电磁波的特性

电磁波的特性
电磁波的特性

无线电波的传播特性

传播特性(一)

移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100~1000米),短波(波长10~100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:

1.表面波传播

表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播.

当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射.

从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播.2.天波传播

短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波.

电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广.

在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作.

传播特性(二)

1.空间波传播

当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响.

空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右.

空间波除了受地面的影响以外,还受到低空大气层即对流层的影响.

移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

2.散射传播

大气对流层中,除了有规则的片状或层状气流外,还存在有不规则的,这类似于水流中漩涡的不均匀体.相应的,在电离层中则有电子密度的不均匀性.当天线辐射出去的电波,投射到这些不均匀体的时候,类似于光的散射和反射现象,电波发生散射或反射,一部分能量传播到接收点的这种传播称为散射传播.这种通信方式通信距离可达300~800km,适用于无法建立微波中继站的地区,例如用于海岛之间和跨越湖泊,沙漠,雪山等地区.但是,由于散射信号相当微弱,所以散射传播接收点的接收信号也相当微弱,即传播损耗很大,这样,散射通信必须采用大功率发射机,高灵敏度接收机和高增益天线.

3.外层空间传播

电磁波由地面发出(或返回),经低空大气层和电离层而到达外层空间的传

播,如卫星传播,宇宙探测等均属于这种远距离传播.由于电磁波传播的距离很远,且主要是在大气以外的宇宙空间内进行,而宇宙空间近似于真空状态,因而电波在其中传播时,它的传输特性比较稳定.我们可以把电波穿过电离层外面的空间传播,基本上当作自由空间中的传播来研究.至于电波在大气层中传播所受到的影响,可以在考虑这一简单的情况基础上加以修正.

传播特性(三)

前面我们对电磁波的各种传播方式做了介绍,在这里,我们简单地介绍一下各个波段的传播特点,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100~1000米),短波(波长10~100米),超短波和微波(波长为10米以下)等等.各个波段的传播特点如下:

1.长波传播的特点

由于长波的波长很长,地面的凹凸与其他参数的变化对长波传播的影响可以忽略.在通信距离小于300km时,到达接收点的电波,基本上是表面波.长波穿入电离层的深度很浅,受电离层变化的影响很小,电离层对长波的吸收也不大.因而长波的传播比较稳定.虽然长波通信在接收点的场强相当稳定,但是它有两个重要的缺点:

①由于表面波衰减慢,发射台发出的表面波对其他接受台干扰很强烈.

②天电干扰对长波的接收影响严重,特别是雷雨较多的夏季.

2.中波传播的特点

中波能以表面波或天波的形式传播,这一点和长波一样.但长波穿入电离层极浅,在电离层的下界面即能反射.中波较长波频率高,故需要在比较深入的电离层处才能发生反射.波长在3000-2000米的无线电通信,用无线或表面波传播,接收场强都很稳定,可用以完成可靠的通信,如船舶通信与导航等.波长在2000-200m的中短波主要用于广播,故此波段又称广播波段.

3.短波传播的特点

与长,中波一样,短波可以靠表面波和天波传播.由于短波频率较高,地面吸收较强,用表面波传播时,衰减很快,在一般情况下,短波的表面波传播的距离只有几十公里,不适合作远距离通信和广播之用.与表面波相反,频率增高,

天波在电离层中的损耗却减小.因此可利用电离层对天波的一次或多次反射,进行远距离无线电通信.

4.超短波和微波传播的特点

超短波,微波的频率很高,表面波衰减很大;电波穿入电离层很深,甚至不能反射回来,所以超短波,微波一般不用表面波,天波的传播方式,而只能用空间波,散射波和穿透外层空间的传播方式.超短波,微波,由于他们的频带很宽,因此应用很广.超短波广泛应用于电视,调频广播,雷达等方面.利用微波通信时,可同时传送几千路电话或几套电视节目而互不干扰.

超短波和微波在传播特点上有一些差别,但基本上是相同的,主要是在低空大气层做视距传播.因此,为了增大通信距离,一般把天线架高.

