线性代数习题及解答精讲

线性代数习题及解答精讲
线性代数习题及解答精讲

线性代数习题一

说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,

E 表示单位矩阵,|A |表示方阵A 的行列式.

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设行列式11

121321

222331

3233a a a a a a a a a =2,则1112

13

31323321312232

2333

333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3

D .6

2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1

B .E -A

C .E +A

D .

E -A -1

3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )

A .??

???A B 可逆,且其逆为-1-1

??

???A B B .??

???

A B 不可逆 C .??

?

??A B 可逆,且其逆为-1-1?? ???

B A

D .??

???A B 可逆,且其逆为-1-1??

??

?

A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是

( )

A .向量组α1,α2,…,αk 中任意两个向量线性无关

B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0

C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示

D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示

5.已知向量2(1,2,2,1),32(1,4,3,0),T T

+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T

B .(-2,0,-1,1)T

C .(1,-1,-2,0)T

D .(2,-6,-5,-1)T

6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1

B .2

C.3 D.4

7.设α是非齐次线性方程组Ax=b的解,β是其导出组Ax=0的解,则以下结论正确的是

()A.α+β是Ax=0的解B.α+β是Ax=b的解

C.β-α是Ax=b的解D.α-β是Ax=0的解

8.设三阶方阵A的特征值分别为11

,,3

24

,则A-1的特征值为()

A.

1

2,4,

3

B.

111

,,

243

C.11

,,3

24

D.2,4,3

9.设矩阵A=1

2

1-

,则与矩阵A相似的矩阵是()

A.11

12

3

-

-B.

01

10

2

C.

2

1

1

-

D.

1

2

1

-

10.以下关于正定矩阵叙述正确的是()

A.正定矩阵的乘积一定是正定矩阵B.正定矩阵的行列式一定小于零C.正定矩阵的行列式一定大于零D.正定矩阵的差一定是正定矩阵

二、填空题(本大题共10小题,每空2分,共20分)

请在每小题的空格中填上正确答案,错填、不填均无分。

11.设det (A)=-1,det (B)=2,且A,B为同阶方阵,则det ((AB)3)=__________.

12.设3阶矩阵A=122

43

311

t

-

-

,B为3阶非零矩阵,且AB=0,则t=__________.

13.设方阵A满足A k=E,这里k为正整数,则矩阵A的逆A-1=__________.

14.实向量空间R n的维数是__________.

15.设A是m×n矩阵,r (A)=r,则Ax=0的基础解系中含解向量的个数为__________.16.非齐次线性方程组Ax=b有解的充分必要条件是__________.

17.设α是齐次线性方程组Ax =0的解,而β是非齐次线性方程组Ax =b 的解,则(32)+A αβ=__________. 18.设方阵A 有一个特征值为8,则det (-8E +A )=__________.

19.设P 为n 阶正交矩阵,x 是n 维单位长的列向量,则||Px ||=__________.

20.二次型2

2

2

123123121323(,,)56422f x x x x x x x x x x x x =+++--的正惯性指数是__________. 三、计算题(本大题共6小题,每小题9分,共54分)

21.计算行列式

111

2114

124611242

-----. 22.设矩阵A =

2

35

,且矩阵B 满足ABA -1=4A -1+BA -1

,求矩阵B .

23.设向量组1234(3,1,2,0),(0,7,1,3),(1,2,0,1),(6,9,4,3),===-=αααα求其一个极大线性无关组,并

将其余向量通过极大线性无关组表示出来.

24.设三阶矩阵A =143

253242

----,求矩阵A 的特征值和特征向量.

25.求下列齐次线性方程组的通解.

1341241

23450230

20

x x x x x x x x x x +-=??

+-=??+-+=? 26.求矩阵A =

2242030

611

0300111

210

----的秩.

四、证明题(本大题共1小题,6分)

27.设三阶矩阵A =11

1213

21

2223313233

a a a a a a a a a 的行列式不等于0,证明: 131112121222323313233,,a a a a a a a a a ??????

