气体实验定律和理想气体状态方程的综合应用热学练习检测含答案解析高三物理复习北京海淀

气体实验定律和理想气体状态方程的综合应用热学练习检测含答案解析高三物理复习北京海淀
气体实验定律和理想气体状态方程的综合应用热学练习检测含答案解析高三物理复习北京海淀

第三节气体实验定律和理想气体状态方程的综合

应用

限时训练·提能力(时间:45分钟必做题满分:100分选做题:10分)

一、选择题(本题共7小题,每小题10分,共70分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~7题有多项符合题目要求.全部选对的得10分,选对但不全的得5分,有选错的得0分) 1.(2014·重庆理综,10(1))重庆出租车常以天然气作为燃料.加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)()

A.压强增大,内能减小

B.吸收热量,内能增大

C.压强减小,分子平均动能增大

D.对外做功,分子平均动能减小

解析:气体发生等容变化,根据查理定律可知,温度升高,则压强增大;气体体积不变,则对外不做功;温度升高,内能增加,根据热力学第一定律可知,从外界吸收热量,B项正确.

答案:B

2.

已知理想气体的内能与温度成正比.如图所示的实线为汽缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能()

A.先增大后减小

B.先减小后增大

C.单调变化

D.保持不变

解析:理想气体的内能只与温度有关,温度升高(或降低),则内能增大(或减小).根据题中图象可知,气体

=C可知,温从状态1到状态2,pV的乘积(图中各点与坐标轴所围面积)先减小后增大,结合气态方程pV

T

度先减小后增大,则内能先减小后增大,选项B正确.

答案:B

3.

(2014·北京顺义测试)如图所示,固定在水平面上的汽缸内封闭着一定质量的理想气体,汽缸壁和活塞绝热性能良好,汽缸内气体分子间相互作用的势能忽略不计,则以下说法正确的是()

A.使活塞向左移动,汽缸内气体对外界做功,内能减少

B.使活塞向左移动,汽缸内气体内能增大,温度升高

C.使活塞向左移动,汽缸内气体压强减小

D.使活塞向左移动,汽缸内气体分子无规则运动的平均动能减小

解析:使活塞向左移动,外界对汽缸内气体做功,活塞绝热,Q=0,由热力学第一定律可知,内能增大,温度

=C可知,压强增大,故选项B正确,A、C、D均升高,缸内气体分子无规则运动的平均动能增大,又由pV

T

错误.

答案:B

4.

如图所示,一根上细下粗、粗端与细端都均匀的玻璃管,上端开口、下端封闭,上端足够长,下端(粗端)中间有一段水银封闭了一定质量的理想气体.现对气体缓慢加热,气体温度不断升高,水银柱上升,则被封闭气体体积和热力学温度的关系最接近图中的()

解析:根据气体状态方程pV

T =C(常数)得V=C

p

T,图线的斜率为C

p

.在水银柱升入细管前,封闭气体先做等压

变化,斜率不变,图线为直线;水银柱部分进入细管后,气体压强增大,斜率减小;当水银柱全部进入细管后,气体的压强又不变,V-T图线又为直线,只是斜率比原来的小.A图正确.

答案:A

5.容积V=20 L的钢瓶充满氧气后,压强为p=30个大气压,打开钢瓶阀门,让氧气分装到容积为V'=5 L 的小瓶子中去.若小瓶子已抽成真空,分装到小瓶中的氧气压强均为p'=2个大气压.在分装过程中无漏气现象,且温度保持不变,那么最多可能装的瓶数是()

A.4瓶

B.50瓶

C.56瓶

D.60瓶

解析:当钢瓶中气体的压强随着充气过程的进行而下降,质量也随之变化,不能直接利用玻意耳定律求解.但若将气体先假设膨胀到一个新的体积(压强为p'),然后再考虑如何分装,即可将问题简化.当钢瓶中的气体压强降至2个大气压时,已无法使小瓶继续充气,达到2个大气压,即充最后一瓶后,钢瓶中还剩下一满瓶压强为2个大气压的气体.设最多可装的瓶子数为n,由玻意耳定律得pV=p'(V+nV'),即n=(p-p')V

p'V'

解得n=56(瓶).

答案:C

6.

如图所示,A、B两点表示一定质量的某种理想气体的两个状态,当气体自状态A变化到状态B时()

A.体积必然变大

B.有可能经过体积减小的过程

C.外界必然对气体做功

D.气体必然从外界吸热

解析:分别连接OA、OB,则OA、OB表示等容变化,因为该连线的斜率表示体积,且斜率越小体积越大,故选项A正确;体积变大,气体对外界做功(W<0),选项C错误;又因B的温度高,内能变大,根据热力学

第一定律ΔU=W+Q知Q>0,选项D正确;从A到B变化,气体的体积可以有减小的过程,选项B正确.答案:ABD

7.

一定质量的理想气体从状态A变化到状态B,如图所示,则对应的压强关系和该过程中气体吸收和放出热量情况为()

A.p A

B.p A>p B

C.吸收热量

D.放出热量

解析:题中图象的函数式为V=kt=k(T-273),k为比例常数,结合气态方程有pV

T =C,即pk(1-273

T

)=C,可见,

温度升高,压强减小,选项B正确;气体温度升高,内能增加;体积增大,对外做功,根据热力学第一定律ΔU=W+Q可知,一定吸收热量.

答案:BC

二、论述·计算题(共30分)

8.一定质量的理想气体压强p与热力学温度T的关系图象如图所示,AB、BC分别与p轴和T轴平行,气体在状态A时的压强为p0、体积为V0,在状态B时的压强为2p0,则:

(1)气体在状态B时的体积为多少?

(2)气体在状态C时的体积为多少?

(3)气体从状态A经状态B变化到状态C的过程中,对外做的功为W,内能增加了ΔU,则此过程气体是吸收还是放出热量,大小为多少?