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

11.5 电磁波传播特性

实验11.5 电磁波传播特性 Part 1 电磁波参量的测量 一、实验目的 1. 研究电磁波在良导体表面的反射。 2. 利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v 。 二、实验仪器 (1)三厘米固态信号发生器1台; (2)电磁波综合测试仪1套; (3)反射板(金属板)2块; (4)半透射板(玻璃板)1块。 三、实验原理和方法 1. 自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路程上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 2K v f K πλλω=?? ==? 得到电磁波的主要参数K 和v 等。 电磁波参量测试原理如图1所示,P T 和P R 分别表示发射和接收喇叭天线,A 和B 分别表示固定和可移动的金属反射板,C 表示半透射板(有机玻璃板)。由P T 发射平面电磁波,在平面波前进的方向上放置成45°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A 板方向传播,另一束向B 板方向传播。由于A 和B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线P R 处。于是P R 收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。

移动反射板B ,当P R 的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波 0j i E E e φ-= 当入射波以入射角θ1向介质板C 斜入射时,在分界面上产生反射波r E 和折射波t E 。设C 板的反射系数为R ,T 0为由空气进入介质板的折射系数,T c 为由介质板进入空气的折射系数。固定板A 和可移动板B 都是金属板,反射系数均为-1。在一次近似的条件下,接收喇叭天线P R 处的相干波分别为 12100200j r c j r c E RT T E e E RT T E e φφ--=-=- 这里 ()()()1131 223132 K l l KL K l l K l l L KL φφ=+==+=++?= 其中,ΔL =|L 2-L 1|为B 板移动距离,而1r E 与2r E 传播的路程差为2ΔL 。 由于1r E 与2r E 的相位差为21=2K L φφφ?-=?,因此,当2ΔL 满足 ()20,1,2, L n n λ?== 1r E 与2r E 同相相加,接收指示为最大。 当2ΔL 时满足 图1 电磁波参量测试原理图

1 电磁波基础知识

1 电磁波基础知识 1.1电磁场基本定义 交变电磁场的性质 在某空间内,任何电荷由于它本身的存在,受有一种与电荷成比例的力,则这空间内所存在的物质,也就是给电荷以作用力的物质称为电场。如果电场的存在是由于电荷的存在,则这种电场是符合库仑定律的,称为库仑电场。静止电荷周围所存在的电场,则称为静电场,它是库仑电场的一种特殊情形。运动电荷受到作用力的空间称为有磁场存在的空间。而且将这种了称为磁力。 此外,一个变动的磁场产生一个电场,此电场不但存在于变动磁场的范围里,并且还存在于邻近的范围里。同样,一个变动的电场在发生变动的范围和变动附近的范围里产生一磁场。 可见,不仅电荷可以产生电场,变化的磁场也能产生电场,不仅传导电流可以产生磁场,变化的电场(位移电流)也能产生磁场。 电磁波的性质 在空间的一定范围里无论是电或磁的情况有了一个扰动,那么这个扰动就不能被限制在该范围之内。在该范围里变动的场也在它附近的范围里产生场,这些场又在更外围的空间产生场,于是能量便被传播开来。当这种现象连续进行时,即有一含有电磁能量的波向外传播电磁波。 电磁发射:从源向外发射电磁能的现象。 电磁环境:存在于给定场所(空间)的所有电磁现象(包括全部时间和全部频谱)的总和。 电磁兼容:设备或系统在其中电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚扰的能力。 电磁干扰:电磁骚扰引起的设备、传输通道或系统性能的下降。 近场和远场: 我们知道,静电场、静磁场等静态场中是没有近场和远场之分,有场源就有场。静电荷周围的静电场,是随着与场源距离的增大而成平方反比的关系衰减的;而恒定电流产生的静磁场,则随着与场源距离的增大而成立方反比的关系衰减。当电磁场由静态场过渡到时变场时,电荷、电流周围依然存在电磁场,称为感应场或近场;此外,还出现一种新的电磁场成分,称为辐射场或远场,它是脱离电荷、电流并以电磁波的形式向外传播的电磁场。它一旦从电荷、电流等场源辐射出去,就按自身的规律运动,与场源后来的状态没有关系。感应场或近场是随着与场源距离的增大而成平方反比关系衰减的,而辐射场或远场仅与距离成反比关系衰减。 由于近场离场源较近,其场强要比远场大得多。随着离天线距离的增加,电场强度和磁场强度迅速减少。所以,近场的空间不均匀度较大,是一个复杂的非均匀场。场中包括储存的能量和辐射的能量,有驻波也有行波,等相位面很不规则,电磁波极化不易确定,场强变化梯度大等。 无论场源是电场源还是磁场源,当离场源距离大于λ/2π以后就变成了远场,这里λ为波长。这时电场和磁场方向垂直并且都和传播方向垂直成为平面电磁波。电场和磁场的比值为固定值,即波阻抗为120π,等于377欧姆。 由于远场距离场源远,场强一般较弱。由于电场和磁场随场源的距离成反比衰减,所以比近场的衰减慢的多,因此空间变化梯度小,比较均匀。 总之,近场的电场和磁场之间存在π/2的相位差,由它们构成的平均坡印亭矢量为零,大部分能量在电场和磁场之间,以及场和源之间交换而不辐射,很小一部分能量向外辐射,并在λ/2π距离以