? ? ?

=== ? ? ? ? ? ???????

ααα线性无关.

线性代数习题二

说明:在本卷中,A T

表示矩阵A 的转置矩阵,A *

表示矩阵A 的伴随矩阵,E 表示单位矩阵。

A 表示方阵A

的行列式,r(A )表示矩阵A 的秩。

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设3阶方阵A 的行列式为2,则

1

2

A -

=( ) A.-1 B.14

- C.

14

D.1

2.设

2

12

()222122,323235

x x x f x x x x x x x ---=------则方程()0f x =的根的个数为( )

A.0

B.1

C.2

D.3

3.设A 为n 阶方阵,将A 的第1列与第2列交换得到方阵B ,若,≠A B 则必有( )

A.0=A

B. 0+≠A B

C.

0A ≠

D.

0-≠A B

4.设A ,B 是任意的n 阶方阵,下列命题中正确的是( ) A.2

22()

2+=++A B A AB B

B.22()()+-=

-A B A B A B

C.()()()()-+=+-A E A E A E A E

D.2

22()

=AB A B

5.设11121321

222331

32

33,a b a b a b a b a b a b a b a b a b ??

?

= ? ???

A 其中0,0,1,2,3,i i a b i ≠≠=则矩阵A 的秩为( ) A.0 B.1 C.2

D.3

6.设6阶方阵A 的秩为4,则A 的伴随矩阵A *的秩为( ) A.0

B.2

C.3

D.4

7.设向量α=(1,-2,3)与β=(2,k ,6)正交,则数k 为( ) A.-10 B.-4 C.3

D.10

8.已知线性方程组1231231

243224

x x x x ax x x ax ++=??

++=??+=?无解,则数a =( )

A.1

2

- B.0 C.

12

D.1

9.设3阶方阵A 的特征多项式为

2(2)(3),λλλ-=++E A 则=A ( )

A.-18

B.-6

C.6

D.18

10.若3阶实对称矩阵

()ij a =A 是正定矩阵,则A 的3个特征值可能为( )

A.-1,-2,-3

B.-1,-2,3

C.-1,2,3

D.1,2,3

二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。

11.设行列式30

4

222,532

D

=-其第3行各元素的代数余子式之和为__________. 12.设,,a a b b a a b b -????==

? ?---????

A B 则=AB __________.

13.设A 是4×3矩阵且103()2,020,103r ??

?

== ? ?-??

A B 则()r =AB __________.

14.向量组(1,2),(2,3)(3,4)的秩为__________.

15.设线性无关的向量组α1,α2,…,αr 可由向量组β1,β2,…,βs 线性表示,则r 与s 的关系为__________.

16.设方程组12312312

3000

x x x x x x x x x λλλ++=??

++=??++=?有非零解,且数0,λ<则λ=__________.

17.设4元线性方程组

x =A b 的三个解α1

,α2

,α3

,已知

T 1(1,2,3,4),=αT 23(3,5,7,9),r() 3.+==A αα则方程组的通解是__________.

18.设3阶方阵A 的秩为2,且2

50,+=A

A 则A 的全部特征值为__________.

19.设矩阵21100413a -?? ?= ? ?-??A 有一个特征值2,λ=对应的特征向量为12,2x ??

?

= ? ???

则数a =__________.

20.设实二次型

T 123(,,),f x x x x x =A 已知A 的特征值为-1,1,2,则该二次型的规范形为__________.

三、计算题(本大题共6小题,每小题9分,共54分)

21.设矩阵2323(,2,3),(,,),αγγβγγ==A B 其中23,,,αβγγ均为3维列向量,且18, 2.

==A B 求

.-A B

22.解矩阵方程11101110221011.1104321--?????? ? ? ?

+= ? ? ? ? ? ?-??????

X 23.设向量组α1=(1,1,1,3)T

,α2=(-1,-3,5,1)T

,α3=(3,2,-1,p+2)T

,α4=(3,2,-1,p+2)T

问p 为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.