解析:(1)根据题图可知,气体从A→B做等温变化,由玻意耳定律有,p0V0=2p0V B

得V B=V0

2

.

(2)气体从B→C做等压变化,由盖—吕萨克定律有V B

T0=V C

2T0

,得V C=V0.

(3)气体从A→B→C的过程中,对外做的功为W,内能增加了ΔU,由热力学第一定律,则此过程气体吸收热量Q=ΔU+W.

答案:(1)V0

2

(2)V0(3)吸收ΔU+W

三、选做题(10分)

9.一粗细均匀的J形玻璃管竖直放置,短臂端封闭,长臂端(足够长)开口向上,短臂内封有一定质量的理想气体,初始状态时管内各段长度如图所示,密闭气体的温度为27 ℃,大气压强为75 cmHg.

(1)若沿长臂的管壁缓慢加入5 cm长的水银柱并与下方的水银合为一体,为使密闭气体保持原来的长度,应使气体的温度变为多少?

(2)在第(1)问的情况下,再使玻璃管沿绕过最低点的水平轴在竖直平面内逆时针转过180°,稳定后密闭气体的长度为多少?

(3)在下图所给的p-T坐标系中画出以上两个过程中密闭气体的状态变化过程.

解析:(1)已知p1=p0=75cmHg,T1=(273+27)K=300K,p2=p0+5cmHg=80cmHg,则由查理定律有p1

T1=p2

T2

解得T2=320K.

(2)假设玻璃管旋转180°后短臂内无水银,水平管内水银柱长为x cm,则有

p2=80cmHg,V2=(18cm)×S

p3=p0-(10+10+5+10-x)cmHg=(40+x)cmHg

V3=(18+10+10-x)cm×S=(38-x)cm×S

由p2V2=p3V3,解得x=8cm

与假设相符,故假设成立.则密闭气体的长度为(18+10+10-x)=30cm.

(3)如图所示

答案:(1)320 K(2)30 cm(3)见解析图

怎样运用理想气体状态方程解题

§7 怎样运用理想气体状态方程解题 理想气体处在平衡状态时,描写状态的各个参量(压强P 、体积V 和温度T )之间关系式,叫理想气体状态方程,其数学表达式为: (1)M PV RT μ= 此式的适用条件是:①理想气体;②平衡态。 上式中: M -气体的质量; μ--摩尔质量; M μ-是气体的摩尔数。 对于一定质量, 一定种类的理想气体,在热平衡下,状态方程可写为: 112212PV PV M R const T T μ==== 此式表明:一定质量、一定种类的理想气体,几个平衡状态的各参量之间的关系。 对于种类相同的两部分气体的状态参量分别为1P 、1V 、1T 、2P 、2V 、2T ,现将其混合。其状态参量为P 、V 、T ,则状态参量间具有下列关系式: 112212 PV PV PV T T T =+ 此式实质上说明了质量守恒:12M M M =+(1M 、2M 与M 分别表示混合前后的质量),按照质量守恒与状态方程是否可以得知:式(3)对不同气体也照样适合?请思考。 一、关于气体恒量R 的单位选择问题: 一摩尔质量的理想气体,要标准状况下,即01P atm =,0273.15T K =,022.4V L =,故有000 PV R T =。 在国际单位制() 23P /,a N m m -压强体积用作单位中,R 的量值选8.31J/mol K ?。

因为:32331.01310/22.410/8.31/273.15N m m mol R J mol K K ???==?; 在压强用大气压、体积用3m 时,R 的量值取3 8.2110/atm m mol K -???,因为: 335122.410/8.2110/273.15atm m mol R atm m mol K K -??==??? 在压强用大气压作单位、体积用升作单位时,R 的量值选0.082/atm l mol K ??,因为: 122.4/0.082/273.15atm l mol R atm l mol K K ?==?? 应用M PV RT μ=计算时,压强、体积单位的选取必须与R 一致在同时温度必须用热力 学温标。 二、怎样用状态方程来解题呢? 1、根据问题的要求和解题的方便,倒塌选取研究对象。研究对象选择得合理,解题就会很方便,否则会造成很多麻烦。选择对象时,容易受容器的限制。事实上,有时一摆脱容器的束缚,就能巧选研究对象。选择时应注意:在独立方程的个数等于未知量的个数的前提下,研究对象的数目应尽可能地少。最好是,研究对象的数目恰好等于待求的未知量的数目,此时,中间未知量一个也没出现。 2、描写研究对象的初、未平衡状态,即确定平衡状态下的P 、V 、T ; 3、根据过程的特征,选用规律列出方程,并求解。选择研究对象与选用规律,其根据都是过程的特征,因此,这两者往往紧密联系。列方程时,一般用状态方程的式子多,而用状态变化方程时式子较少,故能用状态变化方程时应尽可能优先考虑。 气体的混合(如充气、贮气等)和分离(如抽气、漏气等)有关的习题不少。对于这类习题,可从不同角度出发去列方程:①从质量守恒定律或推广到不同种类的分子气体时总摩尔数不变来考虑;②从同温、同压下的折合的加和减来考虑。由于气体体积是温度、压强的函数,所以,在利用利用“气体折合体积的加和性”时必须注意,只有统一折算成相同温度

