蒙特_卡罗方法在随机规划中的应用

管理信息系统规划的主要方法

管理信息系统规划的主 要方法 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

管理信息系统规划的主要方法用于管理信息系统规划的方法很多,主要是关键成功因素法(Critical Success Factors,CSF)、战略目标集转化法(Strategy Set Transformation, SST)和企业系统规划法(Business System Planning, BSP)。其它还有企业信息分析与集成技术(BIAIT)、产出/方法分析(E/MA)、投资回收法(ROI)、征费法(chargout)、零线预算法、阶石法等。用得最多的是前面三种。 一、关键成功因素法(CSF) 1970年哈佛大学教授William Zani在MIS模型中用了关键成功变量,这些变量是确定MIS成败的因素。过了10年,MIT教授Jone Rockart 将CSF提高成为MIS的战略。作为一个例子,有人把这种方法用于数据库的分析与建立,它包含以下几个步骤: 1.了解企业目标。 2.识别关键成功因素。 3.识别性能的指标和标准。 4.识别测量性能的数据。 这四个步骤可以用一个图表示,见图3-2-1: 图3-2-1 关键成功因素法 关键成功因素法通过目标分解和识别、关键成功因素识别、性能指标识别,产生数据字典。关键成功因素就是要识别联系于系统目标的主要数据类及其关系,识别关键成功因素

所用的工具是树枝因果图。如图3-2-2,某企业有一个目标,是提高产品竞争力,可以用树枝图画出影响它的各种因素,以及影响这些因素的子因素。 树枝图 如何评价这些因素中哪些因素是关键成功因素,不同的企业是不同的。对于一个习惯于高层人员个人决策的企业,主要由高层人员个人在此图中选择。对于习惯于群体决策的企业,可以用德尔斐法或其它方法把不同人设想的关键因素综合起来。关键成功因素法在高层应用,一般效果好。 二、战略目标集转化法(SST) William King于1978年提出,他把整个战略目标看成“信息集合”,由使命、目标、战略和其它战略变量组成,MIS的战略规划过程是把组织的战略目标转变为MIS战略目标的过程。 第一步是识别组织的战略集,先考查一下该组织是否有成文的战略式长期计划,如果没有,就要去构造这种战略集合。可以采用以下步骤: ①描绘出组织各类人员结构,如卖主、经理、雇员、供应商、顾客、贷款人、政府代理人、地区社团及竞争者等。 ②识别每类人员的目标。 ③对于每类人员识别其使命及战略。

matlab随机模拟

MATLAB中的计算机模拟 第一节 导言 计算机科学技术的迅猛发展,给许多学科带来了巨大的影响.计算机不但使问题的求解变得更加方便、快捷和精确,而且使得解决实际问题的领域更加广泛.计算机适合于解决那些规模大、难以解析化以及不确定的数学模型.例如对于一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,与面临的实际问题可能相差甚远,以致解答根本无法应用,这时模拟几乎成为人们的唯一选择.在历届的美国和中国大学生的数学建模竞赛(MCM)中,学生们经常用到计算机模拟方法去求解、检验等.计算机模拟(computer simulation)是建模过程中较为重要的一类方法. 本章将讨论如何利用计算机技术对连续系统和离散系统进行模拟.由于计算机以重复性运算见长,故它为研究模拟方法提供了极为合适的手段.计算机模拟是一种广义的数值计算方法.通过本章的学习,你将会了解蒙特卡洛方法的思想;初步掌握对连续系统或离散系统进行模拟的方法;掌握由实际问题怎样去建立计算机模拟模型以及应用MATLAB编程语言进行计算. 第二节引例 第三节 随机变量的抽样 第四节 连续系统的模拟 第五节 离散系统的模拟 第六节 范例 第七节 实验