24.设3元线性方程组1231231

2321

24551

x x x x x x x x x λλ+-=??

-+=??+-=-?,

(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?

(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示). 25.已知2阶方阵A 的特征值为11λ=及21

,3

λ=-方阵2.=B A

(1)求B 的特征值; (2)求B 的行列式. 26.用配方法化二次型222

1231231223(,,)22412f x x x x x x x x x x =---+为标准形,并写出所作的可逆线

性变换.

四、证明题(本题6分)

27.设A 是3阶反对称矩阵,证明0.

A

习题一答案

习题二答案

线性代数习题三

说明:在本卷中,A T

表示矩阵A 的转置矩阵,A *

表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩A 的秩.

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设A 为3阶矩阵,|A|=1,则|-2A T

|=( ) A.-8 B.-2 C.2 D.8

2.设矩阵A=???

?

??-11,B=(1,1),则AB=( )

A.0

B.(1,-1)

C. ???? ??-11

D. ???

? ??--1111

3.设A 为n 阶对称矩阵,B 为n 阶反对称矩阵,则下列矩阵中为反对称矩阵的是( ) A.AB-BA B.AB+BA C.AB D.BA

4.设矩阵A 的伴随矩阵A *=???

? ??4321,则A -1

= ( )

A.21-

???? ??--1234 B. 21- ???

? ??--4321 C. 21- ???? ??4321 D. 21- ????

??1324 5.下列矩阵中不是..

初等矩阵的是( ) A.????? ??000010101 B. ????? ??001010100 C. ????

?

??100030001 D. ???

?

?

??102010001

6.设A,B 均为n 阶可逆矩阵,则必有( )

A.A+B 可逆

B.AB 可逆

C.A-B 可逆

D.AB+BA 可逆 7.设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( )

A. α1, α2,β线性无关

B. β不能由α1, α2线性表示

C. β可由α1, α2线性表示,但表示法不惟一

D. β可由α1, α2线性表示,且表示法惟一 8.设A 为3阶实对称矩阵,A 的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为( )

A.0

B.1

C.2

D.3

9.设齐次线性方程组???

??=++λ=--=+-0

x x x 0x x x 0

x x x 2321

321321有非零解,则λ为( )

A.-1

B.0

C.1

D.2

10.设二次型f(x)=x T

Ax 正定,则下列结论中正确的是( )

A.对任意n 维列向量x,x T

Ax 都大于零 B.f 的标准形的系数都大于或等于零 C.A 的特征值都大于零 D.A 的所有子式都大于零 二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。 11.行列式

2

110的值为_________.

12.已知A=????

??3221,则|A|中第一行第二列元素的代数余子式为_________.

13.设矩阵A=?

??

? ??--4231,P=???? ??1011,则AP 3

=_________. 14.设A,B 都是3阶矩阵,且|A|=2,B=-2E,则|A -1

B|=_________.

15.已知向量组α1,=(1,2,3),α2=(3,-1,2), α3=(2,3,k)线性相关,则数k=_________. 16.已知Ax=b 为4元线性方程组,r(A)=3, α1, α2, α3为该方程组的3个解,且

,9753,4321311????

??

?

??=α+α??????? ??=α则该线性方程组的通解是_________.

17.已知P 是3阶正交矩,向量=βα???

?

?

??=β????? ??=α)P ,P (,201,231则内积_________.

18.设2是矩阵A 的一个特征值,则矩阵3A 必有一个特征值为_________.

19.与矩阵A=???

?

??3021相似的对角矩阵为_________.

20.设矩阵A=?

??

? ??--k 221,若二次型f=x T

Ax 正定,则实数k 的取值范围是_________. 三、计算题(本大题共6小题,每小题9分,共54分)

21.求行列式D=

.0

1201

0122

1010210的值

22.设矩阵A=,000012021B ,100001010???

?

