耐高温压力传感器研究现状与发展_张晓莉

耐高温压力传感器研究现状与发展_张晓莉
耐高温压力传感器研究现状与发展_张晓莉

 2011年第30卷第2期 传感器与微系统(T r a n s d u c e r a n dM i c r o s y s t e mT e c h n o l o g i e s)

综述与评论

耐高温压力传感器研究现状与发展

张晓莉1,陈水金2

(1.江西理工大学机电工程学院,江西赣州341000;

2.华南理工大学机械与汽车工程学院,广东广州510640)

摘 要:现有商业化压力传感器绝大多数工作在常温条件下,工作温度高于200℃者尚不多见,远不能满

足高温下的压力测量要求,因此对高温压力传感器的研究成为必然。论述了国内外几类高温压力传感器

的研究进展、关键技术及应用情况,并探讨了主要存在的问题和未来的发展趋势。

关键词:高温压力传感器;多晶硅;碳化硅;声表面波;光纤

中图分类号:T H7 文献标识码:A 文章编号:1000—9787(2011)02—0001—04

R e s e a r c h s t a t u s a n dp r o g r e s s o f h i g h-t e m p e r a t u r e r e s i s t a n c e

p r e s s u r e s e n s o r s

Z H A N GX i a o-l i1,C H E NS h u i-j i n2

(1.S c h o o l o f Me c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g,J i a n g x i U n i v e r s i t yo f S c i e n c e&T e c h n o l o g y,G a n z h o u341000,C h i n a;

2.S c h o o l o f Me c h a n i c a l&A u t o m o t i v e E n g i n e e r i n g,S o u t hC h i n aU n i v e r s i t yo f T e c h n o l o g y,G u a n g z h o u510640,C h i n a)

A b s t r a c t:A t p r e s e n t,m o s t p r e s s u r es e n s o r sw o r ka t n o r m a l t e m p e r a t u r e,a n ds e l d o m p r e s s u r es e n s o r w o r ka t

t e m p e r a t u r e a b o v e200℃.I t i s f a r f r o mm e e t i n g t h e n e e d o f m e a s u r e m e n t r e q u i r e m e n t s o ns p e c i a l b a c k g r o u n d.S o

t h e r e s e a r c ho f h i g h-t e m p e r a t u r er e s i s t a n c ep r e s s u r e s e n s o r i sn e c e s s a r y.S e v e r a l m a i nh i g h-t e m p e r a t u r e p r e s s u r e

s e n s o r i nw o r l d w i d ei sd i s c u s s e df r o m r e s e a r c hp r o g r e s s,k e yt e c h n o l o g ya n d a p p l i c a t i o n s.T h em a i np r o b l e m

e x i s t i n g a n d t h e

f u t u r ed e v e l o p m e n t t r e n da r e a n a l y z e d.

K e yw o r d s:h i g h-t e m p e r a t u r ep r e s s u r es e n s o r;p o l ys i l i c o n;s i l i c o nc a r b o n;s u r f a c ea c o u s t i cw a v e(S A W);

o p t i c a l f i b e r

0 引 言

高温压力传感器以其优良的高温工作能力在压力传感器中一直受到高度重视,是传感器研究的重要领域之一,也是各国政府努力掌握的高科技技术之一。

高温压力传感器是指在高于125℃环境下能正常工作的压力传感器。其在石油、化工、冶金、汽车、航空航天、工业过程控制、兵器工业甚至食品工业中都有着广阔的应用前景,例如:高温油井内的压力测量、各种发动机腔体内的压力测量、宇宙飞船和航天飞行器的姿态控制、高速飞行器或远程超高速导弹的飞行控制、喷气发动机、火箭、导弹、卫星等耐热腔体和表面各部分的压力测量。尤其在武器系统中高温压力传感器是动力系统所不可缺少的。因此,对高温压力传感器的研究与开发具有重要意义。