无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性 无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。 在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。 英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。 在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。 赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。 1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

电磁波传播

电磁波传播特性实验报告 Part1 电磁波参量的测量 一、实验目的 1、了解电磁波综合测试仪的结构,掌握其工作原理 2、利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v。 二、实验原理 1、自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 得到电磁波的主要参数K和v等。 电磁波参量测试原理如图1-1所示,和分别表示发射和接收喇叭天线,A和B分别表示固定和可移动的金属反射板,C表示半透射板(有机玻璃板)。由TP发射平面电磁波,在平面波前进的方向上放置成°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A板方向传播,另一束向B板方向传播。由于A和B为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线处。于是收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。 移动反射板B,当的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波

当入射波以入射角向介质板C斜入射时,在分界面上产生反射波和折射波。设C板的反射系数为R,为由空气进入介质板的折射系数,为由介质板进入空气的折射系数。固定板A和可移动板B都是金属板,反射系数均为1?。在一次近似的条件下,接收喇叭天线处的相干波分别为 这里 其中,为B板移动距离,而与传播的路程差为2ΔL。 由于与的相位差为,因此,当2ΔL满足 和同相相加,接收指示为最大。 当2ΔL时满足 和反相抵消,接收指示为零。这里,n表示相干波合成驻波场的波节点数。

各波段电波传播方式和特点

一.电磁场基本性质: 1.电场和磁场: 静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。不随时间变化的电场称为静电场。运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。不随时间变化的磁场称为恒定磁场。 2. 电磁波及麦克斯韦方程: 如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。静电场与恒定磁场相互无关、彼此独立,可以分别进行研究。 0c D B B E t D H J t ρ?=???=??????=-??????=+??? c D E B H J E εμσ=??=??=? 3. 物质属性 电磁场与电磁波虽然不能亲眼所见,但是客观存在的一种物质,因为它具有物质的 两种重要属性:能量和质量。但电磁场与电磁波的质量极其微小,因此,通常仅研究电磁场与电磁波的能量特性。电磁场与电磁波既

然是一种物质,它的存在和传播无需依赖于任何媒质。在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。 当空间存在媒质时,在电磁场的作用下媒质中会发生极化与磁化现象,结果在媒质中又产生二次电场及磁场,从而改变了媒质中原先的场分布,这就是场与媒质的相互作用现象。 4. 历史的回顾与电磁场与波的应用 公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;公元前300年我国发现了磁石吸铁的现象;后来人们发现了地球磁场的存在。1785年法国科学家库仑(1736-1806)通过实验创建了著名的库仑定律。1820年丹麦人奥斯特(1777-1851)发现了电流产生的磁场。同年法国科学家安培(1775-1836)计算了两个电流之间的作用力。1831年英国科学家法拉第(1791-1867)发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以产生时变电场。1873年英国科学家麦克斯韦(1831-1879)提出了位移电流的假设,认为时变电场可以产生时变磁场,并以严格数学方程描述了电磁场与波应该遵循的统一规律,这就是著名的麦克斯韦方程。该方程说明了时变电场可以产生时变磁场,同时又表明时变磁场可以产生时变电场,因此麦克斯韦预言电磁波的存在,后来在1887年被德国物理学家赫兹(1857-1894)的实验证实。在这个基础上俄国的波波夫及意大利的马可尼于19世纪末先后发明了用电磁波作为媒体传输信息的技术。 静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因