理想气体状态方程实验

理想气体状态方程实验 【目的和要求】 验证理想气体状态方程;学习使用气压计测量大气压强。 【仪器和器材】 气体定律实验器(J2261型),钩码(J2106型),测力计(J2104型),方座支架(J1102型),温度计(0-100℃),烧杯,刻度尺,热水,气压计(全班共用)。 【实验方法】 1.记录实验室内气压计的大气压强p0。用刻度尺测出气筒全部刻度的长度,用测得的长度除气筒的容积得活塞的横截面积S,还可以进一步算出活塞的直径d(也可用游标卡尺测出活塞的直径d求得S)。 2.将仪器如图 3.4-1安装好。调整气体定律实验器使它成竖直状态。 3.先将硅油注入活塞内腔做润滑油。取下橡皮帽,把活塞拉出一半左右,使气筒内存留一定质量的空气,最后用橡皮帽会在出气嘴上,把气筒内的空气封闭住。 4.向烧杯内加入冷水,直到水完全浸设气体定律实验器的空气柱为止。 5.大约2分钟后,待气体体积大小稳定,读出温度计的度数,和气体的体积(以气柱长度表示)。 6.在气体定律实验器的挂钩上加挂钩码并记下钩码的质

量,用测力计提拉活塞记下活塞重G0,改变被封闭的空气柱的压强。用公式P=P0±(F/S)计算出空气柱的压强。同时读出水的温度、气体的体积。 7.给烧杯内换上热水,实验一次。 8.改变加挂的钩码数(或弹簧秤的示数),再分别做四次上面的实验。 9.将前面得到的数据填入上表,并算出每次实验得到的PV/T的值。 【注意事项】 1.力求气筒内的气体温度与水温一致,同时P、V、T的值尽量在同一时刻测定。一般先读出水的温度紧接着读气体的体积,因为气体的体积是随水的温度变化的。 2.要密封好气筒内的空气,不能漏气,并且气体的体积约占气筒总容积的一半,效果较好。 3.给活塞加挂钩码时,一定要使两边质量相同,使两边保持平衡,挂钩码要缓慢进行。 4.在公式P=P0±(F/S)中压力F是指活塞、硅油及活塞上的一些配件所受的重力G0和对活塞施加的拉力或压力。 5.计算压强时,应把各个量换算成统一单位后再运算,温度计读出的温度应折算成热力学温度。 6.空气柱一定要完全浸入水中,否则气体的温度就测不准

理想气体状态方程

***********学院 2015 ~ 2016 学年度第一学期 教师课时授课教案(首页) 学科系:基础部授课教师:**** 专业:药学科目:物理课次: 年月日年月日

理想气体状态方程 (一)引入新课 在讲授本节课之前,让学生完成理想气体方程的实验。上课时,利用学生实验的一组数据进行分析,归纳总结出气体状态方程,再引入理想气体。 (二)引出课程内容 1.气体的状态参量 (1)体积V 由于气体分子可以自由移动,所以气体具有充满整个容器的性质。因而气体的体积由容器的容积决定。气体的体积就是盛装气体的容器的容积。 体积的单位:立方米,符号是m3 。体积的其他单位还有dm3(立方分米)和cm3(立方厘米)。日常生活和生产中还用1L(升)作单位。 各种体积单位的关系: 1 m3=103 L=103 dm3=106 cm3 (2)温度 温度是用来表示物体冷热程度的物理量。要定量地确定温度,必须给物体的温度以具体的数值,这个数值决定于温度零点的选择和分度的方法。温度数值的表示方法称为温标。 ①日常生活中常用的温标称为摄氏温标。它是把1.013×105Pa气压下水的冰点定为零度,沸点定为100度,中间分为100等分,每一等分代表1度。用这种温标表示的温度称为摄氏温度,用符号t表示。 摄氏温度单位:摄氏度,符号是℃。 温标:温度数值的表示方法称为温标。 ②在国际单位制中,以热力学温标(又称为绝对温标)作为基本温标。这种温标以 -273.15 ℃作为零度,称为绝对零度。用这种温标表示的温度,称为热力学温度或绝对温度,用符号T表示。 绝对温度单位:开尔文,简称开,符号是 K。 热力学温度和摄氏温度只是零点的选择不同,但它们的分度方法相同,即二者每一度的大小相同。 ③热力学温度和摄氏温度之间的数值关系: T t=+(为计算上的简化,可取绝对零度为-273℃) 273 例如气压为1.013×105 Pa时 冰的熔点t =0 ℃→T = 273 K 水的沸点t =100 ℃→T =(100+273)K 温度与物质分子的热运动关系:温度越高,分子热运动越剧烈。分子平均速率也越大(各

气体实验定律物理教案

气体实验定律物理教案 知识目标 1、知道什么是等温变化,知道玻意耳定律的实验装置和实验过程,掌握玻意耳定律 的内容与公式表达. 2、知道什么是等容变化,了解查理定律的实验装置和实验过程,掌握查理定律的内 容与公式表达. 3、掌握三种基本图像,并能通过图像得到相关的物理信息. 能力目标 通过实验培养学生的观察能力和实验能力以及分析实验结果得出结论的能力. 情感目标 通过实验,培养学生分析问题和解决问题的能力,同时树立理论联系实际的观点. 教学建议 教材分析 本节的内容涉及三个实验定律:玻意耳定律、查理定律和盖?吕萨克定律.研究压强、体积和温度之间的变化关系,教材深透了一般物理研究方法――“控制变量法”:在研究 两个以上变量的关系时,往往是先研究其中两个变量间的关系,保持其它量不变,然后综 合起来得到所要研究的几个量之间的关系,在牛顿第二定律、力矩的平衡、单摆周期确定 等教学中,我们曾经几次采用这种方法. 教法建议 通过演示实验,及设定变量的方法得到两个实验定律;注意定律成立的条件.提高学生 对图像的分析能力. 教学设计方案 教学用具:验证玻意耳定律和查理定律的实验装置各一套. 教学主要过程设计:在教师指导下学生认识实验并帮助记录数据,在教师启发下学生 自己分析总结、推理归纳实验规律. 课时安排:2课时 教学步骤