1 国内外研究现状

1.1 S O I单晶硅高温压力传感器

S O I(s i l i c o no n i n s u l a t o r)是新兴的半导体材料,最早应收稿日期:2010—05—13用于大功率半导体器件,S O I材料的特殊结构使之成为制作新型压力传感器的理想材料,也是国内外研究新型压力传感器的研究重点。国外已有研制成功的S O I单晶硅压力传感器,如,美国K u l i t e公司采用B E S O I技术开发出超高温的压力传感器X T E H—10L A C—190(M)系列,工作温度为-55~480℃;法国L E T I研究所目前也正在开发工作温度达400℃的S O I高温压力传感器。国内的研究也取得一些成绩,如西安交通大学采用先进的S I M O X技术成功研制出S O I耐高温微压力传感器,能在-30~250℃环境下完成1000M P a以下任意量程范围的压力测量,能承受2000℃瞬时高温冲击;天津大学也研制出了温度达300℃的S O I高温压力传感器。

S O I器件由于采用绝缘介质隔离,器件与衬底之间不存在电流通道,消除了体硅电路中常见的门锁效应,提高了电路的可靠性。其材料的特殊结构使它克服了传统体硅材料的不足,具有良好的抗辐射特性即抗软失效能力,并可以

1

传感器与微系统 第30卷抑制或消除体硅器件因特征尺寸减小而产生的各种不良效应,更充分地挖掘了硅集成技术与硅技术的潜力,是研究和开发高速、低功耗、高集成度、高可靠性超大规模集成电路和高性能的基础材料。S O I 单晶硅压力传感器工艺是标准的集成电路平面工艺,这样就可以实现工作于恶劣环境的单片智能测压系统,成为高温压力传感器的主要研究方向之一[1]。

1.2 S i C 高温压力传感器

S i C 是当前最有潜力的宽带隙半导体材料,是第三代直接跃迁型宽禁带的半导体材料。它的宽禁带结构、高击穿电压和较高热导率等特点使其具有优良的抗辐射性能和高温稳定性,且具有良好的机械性能,优异的化学稳定性以及较大的压阻系数,这些优异的特性使其成为制造高温压力传感器的理想材料。用S i C 高温器件制作压力传感器也是国内外一个非常热门研究领域。国外如美国国家宇航局N A S A 的G a l e n n 研究中心已经研制出S i C 高温肖特基二极管和工作温度可达500℃的高温压力传感器[2];德国柏林技术大学采用U N I B O N D S O I 基片经I C P 刻蚀开发了3C —S i C 高温压力传感器,工作温度可达400℃[3]。国内西安电子科技大学利用A P C V D 系统采用选择生长法成功的生长了3C —S i C 单晶薄膜与多晶薄膜,并开发了3C —S i C 高温压力传感器,具有良好的性能指标。

1.3 S 0S 结构高温压力传感器

S 0S (s i l i c o n o ns a p p h i r e )结构高温压力传感器又称硅—

蓝宝石压力传感器,是在20世纪80年代早期提出的一种应变式压力传感器结构。它是以蓝宝石(单晶A l 2O 3)做绝缘衬底,在其上外延一层薄单晶硅。此外延属异质外延,工艺方法有化学气相沉积(c h e m i c a l v a p o rd e p o s i t i o n ,C V D )法,分子束外延法和固相外延法。S 0S 结构的优点是隔离漏电小,抗辐射等,它的局限性是:1)来自衬底的A l 掺杂对外延层电性能有影响,形成硅化铝界面;2)外延层缺陷密度高;3)蓝宝石的热膨胀系数接近硅的2倍;4)宝石衬底又硬又脆且具有高度化学惰性,膜片加工困难,传感器价格昂贵。因此,S O S 压力传感器虽然出现较早,但进展缓慢。目前,中国电子科技集团公司第四十九研究所研制出量程分别为60M P a 和100M P a 的S O S 压力传感器,工作温度范围为-50~350℃。此外,日本B u r n s 公司和上海仪表晶体元件厂也有S O S 压力传感器的报道。

1.4 多晶硅(P o l y —S i )高温压力传感器

多晶硅最早是作为自对准绝缘栅场效应晶体管的栅极材料,由B o w e r RW 和D i l l H G 于1966年在美国华盛顿特区举行的国际电子器件会议上提出的。接下来的发展是极为迅速的,到1984年,1M 位的双层和三层多晶硅M O S 随机存储器己开发出来。在集成电路中应用多年后,20世纪