第二节 引例:葡丰投针问题 在用传统方法难以解决的问题中,有很大一部分可以用概率模型进行描述.由于这类模型含有不确定的随机因素,分析起来通常比确定性的模型困难.有的模型难以作定量分析,得不到解析的结果,或者是虽有解析结果,但计算代价太大以至不能使用.在这种情况下,可以考虑采用Monte Carlo 方法。下面通过例子简单介绍Monte Carlo 方法的基本思想. Monte Carlo 方法是计算机模拟的基础,它的名字来源于世界著名的赌城——摩纳哥的蒙特卡洛,其历史起源于1777年法国科学家蒲丰提出的一种计算圆周 π的方法——随机投针法,即著名的蒲丰投针问题。 1) Monte Carlo 方法的基本思想是首先建立一个概率模型,使所求问题的解正好是该模型的参数或其他有关的特征量.然后通过模拟一统计试验,即多次随机抽样试验(确定m 和n ),统计出某事件发生的百分比.只要试验次数很大,该百分比便近似于事件发生的概率.这实际上就是概率的统计定义.利用建立的概率模型,求出要估计的参数.蒙特卡洛方法属于试验数学的一个分支. MATLAB 语言编程实现 l=1; n=1000; d=2; m=0; for k =l :n x =unifrnd (0,d /2); p =unifrnd (0,pi ); if )sin(15.0y x ××< m=m +1 elsc end end p=m/n pi_m=1/p 运行,即得结果. 蒙特卡洛方法适用范围很广泛,它既能求解确定性的问题,也能求解随机性的问题以及科学研究中的理论问题.例如利用蒙特卡洛方法可以近似地计算定积分,即产生数值积分问题. 任意曲边梯形面积的近似计算 一个古老的问题:用一堆石头测量一个水塘的面积.应该怎样做呢?测量方法如下:假定水塘位于一块面积已知的矩形农田之中.如图8.2所示.随机地向这块农田扔石头使得它们都落在农田内.被扔到农田中的石头可能溅上了水,也可能没有溅上水,估计被“溅上水的”石头量占总的石头量的百分比.试想如何利用这估计的百分比去近似计算该水塘面积?

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

随机规划

第二讲 随机规划 第一节 基本概念 1、 问题的提出 许多实际决策问题,尤其是比较复杂的决策问题,可以建 立如下的线性规划模型: {}????? ??????≥=+++=+++=++++++.0,...,,............min 11221122222121112121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a to subject x c x c x c M M (1.1) 用矩阵向量分析法,简化问题(1.1)得: ?? ???≥=0..min x b Ax t s x c T (1.2) 线性规划模型,在工业生产、运输业、农业、能源、生态、工程等领域都有广泛(典型)的应用。 在问题(1.1)中系数j c (例如价格因素)、ij a (比如生产率)、j b (比如需求量或存储能力)假设都已知为实数,这样我们的任务就是:寻找满足约束条件的决策变量j x (比如投入因素、生产率水平、能源 流),使这一组合达到最优。显然,在现实生活中,如果相关的函数(例如,费用函数或生产函数)关于决策变量是线性的,那么模型(1.1)就能够合理的描述现实生活中的问题。如果现实中不是这样

的,比如,因为产品的边际成本(边际成本指的是每一单位新增生产的产品(或者购买的产品)带来到总成本的增量)的增长或边际报酬的减少,我们就需要更一般的形式来建立问题的模型,如下: ?? ??? ?∈=≤.,...,1,0)(..)(min 0n i IR X x m i x g t s x g (1.3) 形式如(1.3)的问题就是一个数学规划问题。 这里的集合X 以及函数m i IR IR g n i ,...,0,:=→可以理解为是在建模过程中给出的。 在许多模型建立过程中(如问题(1.1)和(1.3)),若系数i ij j b a c ,,或 函数i g (和集合X )分别为给定值,这是不合理的。比如说,在水电 发电站,流入发电站蓄水池的流水量,及运输网络中各个节点的需求量等等的因素,在建模的过程中,通常都作为不确定的参数。在一个生产问题中,未来的生产率,用概率分布来描述是最好的。但在建模过程中,这些参数真实值的不确定性,并不能用他们的平均值或别的估计值来消除(即真实值与平均值/估计值存在偏差)。就是说,在考虑实际情况的时候,问题(1.1)、(1.3)的模型,可能并不适合来解决更实际的问题。在这一章我们着重并尽可能的阐明,对于实际生活中的决策问题,需要扩大建模范围的必要性。 在数学规划中引入随机性是很自然的事情。在模型中的系数i ij j b a c ,,常常代表价格、成本、需求量、资源数量、经济指标等参数。 由于各种不确定性因素的影响,这些参数经常出现波动。例如,市场