电磁波的传播

实验二电磁波的传播 实验目的: 1、掌握时变电磁场电磁波的传播特性; 2、熟悉入射波、反射波和合成波在不同时刻的波形特点; 3、理解电磁波的极化概念,熟悉三种极化形式的空间特点。 实验原理: 平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。若E的末端总在一条直线上周期性变化,称为线极化波;若E末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。 实验步骤: 1、电磁波的传播 (1)建立电磁波传播的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中电磁波随时间的传播规律 2、入射波、反射波和合成波 (1)建立入射波、反射波和合成波的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种波形在不同时刻的特点和关系 3、电磁波的极化 (1)建立线极化、圆极化和椭圆极化的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种极化形式的空间特性 实验报告要求: (1)抓仿真程序结果图 (2)理论分析与讨论

1、电磁波的传播 clear all w=6*pi*10^9; z=0::; c=3*10^8; k=w/c; n=5; rand('state',3) for t=0:pi/(w*4):(n*pi/(w*4)) d=t/(pi/(w*4)); x=cos(w*t-k*z); plot(z,x,'color',[rand,rand,rand]) hold on end title(‘电磁波在不同时刻的波形’) 由图形可得出该图形为无耗煤质中传播的均匀电磁波,它具有以下特点:(1)在无耗煤质中电磁波传播的速度仅取决于煤质参数本身,而与其他因素无关。 (2)均匀平面电磁波在无耗煤质中以恒定的速度无衰减的传播,在自由空间中其行进速度等于光速。 2、入射波、反射波、合成波 (1)axis equal; n=0;%改变n值得到不同时刻的电磁波状态z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); axis([0 10 ]); (2)axis equal; n=1/4;;%改变n值得到不同时刻的电磁波状态 z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); 电磁波在不同时刻的波形

无线电波的传播特性

无线电波的传播特性 (一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长 1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等。为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1. 表面波传播 表面波传播是指电波沿着地球表面传播的情况。这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响电波的传播。 当电波紧靠着实际地面--起伏不平的地面传播时,由于地球表面是半导体,因此一方面使电波发生变化和引起电波的吸收。另一方面由于地球表面是球型,使沿它传播的电波发生绕射。 从物理知识中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能。由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方。在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播。 2. 天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释。直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层。籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方。我们把经过电离层反射到地面的电波叫作天波。 电离层是指分布在地球周围的大气层中,从60km以上的电离区域。在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子。发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究。当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广。 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度。所以波形会发生失真。这就是电离层的色散性。同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分。而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强。所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作。 (二) 1. 空间波传播

电磁波性质部分

1.正弦均匀平面电磁波:电磁波的波阵面为平面,且波阵面内各点场强均相等,随时间作正弦变化的电磁波。 均匀平面波:波阵面为平面,且波阵面内各点场强均相等的电磁波。 2.理想介质:理想介质是指线性、均匀、各向同性的非导电媒质。 3.TEM (横电磁波)波:没有电磁场的纵向分量的电场波称为横电磁波(TEM 波)。 横电磁波的特性: (1)在波阵面上,场强处处相等。(2)电场强度、磁场强度相位相同。(3)x y E H TE (横电波)波:电场强度只有横向分量,而磁场强度既有横向分量,又有纵向分量,称这种电磁波为横磁波(TE 波或H 波)。 TM (横磁波)波:磁场强度只有横向分量,而电场强度既有横向分量,又有纵向分量,称这种电磁波为横磁波(TM 波或E 波)。 4.理想介质中均匀平面波沿着电磁波的传播方向振幅不变、相位不断滞后。 5.均匀平面波在无限大理想介质中的特点:(1)振幅不变(2)电场和磁场在时间上同相,在空间上相互垂直且垂直于传播方向;(3)电磁波的速度与频率无关。 导电媒质中均匀平面波的特点:(1)振幅沿传播方向按指数衰减;(2)电场和磁场在时间上不同相,在空间上相互垂直且垂直于传播方向(3)电磁波的速度是频率的函数。 (相位沿传播方向不断落后;在时间相位上电场强度超前磁场强度一个小于π/4的相角.) 6.相速度:等相位面移动的速度。 7.波阻抗:电磁波的电场强度的振幅与磁场强度的振幅之比。 8.传播常数包括哪些? 相位常数;相速度;波阻抗。 9. 导电媒质:具有一定电导率的媒质。 10. 相位常数:在单位长度上的相位变化。 11.色散波:传播常数与频率有关的电磁波称为色散波。 12.良导体:σ>>ωε,不良导体:σ<<ωε 13. 趋肤效应:高频电磁波只能存在于良导体表面的一薄层内,这种电磁波趋向于导体表面的效应称为趋肤效应。 14.透入深度:进入良导体的电磁波场强衰减到原值的1/e 所穿透的距离。 15.电磁波的极化:电场强度矢量在空间的取向。 16、线极化波:(1)定义:电场矢量的端点在空间所描绘出来的轨迹为一直线的电磁波称为