80年代中期,开始在传感器领域成为人们关注的焦点[5]。近几年,由于多晶硅成为M E M S 中主要结构材料,人们对其特性的研究还在不断深入,例如:用单晶—多晶混合技术(H A R P S S )制造多晶硅振动陀螺,掺杂多晶硅层的热导率,高纵横比多晶硅微机械加工技术,用高温快速退火释放多晶硅薄膜中残余应力等。目前,多晶硅薄膜的生长是采用低压化学汽相淀积(l o wp r e s s u r ec h e m i c a l v a p o r d e p o s i t i o n ,L P C V D )法。

目前,国际上只有两家公司有同类传感器产品,这两家公司是仪表巨头P h i l i p s 和F o x b o r o 。F o x b o r o 公司的多晶硅压力传感器在1999年才有产品报道。国内有天津大学、中国电子科技集团公司第四十九所、哈尔滨工业大学等。天津大学微电子技术研究室研制出工作温度为-40~200℃,量程0~1M P a ,0~2.5M P a ,0~6M P a 和0~10M P a 4个系列的多晶硅高温压力传感器。哈尔滨工业大学研制的多晶硅高温压力传感器,在0~6M P a 压力范围内,室温输出灵敏度为8.39m V /k P a ,输出非线性小于1.38%,迟滞优于0.098%;在室温至400℃范围内,电阻温度系数为8.9×10-4/℃,灵敏度温度系数为-1.2×10-3/℃[6,7]。

1.5 溅射薄膜压力传感器

溅射薄膜压力传感器以硅片为弹性片,敏感材料为N i -C r 合金,利用溅射合金薄膜压力敏感元件和先进的加工工艺技术制作而成。N i -C r 合金电阻与温度有良好的线性关系,传感器的所有薄膜都是在高真空之下以分子形式结合在一起的,避免了高温时p -n 结隔离失效问题,从而可以在高温300℃下工作,但由于金属的电阻率小,压阻系数又很低,溅射薄膜压力传感器的灵敏度很小,同时输入阻抗小,功耗大。且采用合金膜片也增加了封装难度。因此,研究应用也不是很广泛[8]。

1.6 光纤高温压力传感器

光纤传感器(F O S )有一系列独特的优点。它可以在强电磁干扰、高温高压、原子辐射、易爆、化学腐蚀等恶劣条件下使用,高灵敏度及低损耗的优点使其用途广泛[9]。

光纤压力传感器主要是利用光的调制原理,其基本原理是当外界因素作用于光纤后,使光纤内传输的调制光的相位、强度、频率等发生变化。利用基本的干涉原理和光信号检测、变换系统,可以测出相位、强度、频率等的变化与外界作用因素强度之间的关系。由于光纤本身耐高温,在裸光纤上涂敷耐高温的保护层后,可将光纤光栅传感器应用范围扩大到检测高温。目前,国内外也有相关产品的报道,如P u l l i a mWa d e 等开发了基于碳化硅—蓝宝石波导的光纤压力传感器,可在1000℃的环境中工作;大连理工大学于清旭等开发了用于高温蒸汽注入式油井测量的光纤温度和压力传感器系统,在0~20M P a 的压力变化范围内,对温度

2

第2期 张晓莉,等:耐高温压力传感器研究现状与发展

测量的影响小于0.2%,在20~300℃范围内,对压力测量的影响小于1%。电子科技大学饶云江等提出一种基于激光脉冲制作的长周期光纤光栅/法布里—珀罗(L P F G/F—P)温度—应变组合光纤传感器,能承受500℃高温环境下实现应变的精确测量,可望用于诸如发动机、宇航器、复合材料生产过程的健康监测[10]。

虽然光纤传感器性能优越,但它的应用比较复杂,需要有光源、光的调制和检出手段以及光传输中必要的透镜。它的多元性特征又使它易受其他非测量物理量的影响。另外,光纤和包敷材料间存在热膨胀系数的不匹配,会影响测试精度。