动态规划应用(含程序)

动态规划算法的应用 一、动态规划的概念 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 1. 多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 2.动态规划问题中的术语 阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。 在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。 状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。 在前面的例子中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。 过程的状态通常可以用一个或一组数来描述,称为状态变量。一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。 当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。状态变量取值的集合称为状态集合。 无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。 决策:一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。在最优控制中,也称为控制。在许多间题中,决策可以自然而然地表示为一个数或一组数。不同的决策对应着不同的数值。描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。

第六章 随机规划

第六章 随机规划 第一节 问题的提出 随机规划所研究的对象是含有随机因素的数学规划问题。例如,我们熟悉的线性规划问题 CX X f =)(min 0≥=X b AX (6.1) 如果其中的A ,b ,C 的元素中部分的或全部的是随机变量,则称其为随机线性规划问题。 在数学规划中引入随机性是很自然的事情。在模型中的A ,b ,C 的元素常常代表价格、成本、需求量、资源数量、经济指标等参数。由于各种不确定性因素的影响,这些参数经常出现波动。例如,市场上对某种商品的需求量一般无法精确的预知,只能作出大致的预测,某种产品的生产成本往往受原材料价格、劳动生产率等各种因素的影响而经常变化,这些变化与波动,在许多场合可以用一定的概率分布去描述。因此,在数学规划中引入随机变量,能够使模型更加符合实际情况,从而是的决策更加合理。 例1 某化工厂生产过程中需要A ,B 两种化学成分,现有甲、乙两种原材料可供选用。其中原料甲中化学成分A 的单位含量为10/a ,B 的单位含量为3/a ;原料乙中化学成分A 的单位含量为10/1,B 的单位含量为3/1。根据生产要求,化学成分A 的总含量不得少于10/7个单位,化学成分A 的总含量不得少于3/4个单位。甲、乙两种原料的价格相同,问如何采购原料,使得即满足生产要求,又是的成本最低? 显而易见,这个问题可以用线性规划模型来描述。根据题意,设原料甲的采购数量为1x ,原料乙的采购数量为2x ,容易得到如下线性模型: 21)(min x x X f += ,047 212121≥≥≥+≥+x x x bx x ax (6.2)

于是只要知道a 和b 的值,立即可以求得最优解。 但是,如果由于某种原因,原料甲中化学成分A 、B 的单位含量不稳定,其中T b a ),(=ξ是矩形}13 1,41{≤≤≤≤y x 内的均匀分布随机向量,则问题(7.2)就成为随机线性规划问题了。 由于引入了随机量,随机规划问题的分析与求解比普通数学规划问题要复杂大多。在处理随机规划问题时,人们最容易想到的方法也许是将模型中的随机变量用它们的期望值来代,从而得到确定性的数学规划模型,再去求解。事实上,过去许多确定性数学规划正是这样建立起来的,但是应当指出,这种处理方法在实际问题中并不总可行的。为了说明这一点,我们不妨用此方法试解例1中的问题。容易求得 T T b a E E )3/2,2/5(]),[()(==ξ, (6.3) 将此值代入问题(7.2),得到确定线性规划模型如下: 21)(min x x X f += ,043 272 5212121≥≥≥+≥+x x x x x x (6.4) 可以求得此问题的唯一最优解为 T T x x X )11/32,11/18(),(*2*1*==, (6.5) 于是以此*X 作为原随机线性规划问题(7.2)的最优解。可是,由于问题(7.2)中的T b a ),(是随机向量,我们自然希望知道,上述*X 是问题(7.2)的最优解这一事件的概率有多大?是问题(7.2)的可行解这一事件的概率有多大?然而,我们发现, 4/1}3/2,2/5),{(} 4,7),{(*2*1*2*1=≥≥=≥+≥+b a b a P x bx x ax b a P T T , (6.6) 也即,*X 对问题(7.2)是可行解以0.75的概率是不可能的,只有0.25的可能性,这个解显然是不可用的。这个例子说明,用上述方法处理随机规