(一)课堂引入: 教师讲解:我们学习了描述气体的三个物理参量――体积、温度、压强,并知道对于 一定质量的气体,这三个量中一个量变化时,另外两个量也会相应的发生变化,三个量的 变化是互相关联的,那么,对于一定质量的气体,这三个量的变化关系是怎样的呢?这节课,我们便来研究一下! (二)新课讲解: 教师讲解:在物理学中,当需要研究三个物理量之间的关系时,往往采用“保持一个 量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系”,我们研究一定质量的气体温度、体积、压强三者的关系,就可以采用这种方法.首先,我 们设定温度不变,研究气体体积和压强的关系. 1、气体的压强与体积的关系――玻意耳定律 演示实验:一定质量的气体,在保持温度不变的情况下改变压强,研究压强与体积的 关系.让学盛帮助记录数据. 压强Pa0.51.01.52.02.53.03.54.0 体积V/L8.04.02.72.01.61.31.11.0 4.04.04.054.04.03.93.854.0 以横坐标表示气体的体积,纵坐标表示气体的压强,作出压强p与体积的关系如图所示. 可见,一定质量的气体,在体积不变的情况,压强P随体积V的关系图线为一双曲线,称为等温线.①见等温线上的每点表示气体的一个状态.②同一等温线上每一状态的温度均 相同.③对同一部分气体,在不同温度下的等温线为一簇双曲线,离坐标轴越近的等温线 的温度越高. 通过实验得出,一定质量的某种气体,在温度保持不变的情况下,压强p与体积V的 乘积保持不变,即:常量 或压强p与体积V成反比,即: 这个规律叫做玻意耳定律,也可以写成:或 例如:一空气泡从水库向上浮,由于气泡的压强逐渐减小,因此体积逐渐增大. 例题1:如图所示,已知:,求:和 解:根据图像可得:

高中物理-理想气体的状态方程练习

高中物理-理想气体的状态方程练习 A级抓基础 1.(多选)对一定质量的理想气体( ) A.若保持气体的温度不变,则当气体的压强减小时,气体的体积一定会增大B.若保持气体的压强不变,则当气体的温度减小时,气体的体积一定会增大C.若保持气体的体积不变,则当气体的温度减小时,气体的压强一定会增大D.若保持气体的温度和压强都不变,则气体的体积一定不变 解析:气体的三个状态参量变化时,至少有两个同时参与变化,故D对;T不 变时,由pV=恒量知,A对;p不变时,由V T =恒量知,B错;V不变时,由 p T =恒量知,C 错. 答案:AD 2.关于理想气体的状态变化,下列说法中正确的是() A.一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍 B.气体由状态1变化到状态2时,一定满足方程p 1 V 1 T 1 = p 2 V 2 T 2 C.一定质量的理想气体体积增大到原来的4倍,可能是压强减半,热力学温度加倍 D.一定质量的理想气体压强增大到原来的4倍,可能是体积加倍,热力学温度减半 解析:一定质量的理想气体压强不变,体积与热力学温度成正比,温度由100 ℃上升到200 ℃时,体积增大为原来的1.27倍,故A错误;理想气体状态方 程成立的条件为质量不变,B项缺条件,故错误;由理想气体状态方程pV T =恒量可 知,C正确,D错误. 答案:C 3.一定质量的气体,从初态(p0、V0、T0)先经等压变化使温度上升到3 2 T ,再 经等容变化使压强减小到1 2 p ,则气体最后状态为()

A.1 2 p 、V0、 3 2 T B. 1 2 p 、 3 2 V 、 3 4 T C. 1 2 p 、V0、 3 4 T D. 1 2 p 、 3 2 V 、T0 解析:在等压过程中,V∝T,有 V T = V 3 3T0 2 ,V3= 3 2 V ,再经过一个等容过程,有 p 3 2 T = p 2 T 3 ,T3= 3 4 T ,所以B正确. 答案:B 4.(多选)一定质量的理想气体,初始状态为p、V、T,经过一系列状态变化后,压强仍为p,则下列过程中可以实现的是() A.先等温膨胀,再等容降温 B.先等温压缩,再等容降温 C.先等容升温,再等温压缩 D.先等容降温,再等温压缩 解析:根据理想气体的状态方程 pV T =C,若经过等温膨胀,则T不变,V增加,p 减小,再等容降温,则V不变,T降低,p减小,最后压强p肯定不是原来值,A错;同理可以确定C也错,正确选项为B、D. 答案:BD 5.氧气瓶的容积是40 L,其中氧气的压强是130 atm,规定瓶内氧气压强降到10 atm时就要重新充氧,有一个车间,每天需要用1 atm的氧气400 L,这瓶氧气能用几天?(假定温度不变) 解析:用如图所示的方框图表示思路. 由V1→V2:p1V1=p2V2, V 2 = p 1 V 1 p 2 = 130×40 10 L=520 L,

理想气体状态方程式

第1章第零定律与物态方程 一、基本要点公式及其适用条件 1.系统的状态和状态函数及其性质 系统的状态—就是系统物理性质和化学性质的综合表现,它采用系统的宏观性质来描述系统的状态,系统的宏观性质,也称为系统的"状态函数"。 系统的宏观性质(状态函数)—就是由大量(摩尔级)的分子、原子、离子等微观粒子组成的宏观集合体所表现出的集团行为,简称"热力学性质"或“热力学函数”如p、V、T、U、H、S、A、G等。 Z=f(x,y)表示一定量、组成不变的均相系统,其任意宏观性质(Z)是另两个独立宏观性质(x,y)的函数。状态函数Z具有五个数学特征: (1),状态函数改变量只决定于始终态,与变化过程途径无关。 (2),状态函数循环积分为零,这是判断Z是否状态函数的准则之一。 (3),系Z的全微分表达式 (4),系Z的 Euler 规则,即微分次序不影响微分结果。 (5),系Z、x、y满足循环式,亦称循环规则。 2.热力学第零定律即热平衡定律: 当两个物态A和B分别与第三个物体C处于热平衡,则A和B之间也必定彼此处于热平衡。T=t+273.15,T是理想气体绝对温标,以"K"为单位。t是理想气体摄氏温标,以"℃"为单位。 绝对温标与摄氏温标在每一度大小是一样的,只是绝对温标的零度取在摄氏温标的 -273.15℃处,可以看出,有了绝对温标的概念后,只需确定一个固定参考点(pV)0p=0,依国际计量大会决定,这个参考点选取在纯水三相点,并人为规定其温度正好等于 273.16K。 3.理想气态方程及其衍生式为: ;式中p、V、T、n单位分别为 Pa、m3、K、mol;R=8.314J·mol-1·K-1,V m为气体摩尔体积,单位为 m3·mol-1,ρ为密度单位kg·m-3,M 为