1.7 金刚石薄膜高温压力传感器

金刚石薄膜压力传感器是用硼掺杂金刚石薄膜制作的半导体器件,科学家研究发现其具有良好的压阻效应,又由于金刚石薄膜的破坏应力高于硅3个数量级,而且,金刚石的性能系数超过所有其他的半导体,因此,金刚石薄膜最适合制成耐热、耐冲击、耐腐蚀、抗辐射、灵敏度高的压力传感器件[11]。压阻式金刚石压力传感器就是利用金刚石敏感膜片上的力敏电阻条在膜片受力变形时电阻率发生变化的测量机制而制成的。目前,国际上在半导体金刚石薄膜器件的应用基础方面,已付出了巨大的努力,国外美国在研制金刚石膜传感器方面投入了大量的人力和物力,也取得了一定的成绩,从美国航天局的互联网上,查到了金刚石膜压力传感器在航天飞机、导弹上试用的报道,由于军事上的巨大应用前景,所以,美国有关的文献很少。从应用基础研究角度看,德国相关的文献较多。德国U L M大学We r n e r M 等人[12]研制了金刚石膜压力传感器样件,可在300℃环境下工作,并在研究金刚石薄膜压阻效应时,提出:1)硼掺杂金刚石晶粒较大时,可获得较高的K值,2)硼掺杂金刚石掺杂浓度低时,可获得较高的K值。在该领域日本很活跃的东京M a t s u s h a t a电子工业公司中心实验室M a k o t oK i t a-b a t a k e等研制了金刚石膜压力传感器样件,在200℃环境下,硼掺杂金刚石压阻灵敏度因子达到700[13]。国内金刚石膜的研究工作已经历了15年,工具级、电学级、光学级金刚石膜沉积研究以有相当水平,如,北京人工晶体研究所、上海交通大学工具级金刚石膜,吉林大学金刚石膜热沉,北京科技大学光学级金刚石膜研究水平是很高的。我国金刚石薄膜传感器起步较晚,这方面应用研究的报道也较少,近几年来国内开始跟踪这一领域的研究,如,成都电子科技大学、重庆大学、河北工业大学等[14]。

1.8 S A W高温压力传感器

1965年,美国的Wh i t eRM和V o l t m o v FW在压电基片表面上蒸发出叉指换能器,这种换能器能够直接激励并高效地发送和接收声表面波(S A W),完成电能—声能的相互转换。叉指换能器的发明,使得S A W应用技术取得了关键性的突破,大大加速了S A W技术的发展和推广。S A W 传感器是适应市场和技术发展趋势的一种新型传感器[15],

一经出现便以其微型、无源无线、高精度等特性引起广泛关注,成为高水平传感器的一个重要发展方向。近十年来,美、日、德、奥、俄等国投入大量的人力、物力进行开发,使S A W传感技术取得长足进步,部分器件已经实用化,目前国际上已经成功研制出采用石英晶体为基片的可无源无线工作的声表面波压力传感器。但由于α

石英在573℃会产生相变,其工作温度在-20~100℃[16]。以硅酸镓镧

(L a

3

G a

5.5

N b

0.5

O

14

L G N)为代表的镓镧系列材料[17]作为近年开发的新型高温材料,因其低声速、零温度切向和良好的高温稳定性备受关注,机电耦合系数比石英高2~3倍,在双旋转切向上存在温度不敏感晶面切向,且从室温到熔点(1470℃)之间没有任何相变,但目前还没有该产品的相关报道。

1.9 陶瓷厚膜高温压力传感器

厚膜(t h i c k-f i l m)传感器是自20世纪70年代发展起来的一类新型固态传感器,由于它具有耐高温、耐腐蚀性、集成化程度高、适于批量生产和造价低等特点,已经用于温

度、压力(力)和许多气体参量(例如:C O,O

2

)的测量中。压力传感器是其中发展较快的一支。陶瓷厚膜压力传感器是利用丝网漏印原理将制成浆料的电子材料印烧到陶瓷等绝缘基片上,形成具有一定功能的微电子技术,再利用厚膜传感技术研制变间隙电容式感压元件,通过厚膜混合集成技术将信号处理电路集成在感压元件上.而研制成的一种压力传感器。该集成传感器具有受分布电容、寄生电容影响小、抗干扰能力强、稳定性好、精度高、抗过载、耐腐蚀、适用范围广等特点。其工作温度一般可达到150℃,但由于丝网印刷工艺精度和浆料均匀性的限制,这类传感器的应变电阻一般需要进行激光修正才能达到较好的一致性。另外,厚膜压力传感器的灵敏度相对较低,且功耗大。目前,虽然瑞士K i s t l e r公司已有相关产品,但其研究应用还有一定的局限性[18]。

