 根据p的大小,梁正截面的破坏形式可以分为下面三种类型。 (1)适筋破坏 当梁的配筋率比较适中时,发生适筋破坏。如前所述,这种破坏的特点是受拉区纵向受力钢筋首先屈服,然后受压区混凝土被压碎。梁完成破坏之前,受拉区纵向受力钢筋要经历较大的塑性变形,沿量跨产生较多的垂直裂缝,裂缝不断开展和延伸,挠度也不断增大,所以能给人以明显的破坏预兆。破坏呈延性性质。破坏时,钢筋和混凝土的强度都得到了充分利用。发生适筋破坏的梁称为适筋梁(a)。 (2)超筋破坏 当梁的配筋率太大时,发生超筋破坏。其特点是破坏时受压区混凝土被压碎而受拉区纵向受力钢筋却没有达到屈服梁破坏时,由于纵向受拉钢筋尚处于弹性阶段,所以,梁受拉区裂缝宽度小,甚至形不成裂缝,破坏没有明显预兆,呈脆性性质。破坏时,混凝土的强度得到了充分利用而钢筋的强度没有得到充分的利用。发生超筋破坏的梁称为超筋梁(b)。 (3)少筋破坏 当梁的配筋率太小时,发生少筋破坏。其特点是一裂即坏。梁受拉区混凝土一开裂,裂截面原来由混凝土承担的拉力转由钢筋承担。因梁的配筋率太小,故钢筋应力立即达到屈服强度,有时可迅速经历整个流幅而进入强化阶段,有时钢筋甚至可能被拉断。裂缝往往只有一条,裂缝宽度很大且沿梁高延伸较高。破坏时,钢筋和混凝土的强度虽然得到了充分利用,但破坏前无明显预兆,呈脆性性质。发生少筋破坏的梁称为少筋梁(c)

最新受弯构件正截面承载力计算练习题

第四章受弯构件正截面承载力计算 一、一、选择题(多项和单项选择) 1、钢筋混凝土受弯构件梁内纵向受力钢筋直径为( B ),板内纵向受力钢筋直径为( A )。 A、6—12mm B、12—25mm C、8—30mm D、12—32mm 2、混凝土板中受力钢筋的间距一般在( B )之间。 A、70—100mm B、100---200mm C、200---300mm 3、梁的有效高度是指( C )算起。 A、受力钢筋的外至受压区混凝土边缘的距离 B、箍筋的外至受压区混凝土边缘的距离 C、受力钢筋的重心至受压区混凝土边缘的距离 D、箍筋的重心至受压区混凝土边缘的距离 4、混凝土保护层应从( A )算起。 A、受力钢筋的外边缘算起 B、箍筋的外边缘算起 C、受力钢筋的重心算起 D、箍筋的重心算起 5、梁中纵筋的作用( A )。 A、受拉 B、受压 C、受剪 D、受扭 6、单向板在( A )个方向配置受力钢筋。 A、1 B、2 C、3 D、4 7、结构中内力主要有弯矩和剪力的构件为( A )。 A、梁 B、柱 C、墙 D、板 8、单向板的钢筋有( B )受力钢筋和构造钢筋三种。 A、架力筋 B、分布钢筋 C、箍筋 9、钢筋混凝土受弯构件正截面的三种破坏形态为( A B C ) A、适筋破坏 B 、超筋破坏 C、少筋破坏 D、界线破坏 10、钢筋混凝土受弯构件梁适筋梁满足的条件是为( A )。