? ??---=????? ??-求满足矩阵方程XA-B=2E 的矩阵X.

23.若向量组???

??

??--=α????? ??-=α????? ??-=α????? ??=αk 202,k 62,311,1114321的秩为2,求k 的值.

24.设矩阵.012b ,121011322A ???

?

? ??=????? ??--=

(1)求A -1

;

(2)求解线性方程组Ax=b,并将b 用A 的列向量组线性表出. 25.已知3阶矩阵A 的特征值为-1,1,2,设B=A 2

+2A-E,求 (1)矩阵A 的行列式及A 的秩.

(2)矩阵B 的特征值及与B 相似的对角矩阵.

26.求二次型f(x 1,x 2,x 3)=- 4 x 1x 2+ 2x 1x 3+2x 2x 3经可逆线性变换???

??=+-=++=33

32123

211y 2x y y 2y 2x y y 2y 2x 所得的标准形.

四、证明题(本题6分)

27.设n 阶矩阵A 满足A 2

=E,证明A 的特征值只能是1±.

线性代数习题三答案

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数习题3答案(高等教育出版社)

习题3 1.11101134032αβγαβαβγ ===-+-设(,,),(,,),(,,),求和 1110111003231112011340015αβαβγ-=-=+-=+-=解:(,,)(,,)(,,) (,,)(,,)(,,)(,,) 1231232.32525131015104111αααααααααα -++=+===-设()()(),其中(,,,) (,,,),(,,,),求1231233251 32561 [32513210151054111] 6 1234ααααααααααα-++=+=+-=+--=解:因为()()(),所以(), 所以(,,,)(,,,)(,,,)(,,,) 123412343.12111111111111111111,,,βααααβαααα===--=--=--设有(,,,),(,,,),(,,,), (,,,),(,,,)试将表示成的线性组合。 123412341234123412341234 1211 5111 ,,,; 4444 5111 4444 x x x x x x x x x x x x x x x x x x x x βαααα+++=??+--=? ?-+-=??--+=?===-=-=+--解:因为线性方程组的解为 所以得: 1234.111112313) t ααα===设讨论下面向量组的线性的相关性 ()(,,),(,,),(,, 111 1235, 1355t t t t =-=≠解:因为所以,当时,向量组线性相关,当时线性无关。 . 323232.5213132321321的线性相关性, ,线性无关,讨论,,设αααααααααααα++++++ . 0)23()32()23(.0)32()32()32(332123211321213313223211=++++++++=++++++++ααααααααααααx x x x x x x x x x x x 整理得:解:设

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

线性代数二次型习题及答案

第六章 二次型 1.设方阵1A 与1B 合同,2A 与2B 合同,证明1 2A ?? ?? ?A 与12?? ?? ? B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T 1111=B C A C , 因为2A 与2B 合同,所以存在可逆矩2C ,使T 2222=B C A C . 令 1 2?? = ??? C C C ,则C 可逆,于是有 T T 1111111 T 2222222??????????== ? ? ? ?????????????B C A C C AC B C A C C A C 1T 2?? = ??? A C C A 即 12A ?? ?? ?A 与12?? ???B B 合同. 2.设A 对称,B 与A 合同,则B 对称 证:由A 对称,故T =A A . 因B 与A 合同,所以存在可逆矩阵C ,使T =B C AC ,于是 T T T T T T ()====B C AC C A C C AC B 即B 为对称矩阵. 3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使BP P AP P T T 与均为对角阵. 证:因为A 是正定矩阵,所以存在可逆矩阵M ,使 E AM M =T 记T 1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使 T 11diag(, ,)n D μμ==Q B Q T 11, ,. n μμ=B M BM 其中为的特征值 令P=MQ ,则有 D BP P E AP P ==T T , ,A B 同时合同对角阵. 4.设二次型2111 ()m i in n i f a x a x ==+ +∑,令()ij m n a ?=A ,则二次型f 的 秩等于()r A . 证:方法一 将二次型f 写成如下形式:

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

线性代数(经济数学2)_习题集(含答案)

《线性代数(经济数学2)》课程习 题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。 一、计算题1 1. 设三阶行列式为2 310211 01--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12, A 13. 2. 用范德蒙行列式计算4阶行列式 125 343276415 49 9 16 57341111 4--= D 3. 求解下列线性方程组: ?? ?????=++++=++++=++++---1 1 113221 1 2132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x ΛΛΛΛΛΛ 其中 ),,2,1,,(n j i j i a a j i Λ=≠≠

4. 问 取何值时 齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解 5. 问取何值时 齐次线性方程组12312312 3(1)240 2(3)0(1)0 x x x x x x x x x λλλ--+=?? +-+=??++-=?有非零解 二、计算题2 6. 计算614 2302 1 51032121 ----= D 的值。 7. 计算行列式5 2 41 421318320521 ------= D 的值。 8. 计算0 111101111011 110= D 的值。 9. 计算行列式199119921993 199419951996199719981999 的值。 10. 计算 4 124120210520 117 的值。 11. 求满足下列等式的矩阵X 。 2114332X 311113---???? -= ? ?----????

线性代数习题及解答

线性代数习题一 说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩 阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式11 121321 222331 3233a a a a a a a a a =2,则1112 13 31323321312232 2333 333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .6 2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +A D . E -A -1 3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .?? ? ??A B 可逆,且其逆为-1-1?? ???A B B .?? ??? A B 不可逆 C .?? ? ??A B 可逆,且其逆为-1-1?? ??? B A D .?? ???A B 可逆,且其逆为-1-1?? ?? ? A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是 ( ) A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1 B .2 C .3 D .4 7.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是 ( )

线性代数练习题答案三

线性代数练习题答案三 一、温习巩固 ?x1?2x2?x3?x4?0? 1. 求解齐次线性方程组?3x1?6x2?x3?3x4?0 ?5x?10x?x?5x?0 234?1 解:化系数矩阵为行最简式 ?121?1??120-1? ??行变换??A??36?1?3??????0010? ?5101?5??0000????? 因此原方程同解于? ?x1??2x2?x4 令x2?k1,x4?k2,可求得原方程的解为 x3?0? ??2??1?????1???0? x?k1???k2??,其中k1,k2为任意常数。 00?????0??1????? ?4x1?2x2?x3?2 ? 2. 求解非齐次线性方程组?3x1?x2?2x3?10 ?11x?3x?8 12?

解:把增广矩阵化为阶梯形 ?42?12??13?3?8??13-3-8? ??r1?r2??行变换?? ??3?1210??????3?1210??????0-101134? ?113?113?0008?08?0-6??????? 因此R?2?R?3,所以原方程组无解。 3. 设??,??。求向量?,使2??3???。 解:?? 151?? ???3,,0,??33?? 4. 求向量组 ?1?T,?2?T,?3?T,?4?T,?5?T的 秩和一个极大线性无关组。 解:将?1,??5作为列向量构成矩阵,做初等行变换 ?1???1A?? 2??4? 二、练习提高⒈ 判断题 03130?11722140 2??1??1??0???50?? ?6???0 312 312??1

303??0 ???1010?? ?2?4?2???0 100 312? ? 101? ?000? 0?4?4?? 所以向量组的秩为3,?1,?2,?4是一个极大线性无关组。 ⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。⑵ 设A为m?n矩阵,Ax?0是非齐次线性方程组Ax?b的导出组,则 若Ax?0仅有零解,则Ax?b有唯一解。若Ax?0有非零解,则Ax?b有无穷多解。若Ax?b有无穷多解,则Ax?0有非零解。 ?A ⑶ 设A为n阶矩阵,?是n维列向量,若R???T ? ?A???T?