10.3.2 随机模拟

10.3.2随机模拟 课标要求素养要求 了解随机数的意义,会用模拟方法估计概率,理解用模拟法估计概率的实质.通过了解随机数的意义及用模拟的方法估计概率,发展数学抽象及数据分析素养 . 教材知识探究 在求解频率与概率的关系时需要做大量的重复试验去验证.既费时又费力,有没有更好的其它办法可以替代试验呢? 问题如何产生随机数? 提示我们可以利用计算器或计算机产生随机数. 1.随机数的产生 应用计算器或计算机产生随机数时要特别注意遵照随机数产生的方法进行,切不可随意改变其步骤顺序和操作程序,否则会出现错误. (1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n. (2)搅拌:放入一个袋中,把它们充分搅拌. (3)摸取:从中摸出一个. 这个球上的数就称为从1~n之间的随机整数,简称随机数. 2.伪随机数的产生 (1)规则:依照确定的算法. (2)特点:具有周期性(周期很长). (3)性质:它们具有类似随机数的性质. 计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.

3.产生随机数的常用方法 ①用计算器产生;②用计算机产生;③抽签法. 4.随机模拟方法(蒙特卡洛方法) 利用计算机或计算器产生的随机数来做模拟试验,通过模拟试验得到的频率来估计概率,这种用计算机或计算器模拟试验的方法称为随机模拟方法或蒙特卡洛方法. 教材拓展补遗 [微判断] 在用计算器模拟抛硬币试验时,假设计算器只能产生0~9之间的随机数,判断下列说法是否正确. (1)可以用0,2,4,6,8来代表正面.(√) (2)可以用1,2,3,6,8来代表正面.(√) (3)可以用4,5,6,7,8,9来代表正面.(×) (4)产生的100个随机数中不一定恰有50个偶数.(√) 提示必须保证每个号码出现的机会是相等的,正反面的出现也是等可能的才行. [微训练] 用随机模拟的方法估计概率时,其准确程度决定于() A.产生的随机数的大小 B.产生的随机数的个数 C.随机数对应的结果 D.产生随机数的方法 解析用随机模拟的方法估计概率时,产生的随机数越多,准确程度越高,故选B. 答案 B [微思考] 用计算机模拟试验来代替大量的重复试验有什么优点? 提示用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验.

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

随机行为的模拟

随机行为的模拟:随机抛掷硬币和骰子出现特定面的概率 ——蒙特卡罗方法的计算机模拟 1摘要 对蒙特卡罗(Monte Carlo)方法的简介并概述了蒙特卡罗方法的概念、应用领域、求解步骤。以抛掷硬币和骰子为例,论述了蒙特卡罗方法模拟随机行为的基本思想和基本原理。给出了实现计算机模拟的MATLAB程序,并且通过最高达千万次级别的计算机模拟试验,准确地模拟了随机抛掷硬币和骰子出现特定面的概率。 2关键词 蒙特卡罗(Monte Carlo)方法方法;计算机模拟;随机行为;模拟;概率;MATLAB 程序 3引言 3.1蒙特卡罗方法的概述: 蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。 3.2蒙特卡洛模拟法简介: 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。

3.3 蒙特卡洛模拟法提出: 蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo —来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国Buffon 提出用投针实验的方法求圆周率。 3.4 蒙特卡洛模拟法的应用领域: (1)、直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 (2)、蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 (3)、MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 (4)、蒙特卡罗方法在金融工程学,宏观经济学,生物医学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 3.5 蒙特卡罗解题归结为三个主要步骤: (1)、构造或描述概率过程; (2)、实现从已知概率分布抽样; (3)、建立各种估计量。 4 问题重述 蒙特卡罗模拟的真正威力在于对随机行为建模。 从长期来看,一个事件的概率可以视为比值:事件的总数 有效的事件数概率 )(A P 下面3个随机模型: (1)、抛掷一枚正规的硬币 (2)、抛掷一个正规的骰子 (3)、抛掷一个不正规的骰子 以剖析如何用蒙特卡罗方法模拟这些随机行为,以及基于MATLAB 软件的计算机实现。