无线电波的传播特性

无线电波的传播特性 传播特性(一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1.表面波传播 表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播. 当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射. 从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播. 2.天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波. 电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广. 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作. 传播特性(二) 1.空间波传播 当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响. 空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右. 空间波除了受地面的影响以外,还受到低空大气层即对流层的影响. 移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

电磁波及其传播 (教案)

《电磁波及其传播》教学设计 吴江经济技术开发区实验初级中学张玉妹 一、教材分析 (一)教材分析 《电磁波及其传播》是苏科版九年级下册,第17章第二节内容,是本章的重点,也是难点。本节由“波的基本特征”“了解电磁波”和“电磁波谱”三部分内容组成,其中“了解电磁波”又由“活动17.2 验证电磁波的存在”和“活动17.3探究电磁波的传播特性”组成。内容相对比较抽象,所以在每部分内容呈现的时候,都采取学生体验的方式,让学生在体验中感知,在感知中探究从而获得新知。 本节课在教学顺序安排上做了较大幅度的调整,开始用对讲机引入课题,然后直接让学生感受电磁波的存在和电磁波可以在空气中传播,从而过渡到电磁波的传播特性的教学,最后从问题“电磁波究竟是什么”进入波的基本特征和电磁波谱的教学。物理新课程理念要求“从生活走向物理,从物理走向社会”,在课堂的最后环节设计了“高压线会产生电磁污染,是真的吗?”这个教学环节,让学生带着问题走出课堂。 (二)学情分析 虽然电磁波在我们的生活中有广泛的应用,但毕竟它看不见、摸不着,非常 的抽象,所以学生还是很难理解的。本节课通过学生直观的体验,让学生根据已有的知识经验去设计实验并自己去验证,充分发挥学生的主观能动性,使学生轻松、愉快的掌握知识,形成技能并锻炼能力。 本节课的难点在于如何理解“波的基本特征”,所以需要在教师实验演示、动画、视频等多种手段的辅助引导下,让学生理解波能传播周期性变化的运动状态,从而了解几个物理量的意义。 二、教学目标 (一)知识与技能 (1)认识波的基本特征,知道波能够传播周期性变化的运动形态。 (2)了解振动的振幅、周期与频率,波长与波速的物理意义,知道它们是描述波的性质的物理量。 (3)了解电磁波的意义,体验电磁波的存在。了解电磁波可以在真空中传播的特

电磁波性质的推理

电磁波性质的推理 作者:王鑫 人类对电磁波的研究,积累的知识已经很丰富了,但是至今依然没有搞清楚一些本质性问题,诸如“电磁波为什么会具有波粒二象性?”之类的问题。人类在认识了光的波动性后,又认识了它的粒子性,然后又不得不把两种性质拧结在一起,称作波粒二象性。光的波动学说称之为光波,光的量子(粒子)学说称之为光子,光的波粒二象性统一了两种叫法,认为两种叫法都是正确的。那么,如果使用元太粒子的3维空间学该如何来解释光的存在呢? 一、波粒二象性的解释 首先来看一下,光的波粒二象性的形成过程: 电磁波是一种比较特殊的物质存在形式,它能够在两个阶层空间中穿插运动,能量可以相互转化。因此,它具有空间运动的特殊性,在量子力学中属于介子范畴。介子是一个很特殊的量子,在维度中所有介子被认为是能够出现在两阶空间中,它们能够在两个阶层的空间中进行能量相互传递或相互转化,并形成波动性。就光介子来说,在3维空间(0阶空间)中它表现出3维粒子性,在1阶空间中表现出磁性,电场是连接两个阶层空间的纽带,通过电场使得两阶空间可以实现 能量相互转化,进而形成了电磁波。电磁波的传播性来自1阶空间中磁场的运动,因为磁场的方向始终平行于3维空间的所有维度。电磁波在3维空间中的粒子性不是固定不变的,而是随着电场的强度变化而变化,可以说电场是联系0阶空间和1阶空间的纽带,当电场增强时,空间的元太粒子会在电场周围不断聚集,使得电磁波具有了3维粒子特性;当电场消失时,磁场最强,电磁波周围的3维空间中元太粒子就会消散,电磁波此时在3维空间中不具有粒子性。如果把电磁波固定在一个位置上观察,它在3维空间中就会表现出元太粒子不断聚集后又消散并不断重复更替出现的现象,是空间中一个时有时无变化着的点粒子,一个波长内将会完成两次空间元太粒子的聚集和疏散,只是他们的矢量方向存在不同。 其它基本粒子也都有波粒二象性属性,这已经被科学所证实,也就说明基本粒子都在做着聚集和释放元太的过程。 二、空间运动过程的解释 要研究电磁波,应研究电磁波是如何传播的?这个问题可以在下图中寻找答案:光的3维空间的波形图。图中纵轴的电场强度E随横轴时间轴运动,电场强