线性代数练习题及答案精编

线性代数练习题 一 选择题 1B A ,都是n 阶矩阵,且0=AB , 则必有:( ) (A) 0A =或0=B . (B) 0A B == . (C) 0=A 或.0=B (D) 0A B == 2设1011,1101a b c d -??????= ??? ?-?????? 则a b c d ?? = ???( ) (A)01. 11?? ?-?? (B)11. 10-?? ??? (C)11. 11-?? ??? (D)11. 01?? ?-?? 3若 A 为n m ?矩阵,且n m r A R <<=)(则( )必成立. (A )A 中每一个阶数大于r 的子式全为零。 (B )A 是满秩矩阵。 (C )A 经初等变换可化为??? ? ??000r E (D )A 中r 阶子式不全为零。 4 向量组 s ααα ,,21,线性无关的充分条件是( ) (A ) s ααα ,,21均不是零向量. (B ) s ααα ,,21中任一部分组线性无关. (C ) s ααα ,,21中任意两个向量的对应分量都不成比例. (D ) s ααα ,,21中任一向量均不能由其余S-1个向量线性表示. 5 齐次线性方程组0AX =是非齐次线性方程组AX B =的导出组,则( )必定成立. (A )0AX =只有零解时, AX B =有唯一解. (B )0AX =有非零解时, AX B =有无穷多解. (C )α是θ=AX 的任意解,0γ 是AX B =的特解时,0γα+是AX B =的全部解. (D )12γγ,是AX B =的解时, 21γγ+ 是0AX =的解. 6若θ≠B ,方程组B AX =中, 方程个数少于未知量个数,则有( )

8线性代数练习题(带解题过程)

8线性代数练习题(带解题过程)

0 线性代数试题 一 填空题 ◆1. 设 A 为3阶方阵且 2 =A ,则 = -*-A A 231 ; 【分析】只要与* A 有关的题,首先要想到公式, E A A A AA ==**,从中推 你要的结论。这里1 1* 2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3 )1(- ◆2. 设1 33322211 ,,α+α=βα+α=βα+α=β, 如 3 21,,ααα线性相关,则3 21,,βββ线性 ______(相关) 如 3 21,,ααα线性无关,则 3 21,,βββ线性 ______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘

1 法的关系,然后用矩阵的秩加以判明。 ?? ?? ? ?????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定 是方阵!! ◆3. 设非齐次线性方程b x A m =?4 ,2)(=A r ,3 2 1 ,,ηη η是 它的三个解,且 T T T )5,4,3,2(,)4,3,2,1(,)7,6,4,3(133221=+=+=+ηηηηηη 求该方程组的通解。(答案: T T T k k x )2,2,1,1()1,1,1,1()6,5,3,2(2 1 21++= ,形式不 唯一) 【分析】对于此类题,首先要知道齐次方程组基础解系中向量的个数(也是解空间的维数) 是多少,通解是如何构造的。其次要知 道解得性质(齐次线性方程组的任意两解的线性

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数习题及答案(复旦版)

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13 (2) 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512 312 1 23 122x x x D x x x = 的展开式中包含3 x 和4 x 的项. 解: 设 123412341234() 4 1234(1)i i i i i i i i i i i i D a a a a τ = -∑ , 其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 0010 30000004 ; (2) 1230 002030450001 . 【解】(1) D =(1)τ(2314) 4!=24; (2) D =12. 6. 计算下列各行列式.