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

动态规划的原理及应用

动态规划的原理及应用 班级:计科1302班 小组成员:王海涛蔡佳韦舒 蒋宪豪尹卓 完成时间:2015年5月26日

动态规划的原理及应用 学生:算法设计第5组,计算机系 指导教师:甘靖,计算机系 摘要:动态规划是解决多阶段决策过程最优化问题的一种方法。特点是把多阶段决策问题变换为一系列相互联系的单阶段问题,然后逐个加以解决。其基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优,适用于在解决问题过程中需要多次重复解决子问题的问题。其应用领域广泛,涉及到管理学、经济学、交通、军事和计算机等多个领域,将动态规划思想正确地应用于实践,将对我们的生活带来便利,甚至带给我们的社会和国家以保障。 关键词:动态规划;最优决策;应用;领域 The Principle and Application of Dynamic Programing The dynamic programing is a way to solve optimization problem in the process of multi-stage decision,whose feature is alter the multi-stage decision problems to single phase problems which are connected with each other,and then solve them one by one.The basic idea is to change the overall problem into partcial problem.And the partcial one must keep the best in order to promise the quality of overall one,which splies to repeatedly solving subproblem throughout the whole process.It is spreading to many fields,like management,economics,traffic,military and computer. Put the idea of dynamic programing correctly into practice will bring a lot of convenience to our daily life,our society as well as our country.

§18运用目标达到法求解多目标规划

§18. 运用目标达到法求解多目标规划 用目标达到法求解多目标规划的计算过程,可以通过调用Matlab软件系统优化工具箱中的fgoalattain函数实现。 在Matlab的优化工具箱中,fgoalattain函数用于解决此类问题。其数学模型形式为: minγ F(x)-weight ·γ≤goal c(x) ≤0 ceq(x)=0 A x≤b Aeq x=beq lb≤x≤ub 其中,x,weight,goal,b,beq,lb和ub为向量;A和Aeq为矩阵;c(x),ceq(x)和F(x)为函数。 调用格式: x=fgoalattain(F,x0,goal,weight) x=fgoalattain(F,x0,goal,weight,A,b) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq) 134

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2) [x,fval]=fgoalattain(…) [x,fval,attainfactor]=fgoalattain(…) [x,fval,attainfactor,exitflag,output]=fgoalattain(…) [x,fval,attainfactor,exitflag,output,lambda]=fgoalattain(…) 说明:F为目标函数;x0为初值;goal为F达到的指定目标;weight为参数指定权重;A、b为线性不等式约束的矩阵与向量;Aeq、beq为等式约束的矩阵与向量;lb、ub为变量x的上、下界向量;nonlcon为定义非线性不等式约束函数c(x)和等式约束函数ceq(x);options中设置优化参数。 x返回最优解;fval返回解x处的目标函数值;attainfactor返回解x处的目标达到因子;exitflag描述计算的退出条件;output返回包含优化信息的输出参数;lambda返回包含拉格朗日乘子的参数。 例1:教材第6章第4节第二小节,即生产计划问题: 某企业拟生产A和B两种产品,其生产投资费用分别为2100元/t和4800元/t。A、B两种产品的利润分别为3600元/t和6500元/t。A、B产品每月的最大生产能力分别为5t和8t;市场对这两种产品总量的需求每月不少于9t。试问该企业应该如何安排生产计划,才能既能满足市场需求,又节约投资,而且使生产利润达到最大最。 135

随机方法在水文学的应用

随机方法在水文学中的应用 一、概述 水文现象随时间变化的过程称为水文过程或水文序列,水文现象是一种自然现象,具有确定性变化规律和随机性变化规律。这些确定性和随机性的变化规律通过水文过程可以较为清晰的展示出来。水文过程中的确定性变化规律突出表现在过程中有年、日的变化。如日、旬、月径流过程,明显存在以年为周期的变化;逐时气温和蒸发量过程存在一日为周期的变化。这是由于影响水文过程的确定性因素——气候因素存在以年为周期的变化和某些气象因素存在以日为周期的变化之故。水文过程在表现出确定性变化规律的同时,更多的表现出随机性变化特征。如每一年的的月平均流量过程不相同,形状和数量相差较大;水文过程内前后期要素之间好似变化无序,时大时小,但它们之间存在相依关系,2月平均流量与1月平均流量相依,后一年与前一年径流量相依。随机性变化特征是水文过程形成与演变中众多影响因素所致。这些影响的无限复杂性和多样性,致使水文过程不断发生着各种各样情形,表现出随机变化特征。下图为某水文站月平均流量变化过程,其中既有确定性变化,又有随机性变化。 350 300 250 200 150 100 50 1996年1月7月1997年1月7月1998年1月7月 图表1某水文站月平均流量过程 水文过程既然表现出随机变化特征,因此它是一个随机过程,又称为随机水文过程。将随机过程理论和时间序列分析技术引入水文学领域,广泛展开水文过程随机变化特性研究并不断把科学成果用于水文水资源的实际,就此形成一门重要的学科——随机水文学。随机水文学是以水文过程为研究对象、以随机过程理论和时间序列分析技术为手段的一门学科。描述水文过程的数学模型,称为随机水文模型或随机模型。 随即水文学的基本任务是在全面随机分析的基础上对随机水文过程建立起反映水文现象主要变化特征的随机水文模型,根据建立的模型,即可模拟大量水文序列,也可做统计预测,以满足水利水电工程规划、设计、运行及水文水资源水环境各种分析、计算和研究的需要。在这些过程中大量的用到随机方法,下面介绍随机水文学方法及随机方法在水文学中应用。