2 发展趋势

1)发现和利用新效应:发现新现象与新效应是发展高温压力传感器的重要工作,是研制新型高温压力传感器的重要基础。

2)开发新材料:除单晶硅、多晶硅、石英半导体以外,碳化硅、蓝宝石、金刚石等材料的应用使高温压力传感器呈现多元化。开发新型耐高温材料用于高温压力传感器也将是今后发展的重点。

3)加工工艺多样化:除目前较为成熟的集成电路加工工艺外,氧离子注入隔离、多孔硅氧化全隔离、硅—硅直接

3

传感器与微系统 第30卷

键合技术等新的制备工艺的研制和各制备方法的相互渗透与结合成为制备技术发展的两大趋势。

4)集成化和多功能化:固态功能材料—半导体、电介质、强磁体的进一步开发和集成技术的不断发展,为高温压力传感器集成化和多功能化开辟了广阔的前景。

5)智能化:智能高温压力传感器是测量技术、半导体技术、计算技术、信息处理技术、微电子学和材料科学互相结合的综合密集型技术。与一般传感器相比具有自补偿能力、自校准功能、自诊断功能、数值处理功能、双向通信功能、信息存储、记忆和数字量输出功能。它将利用人工神经网、人工智能和信息处理技术(如传感器信息融合技术、模糊理论等),使传感器具有更高级的智能,具有分析、判断、自适应、自学习的功能,可以完成图像识别、特征检测、多维检测等复杂任务。

6)网络化:网络化是传感器领域发展的一项新兴技术,网络化是利用T C P/I P协议,使现场测控数据就近登临网络,并与网络上有通信能力的节点直接进行通信,实现数据的实时发布和共享。由于高温压力传感器的自动化、智能化水平的提高,多台传感器联网已推广应用,虚拟仪器、三维多媒体等新技术开始实用化,因此,通过I n t e r n e t网,传感器与用户之间可异地交换信息和浏览,厂商能直接与异地用户交流,能及时完成如传感器故障诊断、指导用户维修或交换新仪器改进的数据、软件升级等工作,传感器操作过程更加简化,功能更换和扩张更加方便。网络化的目标是采用标准的网络协议,同时采用模块化结构将传感器和网络技术有机地结合起来。

7)研究方法多样化:从历次M E M S国际会议论文发表看,高温压力传感器研究方法日益多样化。国内外学者尝试采用不同的半导体材料研制不同结构的耐高温压力传感器,除研究最多也相对成熟的压阻、电容、压电等测量方式外,微光机电压力传感器的研究正受到高度重视,将是下一步的研究热点。利用M E M S和微光学技术,压力传感器将由一维测量发展到三维测量,出现基于机器视觉的固体成像压力传感器阵列。南京航空航天大学黄金泉等提出一种基于单针短探针型离子电流机理的高温压力传感器,用于航空航天系统脉冲爆震发动机高温压力的测量。

3 结 论

1)目前商业化的压力传感器不能满足高温油井生产、喷气发动机、航空航天飞行器等特殊背景下的压力测量要求,对高温压力传感器的研究成为必然。

2)从研究进展、关键技术及应用情况等几方面对国内外具有主导影响的几类高温压力传感器进行论述比较,探讨了主要存在的问题。

3)随着科学技术的不断发展,高温压力传感器将朝着敏感材料多元化、加工工艺多样化、多功能集成化、智能化、研究方法多样化的方向发展。

参考文献:

[1] 张玉书,张维连,张生才,等.S O I高温压力传感器的研究现

状[J].河北工业大学学报,2005,34(2):14-19.

[2] R o b e r t OS.O p e r a t i o n o f6H-S i Cp r e s s u r e s e n s o r a t500℃[J].

S e n s o r a n dA c t u a t o r s,1988,66(3):200-204.