2019-2020年教科版物理选修3-3讲义:第2章+3.气体实验定律及答案

3.气体实验定律 [先填空] 1.研究气体的性质,用压强、体积、温度等物理量描述气体的状态.描述气体状态的这几个物理量叫做气体的状态参量. 2.气体的体积是指气体占有空间的大小,就是贮放气体的容器的容积.在国际单位制中,体积的单位是立方米,符号是m3.常用单位间的换算关系:1 L=10-3 m3,1 mL=10-6 m3. 3.温度是气体分子平均动能的标志,热力学温度,亦称绝对温度,用符号T 表示,单位是开尔文,符号是K.两种温度间的关系是T=t+273. 4.气体的压强是大量气体分子对器壁撞击的宏观表现,用符号p表示.在国际单位制中,单位是帕斯卡,符号是Pa. [再判断] 1.气体体积就是所有气体分子体积的总和.(×) 2.温度越高,所有的分子运动越快.(×) 3.一个物体的温度由10 ℃升高到20 ℃,与它从288 K升高到298 K所升高的温度是相同的.(√) [后思考] 摄氏温度的1 ℃与热力学温度的1 K大小相同吗?

【提示】热力学温度与摄氏温度零点选择不同,但它们的分度方法,即每一度的大小是相同的. 1.温度的含义:温度表示物体的冷热程度,这样的定义带有主观性,因为冷热是由人体的感觉器官比较得到的,往往是不准确的. 2.温标 (1)常见的温标有摄氏温标、华氏温标、热力学温标. (2)比较摄氏温标和热力学温标. 1.关于热力学温度下列说法中正确的是() A.-33 ℃=240 K B.温度变化1 ℃,也就是温度变化1 K C.摄氏温度与热力学温度都可能取负值 D.温度由t℃升至2t℃,对应的热力学温度升高了273 K+t E.-136 ℃比136 K温度高 【解析】T=273+t,由此可知:-33 ℃=240 K,A正确,同时B正确;D中初态热力学温度为273+t,末态为273+2t温度变化t K,故D错;对于摄氏温度可取负值的范围为0到-273 ℃,因绝对零度达不到,故热力学温度不可能取

高中物理-理想气体状态方程

理想气体状态方程 理想气体状态方程 理想气体状态方程,又称理想气体定律、普适气体定律,是描述理想气体在处于平衡态时,压强、体积、物质的量、温度间关系的状态方程。 理想气体状态方程建立在玻义耳-马略特定律、查理定律、盖-吕萨克定律等经验定律的基础上。 理想气体状态方程是由研究低压下气体的行为导出的。但各气体在适用理想气体状态方程时多少有些偏差;压力越低,偏差越小,在极低压力下理想气体状态方程可较准确地描述气体的行为。极低的压强意味着分子之间的距离非常大,此时分子之间的相互作用非常小;又意味着分子本身所占的体积与此时气体所具有的非常大的体积相比可忽略不计,因而分子可近似被看作是没有体积的质点。于是从极低压力气体的行为触发,抽象提出理想气体的概念。 理想气体状态方程表达式 理想气体状态方程数学表达式为: pV=nRT 方程有4个变量,其意义描述如下: p是指理想气体的压强;

V为理想气体的体积; n表示气体物质的量; T表示理想气体的热力学温度; 还有一个常量R,R为理想气体常数。 从数学角度可以看出,理想气体状态方程变量很多。因此此方程以其变量多、适用范围广而著称,对常温常压下的空气也近似地适用。 理想气体状态方程的特殊情况 1.理想气体状态方程的恒温过程(T恒定) 该过程满足玻义耳定律(玻—马定律)(Boyles‘s Law) 当n,T一定时,由理想气体状态方程可知,V,p成反比,即V∝(1/p); 2.理想气体状态方程的等容过程(V恒定) 该过程满足查理定律(Charles’s Law) 当n,V一定时,由理想气体状态方程可知,T,p成正比,即p∝T; 3.理想气体状态方程的等压过程(p恒定) 该过程满足盖-吕萨克定律(Gay-Lussac‘s Law)

高中物理热学部分---理想气体状态方程

高中物理热学部分-- 理想气体状态方程 一、单选题 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是 A .p 1 =p 2,V 1=2V 2,T 1= 2 1T 2 B .p 1 =p 2,V 1=21 V 2,T 1= 2T 2 C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2 D .p 1 =2p 2,V 1=V 2,T 1= 2T 2 2.已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定 质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能 A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 4.下列说法正确的是 A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的 A .温度和体积 B .体积和压强 C .温度和压强 D .压强和温度 6.带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则 A. Pb >Pc ,Qab>Qac B. Pb >Pc ,QabQac D. Pb