电磁波的性质有多种

电磁波的性质有多种,对这些不同的性质衡量有不同的单位 比如,频率的单位是HZ,对人体影响比较大的300MHZ-30GHZ 电场强度的单位是V/m,人体的安全值是4000V/m 磁场强度的高斯,人体的安全值国家规定是833.3毫高斯 相关知识如下 1.电磁波在真空中传播的速度是一定的,每秒传播30万公里即3×108米2.电场和磁场交互变化一次所占时间为该电磁波的周期,在一个周期内传播的距离便是它的波长,它以米为单位。3.一秒钟内交互变化的次数,便是该电磁波的频率,频率的单位为赫兹(Hz)。4.电磁波的波长与频率为倒数比例关系,它们的比例常数是电磁波的传播速度。可写成波长(米)=3×10 8米/频率(赫兹)=300/频率(兆赫)。5.电磁波传播时具有方向性,当遇到物体阻挡时,将产生反射,绕射和折射,并有一部分能量被物体吸收而转变为热量等形式。最后还有一部分辐射穿透阻挡物。6.电磁辐射的能量大小,称为辐射强度。通常以功率密度表示,单位为:瓦(毫瓦)/每平方厘米。也有时以电场强度表示,单位为:伏/米和磁场强度安/米为单位表示。实际测量中,也有以磁感应强度:高斯(Gs)表示。7.电磁辐射能量通常以辐射源为中心,以传播距离为半径的球面形分布。所以辐射强度与距离平方值成反比。不同性质材料对射频电磁波的作用不同。导电性强的材料,作用以反射为主。导磁性强的材料,作用以吸收为主,绝缘体则为穿透性好。了解它的特性,对我们研究和掌握它,利用和防护电磁辐射将有帮助。 音箱:20MG 电冰箱:20MG 电视机:20MG 空调:20MG 洗衣机:30MG VCD:30MG 复印机:40MG 电脑:150MG 吸尘器:200MG 微波炉:200MG 手机:200MG 电磁波一般的单位有mG(毫高斯)跟uT(微特斯拉,那个u其实应该念miu的音),而1uT=10mG。mG是美国习惯使用的单位,而T esla则是科学单位一般电器的电磁波强度一般的电视冰箱冷气等电磁波强度约为20-40mG不等,吹风机约为70mG,吸尘器电胡刀电毯微波卢等约为200mG左右,电磁炉10公分内约为800mG,而GSM手机接通的第一秒则高达2000mG,之后会降到低于100mG。根据一些文章叙述,人体只要长期接受2-10mG的电磁波强度照射.

电磁波传播特性-南京大学

电磁波传播特性 蒋岳廷 学号131120163 物理学院 摘要:本实验通过波导中引发的电磁波进行实验,波长为厘米量级。应用迈克尔逊干涉仪原理,首先测量电磁波波长,其次测量电磁波在良导体表面反射情况,得出了一些有意思的结论。提供定性解释和误差分析,并有一些实验讨论。