基于两阶段随机规划方法的灌区水资源优化配置_付银环

第30卷第5期农业工程学报V ol.30 No.5 2014年3月Transactions of the Chinese Society of Agricultural Engineering Mar. 2014 73 基于两阶段随机规划方法的灌区水资源优化配置 付银环,郭萍※,方世奇,李茉 (中国农业大学水利与土木工程学院,北京 100083) 摘 要:灌区水资源优化配置的不确定性研究,对于提高水分的利用效率,减少农业灌溉用水,建立节水型社会具有重要的意义,尤其是对于中国的干旱半干旱地区。该文针对灌区水资源系统中存在的不确定性,以西营灌区、清源灌区、永昌灌区为研究区域,运用区间2阶段随机规划的方法,建立了地表水和地下水联合调度的灌区之间水资源优化配置模型。该模型以多灌区、多水源联合调度系统的成本最小为目标函数,引入随机数和区间数表示该系统中存在的不确定性,将地下水和地表水水资源在不同地区之间进行优化,并以配置结果为输入数据,以作物全生育期的水分生产函数为基础,建立灌区不同农作物灌溉定额的非线性区间不确定性水资源优化配置模型,将优化配置水量分配到灌区典型农作物。2个模型均以区间的形式给出优化配置的结果,为决策者提供更为准确的决策空间,更真实地反映实际的水资源优化配置形式。 关键词:水资源;不确定性分析;非线性规划;水资源优化配置;区间两阶段随机规划;区间非线性规划 doi:10.3969/j.issn.1002-6819.2014.05.010 中图分类号:TV213.9 文献标识码:A 文章编号:1002-6819(2014)-05-0073-09 付银环,郭 萍,方世奇,等. 基于两阶段随机规划方法的灌区水资源优化配置[J]. 农业工程学报,2014,30(5):73-81. Fu Yinhuan, Guo Ping, Fang Shiqi, et al. Optimal water resources planning based on interval-parameter two-stage stochastic programming[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 73-81. (in Chinese with English abstract) 0 引 言 随着水资源供需矛盾的突出,水资源的优化配置得到了广泛的发展,逐渐出现了许多水资源优化配置的方法,王劲峰等为解决水资源优化配置过程中在空间上存在差异的问题,提出的三维优化分配理论模型[1];王浩等基于水资源二元演化理论与方法,建立的西北内陆干旱区水资源合理配置的模型[2];邵东国等构建的基于水资源净效益最大的水资源优化配置模型[3];彭翔等以黄河流域为研究区域,构建的水资源配置的博弈均衡模型[4];崔远来等人从作物尺度出发,考虑水平衡要素在节水尺度效应中的作用,对作物尺度下的水资源高效利用提供了依据[5];高玉芳等建立灌区优化配水的混沌人 收稿日期:2012-06-07 修订日期:2014-01-22 基金项目:国家自然基金面上项目:基于多重不确定性的优化方法及在水资源规划中的应用(71071154);基于不确定条件下水资源承载力的经济发展规划风险分析(41271536);水利部公益项目:石羊河流域治理生态目标过程控制关键技术(201001060)。 作者简介:付银环(1987-),女,河北人,主要从事水资源规划与管理方面的研究。北京中国农业大学水利与土木工程学院,100083。Email:fuyinhuan.2007@https://www.360docs.net/doc/9013442754.html, ※通信作者:郭萍(1963-),女,北京人,博士生导师,加拿大里贾纳大学博士,主要从事水资源规划与管理、模型与优化以及决策支持系统的研究。北京中国农业大学水利与土木工程学院,100083。Email:guop@https://www.360docs.net/doc/9013442754.html, 工鱼群算法模型[6];霍军军等建立了基于土壤水分动态模拟和作物水分生产函数的灌溉制度优化模型,对灌溉水量进行了合理的分配[7];黄显峰等将多目标混沌优化算法应用到水资源优化配置的研究中[8];陈晓楠等建立了基于粒子群的大系统优化模型[9];冯峰等针对水资源综合效益的评价问题,构建了多级多目标模糊优选评价模型[10];粟晓玲等以石羊河流域为研究对象建立了多目标水资源优化配置模型[11];陈南祥等运用基于目标排序计算适应度的多目标遗传算法,将水资源优化配置问题模拟为生物进化问题[12];Li等基于水量平衡和边际效益理论建立了再生水优化配置模型[13]。同时,由于地下水超采引发的环境问题,地下水和地表水联合调度的问题也越来越受到人们的重视,主要方法有动态模拟分析方法[14]、非线性方法[15]、数值模拟分析方法[16]等。如,岳卫峰等通过动态耦合地下水模拟模型与地表水和地下水的联合优化模型,建立了灌区水资源联合调度模型[17];水资源的合理配置一直是干旱区水资源开发利用的关键问题[18]。但是以往的研究多将水资源配置系统简化成确定性的优化方法,很少考虑系统的不确定性。事实上,水资源配置涉及自然条件、社会条件及人等多方面因素,其配置过程中系统自变量和因变量很多,变量之间关系复杂,确定性模型不能完全反应系统的不