高考物理学霸复习讲义气体实验定律-第一部分 气体实验定律——玻意耳定律

1.玻意耳定律:pV=C或p1V1=p2V2(温度不变)。 2.利用气体实验定律解决问题的基本思路: 【典例】如图所示,U形细玻璃管竖直放置,各部分水银柱的长度分别为L2=25 cm、L3 =25 cm、L4=10 cm,A端被封空气柱的长度为L1=60 cm,BC在水平面上。整个装置处在恒温环境中,外界气压p0=75 cmHg。将玻璃管绕B点在纸面内沿逆时针方向缓慢旋转90°至AB管水平,求此时被封空气柱的长度。 【答案】40 cm 【解析】设细玻璃管的横截面积为S,旋转前,V1=L1S,p1=p0–L2+L4 旋转后,V2=L S,p2=p0+L3 由玻意耳定律:1122 p V p V = 代入数据:()() 7525107525 60L S S -++ ?= 解得:() 6010 36cm cm L L- =< ,不成立 所以设原水平管中有长为x cm的水银进入左管(75–25+10)×60S=(75+25–x)×(60–10–x)S 解得:x=10 cm 所以L′=60?10?x=40 cm 【名师点睛】由玻意耳定律进行分析,即可求得空气柱的长度,再根据实际情况进行计论,明确是否第一部分气体实验定律——玻意耳定律

能符合题意,判断是否有水银进行左管;从而确定长度。 1.如图所示,由导热材料制成的气缸和活塞将一定质量的理想气体封闭在气缸内,活塞与气缸壁之间无摩擦。在活塞上缓慢地放上一定量的细砂。假设在此过程中,气缸内气体的温度始终保持不变,下列说法正确的是 A.气缸中气体的内能增加 B.气缸中气体的压强减小 C.气缸中气体的分子平均动能不变 D.单位时间内气缸中气体分子对活塞撞击的次数不变 【答案】C 【解析】气体做等温变化,而温度是气体是分子平均动能的标志,故气体分子的平均动能不变,理想气体的内能等于分子动能,所以内能不变,A错误,C正确;在活塞上缓慢地、一点点放上一定量的细沙,封闭气体压强增大,故B错误;封闭气体压强增大,温度不变,根据理想气体的状态方程可得气体的体积减小,缸中气体分子数密度增大,单位时间内气缸中气体分子对活塞撞击的次数增大,D错误。 【名师点睛】根据题意可知,被封闭气体作等温变化,在活塞上缓慢地、一点点放上一定量的细沙,压强逐渐增大。 2.一足够长的粗细均匀的玻璃管开口向上竖直放置,管内由15 cm长的水银柱封闭着50 cm长的空气柱。若将管口向下竖直放置,空气柱长变为多少cm?(设外界大气压强为75 cmHg,环境温度不变) 【答案】75 cm 【解析】封闭气体的状态参量:p1=p0+h=75 cmHg+15 cmHg=90 cmHg,V1=L1S=50S p2=p0﹣h=75 cmHg﹣15 cmHg=60 cmHg 气体发生等温变化,由玻意耳定律得p1V1= p2V2 即90×50S=60×LS 解得:L=75cm 3.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m

气体实验定律

气体实验定律 专题一:密闭气体压强的计算 一、平衡态下液体封闭气体压强的计算 1. 理论依据 ① 液体压强的计算公式 gh p ρ=。 ② 液面与外界大气相接触。则液面下h 处的压强为 gh + p = p 0ρ 帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体) ③ 连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强 是相等的。 2、计算的方法步骤(液体密封气体) ① 选取假想的一个液体薄片(其自重不计)为研究对象 ② 分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压 强平衡方程 ③ 解方程,求得气体压强 例1:试计算下述几种情况下各封闭气体的压强,已知大气压P 0,水银的密度为ρ,管中 水银柱的长度均为h 。均处于静止状态 练1:计算下图中各种情况下,被封闭气体的压强。(标准大气压强0p =76cmHg ,图中液体为水银 θ θ

练2、如图二所示,在一端封闭的U 形管内,三段水银柱将空气柱A 、B 、C 封在管中,在竖直放置时,AB 两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h 1和h 2,外界大气的压强为0p ,则A 、B 、C 三段气体的压强分别是多少? 练3、 如图三所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。已知12cm Hg =h 1,15cm Hg =h 2,外界大气压强76cm Hg =p 0,求空气柱1和2的压强。 二、平衡态下活塞、气缸密闭气体压强的计算 1. 解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 例2 如下图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。不计圆板与容器内壁之间的摩擦。若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A B. C. D. P Mg S 0+ cos θP Mg S 0cos cos θθ + P Mg S 02+ cos θ P Mg S 0+

人教版高中物理选修3-3理想气体状态方程测试题1(无答案)

高中物理学习材料 金戈铁骑整理制作 高二物理理想气体状态方程练习 【同步达纲练习】 1.一定质量的理想气体,从初态(P1,V1,T1)变化到终态(P2,V2,T2),下列各量关系中不可能实现的应为( ) A.P1>P2,V1>V2,T1>T2 B.P1>P2,V1>V2,T1<T2 C.P1<P2,V1>V2,T1<T2 D.P1<P2,V1<V2,T1>T2 2.对一定质量的理想气体,在下列各种过程中,可能发生的过程是:( ) A.气体膨胀对外做功,温度升高 B.气体吸热,温度降低 C.气体放热,压强增大 D.气体放热,温度不变 3.如图13.3-8所示,A、B两点表示一定质量的理想气体的两个状态,当气体自状态A 变化到状态B时( ) A.体积必须变大 B.有可能经过体积减小的过程 C.外界必然对气体做正功 D.气体必然从外界吸热 4.如下图所示,能反映理想气体经历了等温变化等容变化等压变化,又回到原来状态的图是( ) 5.一汽泡以30m深的海底升到水面,设水底温度是4℃,水面温度是15℃,那么汽泡在水面的体积约是水底时( ) A.3倍 B.4倍 C.5倍 D.12倍 6.如下图甲所示,P-T图上的图线abc表示一定质量的理想气体的状态变化过程,此过程在P-V图上(下图 (乙)所示)的图线应为( )