A、p min≤p≤p max B、p min>p C、p≤p max 11、双筋矩形截面梁,当截面校核时,2αsˊ/h0≤ξ≤ξb,则此时该截面所能承担的弯矩是( C )。 A、M u=f cm bh02ξb(1-0.5ξb); B、M u=f cm bh0ˊ2ξ(1-0.5ξ); C、M u= f cm bh02ξ(1-0.5ξ)+A sˊf yˊ(h0-αsˊ); D、Mu=f cm bh02ξb(1-0.5ξb)+A sˊf yˊ(h0-αsˊ) 12、第一类T形截面梁,验算配筋率时,有效截面面积为( A )。 A、bh ; B、bh0; C、b fˊh fˊ; D、b fˊh0。 13、单筋矩形截面,为防止超筋破坏的发生,应满足适用条件ξ≤ξb。与该条件等同的条件是( A )。 A、x≤x b; B、ρ≤ρmax=ξb f Y/f cm; C、x≥2αS; D、ρ≥ρmin。 14、双筋矩形截面梁设计时,若A S和A Sˊ均未知,则引入条件ξ=ξb,其实质是( A )。 A、先充分发挥压区混凝土的作用,不足部分用A Sˊ补充,这样求得的A S+A Sˊ较小; B、通过求极值确定出当ξ=ξb时,(A Sˊ+A S)最小; C、ξ=ξb是为了满足公式的适用条件; D、ξ=ξb是保证梁发生界限破坏。 15、两类T形截面之间的界限抵抗弯矩值为( B )。 A、M f=f cm bh02ξb(1-0.5ξb); B、M f=f cm b fˊh fˊ(h0-h fˊ/2) ; C、M=f cm(b fˊ-b)h fˊ(h0-h fˊ/2); D、M f=f cm(b fˊ-b)h fˊ(h0-h fˊ/2)+A Sˊf Yˊ(h0-h fˊ/2)。 16、一矩形截面受弯构件,采用C20混凝土(f C=9.6Ν/mm2)Ⅱ级钢筋(f y=300N/mm2,ξb=0.554),该截面的最大配筋率是ρmax( D )。 A、2.53% ; B、18% ; C、1.93% ; D、1.77% 。 17、当一单筋矩形截面梁的截面尺寸、材料强度及弯矩设计值M确定后,计算时发现超筋,那么采取( D )措施提高其正截面承载力最有效。 A、A、增加纵向受拉钢筋的数量; B、提高混凝土强度等级; C、加大截截面尺寸; D、加大截面高度。 二、判断题 1、当截面尺寸和材料强度确定后,钢筋混凝土梁的正截面承载力随其配筋率ρ的提高而提高。(错) 2、矩形截面梁,当配置受压钢筋协助混凝土抗压时,可以改变梁截面的相对界限受压区高度。(对) 3、在受弯构件正截面承载力计算中,只要满足ρ≤ρmax的条件,梁就在适筋范围内。(错) 4、以热轧钢筋配筋的钢筋混凝土适筋梁,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入了强化阶段。(错) 5、整浇楼盖中的梁,由于板对梁的加强作用,梁各控制截面的承载力均可以按T形截面计算。(错)

受弯构件正截面承载力问题详解

第五章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态. 2、受弯构件梁的最小配筋率应取 %2.0min =ρ 和 y t f f /45min =ρ 较大者. 3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 . 4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_. 5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______. 6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算. 7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据. 8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 ' s A 都未知,计算时引入的补充条件为 b ξξ=. 二、判断题: 1、界限相对受压区高度b ξ由钢筋的强度等级决定.( ∨ ) 2、混凝土保护层的厚度是从受力纵筋外侧算起的.( ∨ ) 3、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大.( ∨ ) 4、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大.( ∨ ) 5.梁中有计算受压筋时,应设封闭箍筋(√ ) 6.f h x '≤的T 形截面梁,因为其正截面抗弯强度相当于宽度为f b '的矩形截面,所以配筋率ρ也用f b '来表示,即0/h b A f s '=ρ( ? )0/bh A s =ρ 7.在适筋围的钢筋混凝土受弯构件中,提高混凝土标号对于提高正截面抗弯强度的作用不是很明显的( √ ) 三、选择题: 1、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为( A ). A 保证压应力合力的大小和作用点位置不变 B 矩形面积等于曲线围成的面积 C 由平截面假定确定08.0x x = D 两种应力图形的重心重合 2、钢筋混凝土受弯构件纵向受拉钢筋屈服与受压混凝土边缘达到极限压应变同时发生的破坏属于( C ). A 适筋破坏 B 超筋破坏 C 界限破坏 D 少筋破坏 3、正截面承载力计算中,不考虑受拉混凝土作用是因为( B ). A 中和轴以下混凝土全部开裂 B 混凝土抗拉强度低 C 中和轴附近部分受拉混凝土围小且产生的力矩很小 D 混凝土退出工作

相关文档
最新文档