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

线性代数二次型习题及答案

·107· 第六章 二次型 1.设方阵1A 与1B 合同,2A 与2B 合同,证明1 2A ?? ?? ?A 与12?? ???B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T 1111=B C A C , 因为2A 与2B 合同,所以存在可逆矩2C ,使T 2222=B C A C . 令 12?? = ??? C C C ,则C 可逆,于是有 T T 1111111 T 2222222??????????== ? ? ? ?????????????B C A C C AC B C A C C A C 1T 2?? = ??? A C C A 即 12A ?? ???A 与12?? ??? B B 合同. 2.设A 对称,B 与A 合同,则B 对称 证:由A 对称,故T =A A . 因B 与A 合同,所以存在可逆矩阵C ,使T =B C AC ,于是 T T T T T T ()====B C AC C A C C AC B 即B 为对称矩阵. 3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使 BP P AP P T T 与均为对角阵. 证:因为A 是正定矩阵,所以存在可逆矩阵M ,使 E AM M =T 记T 1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使 T 11diag(,,)n D μμ==Q B Q L T 11,,. n μμ=B M BM L 其中为的特征值 令P=MQ ,则有 D BP P E AP P ==T T , ,A B 同时合同对角阵. 4.设二次型211 1 ()m i in n i f a x a x == ++∑L ,令()ij m n a ?=A ,则二次型f 的秩等于()r A . 证:方法一 将二次型f 写成如下形式: 2111 ()m i ij j in n i f a x a x a x ==++++∑L L 设A i = 1(,,,,)i ij in a a a L L ),,1(m i Λ=

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数复习题带参考答案(2)

线性代数考试题库及答案 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

修订版-线性代数习题三答案

第三章 线性方程组 一、温习巩固 1. 求解齐次线性方程组??? ??=-++=--+=-++0 51050363024321 43214321x x x x x x x x x x x x 解: 化系数矩阵为行最简式 ???? ? ????→?????? ??----=000001001-0215110531631121行变换A 因此原方程同解于? ? ?=+-=0234 21x x x x 令2412,k x k x ==,可求得原方程的解为 ???? ?? ? ??+??????? ??-=1001001221k k x ,其中21,k k 为任意常数。 2. 求解非齐次线性方程组?? ? ??=+=+-=-+8 31110232 2421321321x x x x x x x x 解:把增广矩阵),(b A 化为阶梯形 ?? ? ? ? ????→?????? ??---??→?????? ??--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A 因此3),(2)(=<=b A R A R ,所以原方程组无解。 3. 设)1,2,1,3(),1,1,2,3(--=--=βα。求向量γ,使βγα=+32。 解:??? ? ? --=-= 31,0,35,3)2(31αβγ 4. 求向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),T T T ααα=-==4(1,1,2,0),T α=- T )6,5,1,2(5=α的秩和一个极大线性无关组。 解:将51,ααΛ作为列向量构成矩阵,做初等行变换

线性代数习题及参考答案3快快快

线性代数习题及参考答案3 单项选择题 1. 答案:B 2. 设m ×n 矩阵A 的秩为m ,则___。 C 、对于任一m 维列向量b ,矩阵[A b]的秩都为m 3. 设α1,α2,α3是方程组Ax=0的基础解系,则下列向量组中也可作为方程组Ax=0的基础解系的是___。 D 、α1+α2,α1-α2,α3 4. 设A 为3阶矩阵,P =100210001?? ? ? ?? ?,则用P 左乘A ,相当于将A___。A 、第1行的2倍加到第2行 5. 齐次线性方程组123234230+= 0x x x x x x ++=??--?的基础解系所含解向量的个数为___。 B 、2 6. 设4阶矩阵A 的秩为3,12ηη,为非齐次线性方程组Ax =b 的两个不同的解,c 为任意常数,则该方程组的通解为___。 A 、12 12 c ηηη-+ 7. 已知4阶方阵A 的行列式det(A)=0,则A 中___。 C 、必有一列向量是其余列向量的线性组合 8. n 元齐次线性方程组Ax=0存在非零解的充要条件是___。 C 、A 的列线性相关 9. n 阶方阵A 有n 个互不相同的特征值是A 与对角矩阵相似的___。 B 、充分非必要条件 判断题 1. 如果Rn 中两向量x,y 满足||x+y||2=||x||2+||y||2,则x 与y 是正交的。 答案:正确 2. 设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,又β1=α1+α2+α3,β2=α2-α3,β3=α2+α3,则β1,β2,β3也也是Ax=0的一个基础解系。 答案:正确 3. 若f(x1,x2)=x12+tx22-4x1x2正定,则实数t 的取值范围是t >4。 答案:正确 4. 向量组α1=(1,-1,2),α2=(7,6,4),α3=(0,0,0)线性无关。 答案:错误