一、引言 1.总述:电磁波传播(propagationt of electromagnetic wave)研究电磁波在地 球环境和日地环境条件下的传播现象和规律,以及应用问题的一门基础学科。地 球环境包括地球面上及表层下的自然环境和人工建造的环境。这门学科有很强 的实用性,是随着人类在信息、环境和空间等方面的活动需要而发展起来的,又 有基础性。它所涉及的许多问题与地球大气层物理和日地物理密切相关。 2.历史:电磁波传播科学的开拓1864年,J.C麦克斯韦(JamesC.Maxwell)首 先提出了电磁场理论,20多年后,H.R赫兹(HeinrichR.Hertz)电磁波实 验成功,启发人们积极探索利用电磁波实现无线通信的途径。一些著名的科学 家和数学索对地波传播理论进行探索,如A.索末菲尔特(A.Sommerfeld)建 立了无线电波沿平地面传播的基础理论,B.范特波尔(B.VanderPol)和 W.沃森(W.Wotson)建立了无线电波绕导电球形地面传播的基础理论。此 后,有不少科学家对绕地球面传播的理论作出了重大的发展。一些发明家和工 程师发明了电子管,研制了无线电收、发设备,进行了地波传播的研究和试 验,发现地波场强随距离增大而迅速衰减,而且顿率越高衰减越快,地波通信 只能是较近距离的。 20世纪的第一个年代.G.马可尼(GuglielmoMarconi)进行了横跨大西洋的 无线电传播和通信试验并获得成功。使有的科学家意识到,在地球大气层上空 可能有一由游离电子组成的层状结构使无线电波返回地球。20世纪20年代, 一些科学家用不同方法观测到了存在于大气层上空的游离电子层,并测得了它 的分层情况,命名为电离层,开创了电离层物理和电磁波在电离层中的传播这 一学科领域,并为建立远距离短波无线电通信以及广播提供了科学依据。 一、实验目的 1、了解电磁波综合测试仪的结构,掌握其工作原理; 2、利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K和波速v; 3、研究电磁波在良导体表面的反射。 二、实验仪器 三厘米固态信号发生器1台,电磁波综合测试仪1套,反射板(金属板)2块,半透射板(有机玻璃板)1块。 三、实验原理 1、电磁波参量的测量 变化的电场和磁场在空间的传播称为电磁波,几列电磁波同时在同一媒质中传播时,几列波可以保持各自的特点(波长、波幅、频率、传播方向等)同时通过媒质,在几列波相遇或叠加的区域内,任一点的振动为各个波单独在该点产生的振动的合成。而当两个频率相同、振动方向相同、相位差恒定的波源所发出的波叠加时,在空间总会有一些点的振动始终加强,而另一些点的振动始终减弱或完全抵消,因而形成干涉现象。 干涉是电磁波的一个重要特性,利用干涉原理可对电磁波传播特性进行很好的探索。利用迈克尔逊干涉原理测量电磁波波长的原理图如图1所示

第六讲 工程介质中电磁波的传播理论

第六讲工程介质中电磁波的传播理论电磁波是交变电场与磁场相互激发在空间传播的波动。工程介质中电磁波的传播依然满足麦克斯韦方程。为清除地理解雷达检测理论基础,需要对介质中的电磁场、电磁波的传播、波速、衰减、反射与折射的理论有一个基本的了解。 6.1电磁场与电磁波传播方程 岩土、混凝土、钢筋、铁板等为常见的工程介质,前两者电导较小,后两者为良导体。在这些介质中电磁波传播的麦克斯韦方程为:▽×E=-μH t’ ▽×H=εE t’+σE ▽·E=0 ▽·H=0 通常介质的介电常数ε、磁导率μ都是电磁波频率的函数。式中E为电场强度矢量,H为磁场强度矢量,σ为介质的电导率。不失一般性,满足上述麦克斯韦方程的、沿X方向传播的频率为ω的平面电磁波,其电场强度与磁场强度的表达式为: E(x,t)=E o e-αx+i(βx-ωt) H(x,t)=H o e-αx+i(βx-ωt) 6.2电场、磁场与波矢量关系 电磁波是横波,电场强度E、磁场强度H和波矢量K三者互相垂直,组成右手螺旋关系。右手螺旋关系含义如下,四个手指并拢伸直指向电场方向,然后四指回握90° 指向磁场方向,大拇平伸则指向波的传播方向K。电磁波的电厂、磁场、与波矢量的关系如下土所示。在波的传播过程中其空间方向是固定不变的,即使是发生了反射与折射,也只是传播方向K发生变化,电场与磁场的方向依然不变。在空气中电场与磁场是同向位的,两者同时达到极大和极小值,电场强度与磁场强度的比值刚好等于电磁波速。在工程介质中因为有传导电流能量损失,电场与磁场的相位再不同步,磁场落后与电场一个相位,电导率越高,落后的相位越大。 6.3 介质中的电磁波速与能量衰减特性