甲乙 7.一定量气体可经不同的过程以状态(P1、V1、T1)变到状态(P2、V2、T2),已知T2>T1.则在这些过程中( ) A.气体一定都从外界吸收热量 B.气体和外界交换的热量都是相等的 C.外界对气体所做的功都是相等的 D.气体内能间变化量都是相等的 8.如下图所示,密封的圆柱形容器中盛有27℃,压强为1atm的空气,容器中间用两个绝热但能自由活动的活塞隔成体积相等的三个部分.将A部分加热到227℃,C部分加热到327℃,B部分温度不变.平衡后,A、B、C三部分体积之比为. 9.如下图所示,A、B是两截面积相同的气缸,放在水平地面上,活塞可无摩擦地上、下移动.活塞上固定一细的刚性推杆,顶在一可绕水平固定轴O自由旋转的杠杆MN上,接触点光滑.活塞(连推杆)、杠杆的质量均可忽略,开始时,A和B中气体压强为P A=1.10×105Pa 和P B=1.20×105Pa,体积均为V0=1.00L,温度均为T0=300K,杠杆处于水平位置,设大气压强始终P0=1.00×105Pa,当气缸B中气体的温度T B变为400K,体积V B=1.10L时,求气缸A 中气体温度. 【素质优化训练】 1.如图所示,水平放置的密封气缸的活塞被很细的弹簧拉住,气缸内密封一定质量的气体.当缸内气体温度为27℃,弹簧的长度为30cm时,气缸内气体压强为缸外大气压的1.2倍.当缸内气体温度升高到127℃时,弹簧的长度为36cm.求弹簧的原长?(不计活塞与缸壁的摩擦) 2.如图所示,在圆筒形真空容器内,弹簧下挂一重量可忽略的活塞.当弹簧自然伸长时,活塞刚好触及容器底部.如果活塞下充入一定质量的温度为T的某种气体,则气柱高度为h.问气体温度升高到T′时,气柱的高度h′是多少?(设活塞不漏气,且与器壁无摩擦)

理想气体状态方程练习题

选修3-3理想气体状态方程练习题 学号班级姓名 1.关于理想气体,下列说法正确的是( ) A.理想气体能严格遵守气体实验定律 B.实际气体在温度不太高、压强不太大的情况下,可看成理想气体 C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体 D.所有的实际气体任何情况下,都可以看成理想气体 2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是( ) A.p1=p2,V1=2V2,T1=1 2 T2 B.p1=p2,V1= 1 2 V2,T1=2T2 C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T2 3.一定质量的理想气体,经历一膨胀过程,这一过程可以用下图上 的直线ABC来表示,在A、B、C三个状态上,气体的温度T A、T B、T C相比 较,大小关系为( ) A.T B=T A=T C B.T A>T B>T C C.T B>T A=T C D.T B

5 有两个容积相等的容器,里面盛有同种气体,用一段水平玻璃管把它们连接起来。在玻璃管的正中央有一段水银柱,当一个容器中气体的温度是0℃,另一个容器中气体的温度是20℃时,水银柱保持静止。如果使两容器中气体的温度都升高10℃,管中的水银柱会不会移动?如果移动的话,向哪个方向移动? 6一艘位于水面下200m 深处的潜水艇,艇上有一个容积为3 2m 的贮气筒,筒内贮有压缩空气,将筒内一部分空气压入水箱(水箱有排水孔和海水相连),排出海水3 10m ,此时筒内剩余气体的压强是95atm 。设在排水过程中温度不变,求贮气钢筒里原来压缩空气的压强。(计算时 可取Pa atm 5 101=,海水密度2 3 3 /10,/10s m g m kg ==ρ)

高中物理热学-- 理想气体状态方程 试题及答案

高中物理热学-- 理想气体状态方程 试题及答案 一、单选题 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是 A .p 1 =p 2,V 1=2V 2,T 1= 21T 2 B .p 1 =p 2,V 1=21 V 2,T 1= 2T 2 C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2 D .p 1 =2p 2,V 1=V 2,T 1= 2T 2 2.已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定 质量 的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的 内能 A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 4.下列说法正确的是 A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的 A .温度和体积 B .体积和压强 C .温度和压强 D .压强和温度 6.带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则 A. Pb >Pc ,Qab>Qac B. Pb >Pc ,QabQac D. Pb

理想气体状态方程

理想气体状态方程 理想气体状态方程(ideal gas,equation of state of),也称理想气体定律或克拉佩龙方程,描述理想气体状态变化规律的方程。质量为m,,摩尔质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系为pV=mRT/M=nRT 式中ρ和n分别是理想气体的摩尔质量和物质的量;R是气体常量。对于混合理想气体,其压强p是各组成部分的分压强p1、p2、……之和,故 pV=(p1+p2+……)V=(n1+n2+……)RT,式中n1、n2、……是各组成部分的摩尔数。 以上两式是理想气体和混合理想气体的状态方程,可由理想气体严格遵循的气体实验定律得出,也可根据理想气体的微观模型,由气体动理论导出。在压强为几个大气压以下时,各种实际气体近似遵循理想气体状态方程,压强越低,符合越好,在压强趋于零的极限下,严格遵循。 pV=nRT(克拉伯龙方程[1]) p为气体压强,单位Pa。V为气体体积,单位m3。n为气体的物质的量,单位mol,T为体系温度,单位K。 R为比例系数,数值不同状况下有所不同,单位是J/(mol·K) 在摩尔表示的状态方程中,R为比例常数,对任意理想气体而言,R是一定的,约为8.31441±0.00026J/(mol·K)。 如果采用质量表示状态方程,pV=mrT,此时r是和气体种类有关系的,r=R/M,M为此气体的平均分子量. 经验定律 (1)玻意耳定律(玻—马定律) 当n,T一定时V,p成反比,即V∝(1/p)① (2)查理定律 当n,V一定时p,T成正比,即p∝T ② (3)盖-吕萨克定律 当n,p一定时V,T成正比,即V∝T ③ (4)阿伏伽德罗定律 当T,p一定时V,n成正比,即V∝n ④ 由①②③④得 V∝(nT/p)⑤ 将⑤加上比例系数R得 V=(nRT)/p 即pV=nRT 实际气体中的问题当理想气体状态方程运用于实际气体时会有所偏差,因为理想气体的基本假设在实际气体中并不成立。如实验测定 1 mol乙炔在20℃、101kPa 时,体积为24.1 dm,,而同样在20℃时,在842 kPa下,体积为0.114 dm,,它们相差很多,这是因为,它不是理想气体所致。 一般来说,沸点低的气体在较高的温度和较低的压力时,更接近理想气体,如氧气的沸点为-183℃、氢气沸点为-253℃,它们在常温常压下摩尔体积与理想值仅相差