线性代数题库

线性代数

12级物联网班 李沛华 一、填空 1. ??? ? ??-=???? ??-=0112,1101B A ,则=AB . 2. 设D 为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6, 24,则D = _______. 3. n 阶矩阵A 可逆的充要条件是 _____,设A *为A 的伴随矩阵,则1A -= ______. 4. 若n 阶矩阵满足2240A A E --=,则1A -= __________. 5. ()121,2,3,4_______,34?? ? ?= ? ???()121,2,3,4_______34?? ? ?= ? ??? . 6. 已知,A B 为n 阶矩阵, 2A =, 3B =-, 则1T A B -= . 7. 设向量组123,,ααα线性相关,则向量组112233,,,,,αβαβαβ一定线性 . 8. 8. 设A 三阶矩阵,若A =3,则1A -= , A * = . 9. n 阶可逆矩阵A 的列向量组为12,,,n αααL ,则{}12,,,n r ααα=L .

10.行列式41000 3100 0210 001的值为 . 11.设,a b 为实数,则当a = 且b = 时,1 0100 --a b b a =0. 12.1 0111111)(-=x x f 中,x 的一次项系数是 . 13.已知向量组()T 13,2,1=α,()()T 3T 25,4,3,4,3,2==αα,则该向量组的秩()123,,r ααα= . 14.A 为n 阶方阵,且d A =,则k A ?= . 15.设A 是三阶可逆矩阵,且1121021003A --?? ?= ? ??? ,则*__________A =. 16.已知向量T T ?? ? ??-=??? ??=0,31,31,0,21,21βα,则βα,的夹角是 . 17. 已知()1,0,2,2T α=,则α的模||||_______α=.

线性代数习题及答案

高数选讲线性代数部分作业 1.已知n阶方阵满足A2+2A-3I=O,则(A+4I)-1为 . 2.设n阶方阵满足 的代数余子式,则为()。 3.已知n阶方阵 ,则A中所有元素的代数余子式之和为()。 4.设有通解k[1,-2,1,3]T+[2,1,1,4]T,其中k是任意常数,则方程组必有一个特解是() 5.设A与B是n阶方阵,齐次线性方程组=0与=0有相同的基础解系,则在下列方程组中以为基础解系的是() (A) (B) (C) (D) 6.设A、B为四阶方阵,( ) (A)1.(B)2. (C)3. (D)4 7.设n阶矩阵A与B等价,则()成立。 (A)detA=detB (B) detAdetB (C)若detA0,则必有detB0(D) detA=-detB 8.设是四维非零向量组,是的伴随矩阵,已知方程组 的基础解系为k(1,0,2,0)T,则方程组的基础解系为() (A) (B) (C) (D) 9.设A是矩阵,则下列命题正确的是:() (A)若R(A)=m,则齐次方程组Ax=0只有零解。 (B)若R(A)=n,则齐次方程组Ax=0只有零解。 (C)若m

11.四元非齐次线性方程组的通解为 x=(1,-1,0,1)T+k(2,-1,1,0)T,k为任意常数,记 则以下命题错误的是 (A) (B) (C) (D) 12.知线性方程有无穷多解,求的取值并求通解。 13.设A是阶方阵,是A的两个不同的特征值,是A的对应于的线性无关特征向量,是A的对应于的线性无关特征向量,证明线性无关。14.已知矩阵的秩为1,且是的一个特征向量,(1)求参数; (2)求可逆矩阵和对角矩阵,使得 15.设5阶实对称矩阵满足,其中是5阶单位矩阵,已知的秩为2,(1)求行列式的值;(2)判断是否为正定矩阵?证明你的结论。 (2)的特征值全为正数,所以是正定矩阵。 16.. 17. 18.

相关文档
最新文档