各波段的电波传播特点

备波段的电波传播特点 超长波和长波: 3KHz一一30KHz、30KHz一-300KHz长波传播特点,绕射能力强,大地(土壤)的吸收不显著(与传播的地面几乎无关),在陆地上可传2000-3000Km以上,在海面上更远。 中波: 300KHz一一3MHz(波长1000m一-100m) 中波传播有地波和天波,特点是白天靠地波,而晚上则既靠天波又靠地波(白天D层吸收,晚上D层消失,E层反射〉有衰落现象。中波除广播外多用于船舶、飞机的各种航标电波(导航)。 短波:1 5MHz一-30MHz 短波传播也是靠地波和天波。 地波传播的距离取决于频率和地面的电参数。因为地面对短波的吸收较强,绕射能力较差,一般地波传播距离在几十公里。 天波传播主要是靠电离层反射,F层反射,E层损耗。 短波传播的一个最主要的特点是地波衰减快,天波的稳定性差。短波传播的另一个特点是有寂静区(越距区)存在,既地波传不到,天波反射不到(一般在50-300 Km之间)。 短波传播:有衰落现象 短波传播:有回波现象0.003s/1000Km 0.13s/地球一周

F2层还会形成滑行波。 短波传播当反射仰角大于45。时形成高角波,测向时示向度摆动很大,取向困难,误差也很大。100-350Km是测向的难点。 短波测向难度大,示向游动,模糊。 超短波:30MHz一-3GHz 由于频率很高,地波的衰减很大。天波一般都穿透电离层不反射,因此超短波传播主要靠空间波。在不考虑绕射和大气的影响时,直射传播的距离r可按下式计算。 hIh2分别为地面上的收发天线的高度。 超短波在实际传播中,大气层起着重要的作用,包括大气层的折射作用、吸收作用、散射作用等还有雨、雪、雾、风暴等因此传播状态也是复杂多变的。另外,由于超短波的波长短,地面上山丘、高大建筑物产生回波反射,地面的各种物体,凹凸不平所产生的电波散射也是不可忽视的因素。 超短波传播电场强度的计算 P:辐射功率(千瓦)D:是天线的方向系数h 1 h 2 :是两天线的高度r(km) :是收 发两天线的距离λ:工作波长(m) 在超短波范围内调频广播和电视的发射极化是水平极化,目前使用的测向机大多为垂直极化的测向机,对水平极化的电波是测不准的。 早期无线电测向用旋转环状天线,使用这样简单的环状天线测量经电离层反

实验一 电磁波参量的研究

实验一 电磁波参量的研究 1. 实验目的: (1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E 、H 和S 互 相垂直。 (2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速υ。 (3)了解电磁波的其他参量,如波阻抗η等。 2.实验仪器: (1) DH1211型3cm 固态源1台 (2) DH926A 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4) PX-16型频率计 3.实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内以相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上,形成驻波分布。我们正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间电磁波波长λ的值,再由 2π βλ = (1-3-1) f υλ== 2π β

得到电磁波的主要参数:β、υ等 我们用图 1.1来说明自由空间内电磁波波长λ值的测试原理。设入射波为:0j i i E E e βγ-= 当入射波以入射角1θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。另外,可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,在一次近似的条件下,接受喇叭3r P 处的相干波分别为: 1 10j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 2 20j r i E R T T E e φε-⊥⊥⊥=- 22331 ()()r r r r L L L L L φββ=+=++ 其中,21L L L ?=- 又因1L 是固定值,2L 则随可动板位移L 而变化。当2r P 移动L 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成 1 2 1210()i i r r r i E E E R T T E e e φφε--⊥⊥=+=-+ 或写成 12 ( ) 12 2 102cos()2 j r i E R T T E e φφεφφ+-⊥⊥-=- 式中12L φφφβ=-= (1-3-2) 为测准入值,一般采用 3r P 零指示办法 ,即 cos()0 2 φ =或 (21) 2 2 n φπ =+ n=0.1.2….. 这里n 表示相干波合成 驻波场的波节点(0r E =)处。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。将n=0时0r E =的驻波节点作为参考位置0l

相关文档
最新文档