动态规划算法及其应用

湖州师范学院实验报告 课程名称:算法 实验二:动态规划方法及其应用 一、实验目的 1、掌握动态规划方法的基本思想和算法设计的基本步骤。 2、应用动态规划方法解决实际问题。 二、实验内容 1、问题描述 1 )背包问题 给定 N 种物品和一个背包。物品 i 的重量是 C i ,价值为 W i ;背包的容量为 V。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量 V,物品的个数 N。接下来的 N 行表示 N 个物品的重量和价值。输出为最大的总价值。 2)矩阵连乘问题 给定 n 个矩阵:A1,A2,...,An,其中 Ai 与 Ai+1 是可乘的,i=1 , 2... , n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 3 )LCS问题 给定两个序列,求最长的公共子序列及其长度。输出为最长公共子序列及其长度。 2、数据输入:文件输入或键盘输入。 3、要求: 1)完成上述两个问题,时间为 2 次课。 2)独立完成实验及实验报告。 三、实验步骤 1、理解方法思想和问题要求。 2、采用编程语言实现题目要求。 3、上机输入和调试自己所写的程序。 4、附程序主要代码: (1) #include int max(int a, int b) { return (a > b)? a : b; } int knapSack(int W, int wt[], int val[], int n) { if (n == 0 || W == 0) return 0;

Excel规划求解工具在多目标规划中的应用

Excel规划求解工具在多目标规划中的应用 摘要:多目标决策方法是从20世纪70年代中期发展起来的一种决策分析方法。该方法已广泛应用于人口、环境、教育、能源、交通、经济管理等多个领域。文章采用多目标决策方法中分层序列法的思想,应用excel的规划求解工具,对多目标规划问题进行应用研究,并以实例加以说明。 abstract: multi-objective decision method is a kind of decision analysis method from the mid 1970s. the method has been widely used in population, environment, education,energy, traffic, economic management, and other fields. this paper uses the lexicographic method of multi-objective decision method and makes some researches on the multi-objective problem using the excel solver tool and an example to illustrate. 关键词: excel规划求解;多目标规划;分层序列法 key words: excel solver;multi-objective programming;the lexicographic method 中图分类号:tp31 文献标识码:a 文章编号:1006-4311(2013)21-0204-02 0 引言 excel中的规划求解工具只能对单目标的问题进行求解。当遇到多目标问题时,可以把多目标问题先转化为单目标问题,然后求解。

相关文档
最新文档