高中物理-气体实验定律(Ⅱ)练习

高中物理-气体实验定律(Ⅱ)练习 [A级抓基础] 1.一定质量的理想气体经历等温压缩过程时,气体的压强增大,从分子微观角度来分析,这是因为( ) A.气体分子的平均动能增大 B.单位时间内器壁单位面积上分子碰撞的次数增多 C.气体分子数增加 D.气体分子对器壁的碰撞力变大 解析:温度不发生变化,分子的平均动能不变,分子对器壁的碰撞力不变,故A、D错;质量不变,分子总数不变,C项错误;体积减小,气体分子密集程度增大,单位时间内器壁单位面积上分子碰撞次数增多,故B正确. 答案:B 2.(多选)一定质量的理想气体在等压变化中体积增大了1 2 ,若气体原来温度 是27 ℃,则温度的变化是( ) A.升高到 450 K B.升高了 150 ℃C.升高到 40.5 ℃D.升高了450 ℃ 解析:由V 1 V 2 = T 1 T 2 得 V 1 V 1 + 1 2 V 1 = 273+27 T 2 ,则T2=450 K Δt=450-300= 150(℃). 答案:AB 3.一定质量的理想气体被一绝热气缸的活塞封在气缸内,气体的压强为p0,如果外界突然用力压活塞,使气体的体积缩小为原来的一半,则此时压强的大小为( ) A.p<2p0B.p=2p0 C.p>2p0D.各种可能均有,无法判断 解析:外界突然用力压活塞,使气体的体积瞬间减小,表明该过程中气体和外界没有热变换,所以气体的内能将会变大,相应气体的温度会升高,若温度不变时,p=2p0,因为温度变高,压强增大,则p>2p0,故选项C正确. 答案:C

4.如图所示是一定质量的气体从状态A经B到状态C的V-T图象,由图象可知( ) A.p A>p B B.p C

T A,故p B>p A,A、C错误,D 正确;由B→C为等压过程p B=p C,故B错误. 答案:D 5.如图所示的四个图象中,有一个是表示一定质量的某种理想气体从状态a 等压膨胀到状态b的过程,这个图象是( ) 解析:A项中由状态a到状态b为等容变化,A错;B项中由状态a到状态b 为等压压缩,B错;C项中由状态a到状态b为等压膨胀,C对;D项中由状态a 到状态b,压强增大,体积增大,D错. 答案:C 6.一水银气压计中混进了空气,因而在27 ℃,外界大气压为758 mmHg时,这个水银气压计的读数为738 mmHg,此时管中水银面距管顶80 mm,当温度降至-3℃时,这个气压计的读数为743 mmHg.求此时的实际大气压值. 解析:初状态:p1=(758-738)mmHg=20 mmHg, V =80S mm3(S是管的横截面积), 1

气体实验定律-理想气体的状态方程

气体实验定律-理想气体的状态方程

[课堂练习] 1.一定质量的理想气体处于某一初始状态,现要使它的温度经过状态变化后,回到初始状态的温度,用下列哪个过程可以实现( ) A .先保持压强不变而使体积膨胀,接着保持体积不变而减小压强 B .先保持压强不变而使体积减小,接着保持体积不变而减小压强 C .先保持体积不变而增大压强,接着保持压强不变而使体积膨胀 D . 先保持体积不变而减少压强,接着保持压强不变而使体积减小 2.如图为 0.2mol 某 种气体的压强与 温度关系.图中 p 0为标准大气压.气体在B 状态时的体积是_____L .

3.竖直平面内有右图所示的均匀玻 璃管,内用两段水银柱封闭两段空气 柱a、b,各段水银柱高度如图所示.大 气压为p0,求空气柱a、b的压强各多大? 4.一根两端封闭,粗细均匀的玻璃管,内有一小段水银柱把管内空气柱分成a、b两 部分,倾斜放置时,上、下两段空气 柱长度之比L a/L b=2.当两部分气体的 温度同时升高时,水银柱将如何移 动? 5.如图所示,内径均匀的U型玻璃管竖直放置,截面积为5cm2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞.两管中分别封入L=11cm 的空气柱A和B,活塞上、下气体压强相等为76cm 水银柱产生的压强,这时两管内的水银面的高度

差h=6cm,现将活塞用细线缓慢地向上拉,使两管内水银面相平.求: (1)活塞向上移动的距离是多少? (2)需用多大拉力才能使活塞静止在这个位置上? 6、一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是() A.p1 =p2,V1=2V2,T1= 21T2 B.p1 =p2,V1=21V2,T1= 2T2 C.p1=2p2,V1=2V2,T1= 2T2 D.p1 =2p2,V1=V2,T1= 2T2 7、A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银 槽组成,除玻璃泡在管上的位置

相关文档
最新文档