[3] Z a p p e S,F r a n k l i nJ,O b e r m e i e r E,e t a l.H i g h t e m p e r a t u r e10b a r

p r e s s u r es e n s o r b a s e d o n3C-S I C/S O I f o r t u r b i n e c o n t r o l a p p l i c a-

t i o n s[J].S i l i c o nC a r b i d ea n dR e l a t e dM a t e r i a l s,2000,353(3):

753-756.

[4] 闻 化,张爱平,张 枫,等.硅—蓝宝石高温大量程压力传感

器设计[J].传感器与微系统,2007,26(12):97-99.

[5] K o p y s t y n s k i P,O b e r m e i e r E.T h ew i d e-r a n g i n g a p p l i c a t i o no f p o-

l y s i l i c o n l a y e r i ns o l i d-s t a t es e n s o r s[J].S e n s o r s a n dA c t u a t o r s,

1989,17:69-73.

[6] 刘晓为,霍明学,陈伟平,等.多晶硅薄膜压阻系数的理论研

究[J].半导体学报,2004,25(3):292-296.

[7] 罗秦川,张生才,姚素英,等.多晶硅压力传感器热灵敏度漂

移补偿技术[J].传感器技术,2003,22(5):33-36.

[8] 颜 鹰.M E M S高温压力传感器若干关键技术的研究[D].

武汉:华中科技大学,2005:3-5.

[9] P u l l i a m Wa d e,R u s s l e r P a t r i c k.M i c r o m a c h i n e ds i l i c o nc a r b i d e-

s a p p h i r e f i b e r-o p t i c p r e s s u r e s e n s o r o p e r a t e s i n3,600°Fe n v i r o n-

m e n t[J].I nT e c h,2002,49(1):24-26.

[10]荆振国,于清旭.用于高温油井测量的光纤温度和压力传感

器系统[J].传感技术学报,2006,19(6):2450-2452. [11]A s l a mM,T a h e r I,M a s o o dA,e t a l.P i e z o r e s i s i v i t yi nv a p o r d e p o-

s i t e d d i a m o n d f i l m s[J].A p p l P h y s L e t t,1992,60:2923-2925.

[12]M a t t h i a s R a l f W e r n e r,W o l f g a n g R.F a h r n e r.R e v i e wo nm a t e r i a l s

m i c r o s e n s o r sS y s t e m sa n d d e v i c e s f o r h i g h-t e m p e r a t u r e a n d

h a r s h-e n v i o n m e n t a p p l i c a t i o n[J].I E E E T r a n s a c t i o no nE l e c t r o-

n i c s,2001,48(2),249-257.

[13]M a k o t oK i t a b a t a k e,M a s a h i r oD e f u c h i.P r e s s u r es e n s o ro f C V D

d i a m o n df i l m s[J].S

e n s o r s a n d M a t e r i a l s,1999,11(1):1-12.

[14]孔春阳,王万录.金刚石膜压阻效应的理论研究[J].中国科

学A,2001,31(12):1135-1141.

[15]S c h o o l G,K o r d e nC,R i h aE,e t a l.S A W-b a s e dr a d i o s e n s o r s y s-

t e m s f o r s h o r t-r a n g e a p p l i c a t i o n s[J].I E E EM i c r o w a v e M a g a z i n e,

2003,4(4):68-76.

[16]何鹏举,戴冠中,陈 明,等.谐振式S A W压力传感器敏感研

究与设计[J].传感技术学报,2006,19(2):374-378. [17]M r o s kJ W,B e r g e r L.M a t e r i a l s i s s u e s o f S A W s e n s o r s f o r h i g h-

t e m p e r a t u r e a p p l i c a t i o n s[J].I E E ET r a n s I n d u s t r i a l E l e c t r o n i c s,

2003,48:258-264.

[18]唐力强,李民强,陈建群,等.基于厚膜技术的双电容陶瓷压

力传感器[J].仪表技术与传感器,2006(7):3-5.

作者简介:

张晓莉(1978-),女,山西永济人,博士研究生,讲师,研究方向为测控技术、工业机器人。

4

基于SIMOX的耐高温压力传感器芯片制作

第26卷 第8期2005年8月 半 导 体 学 报 CHIN ESE J OURNAL OF SEMICONDUCTORS Vol.26 No.8 Aug.,2005 3国家高技术研究发展计划(批准号:2002AA404470)和国家“九五”传感器技术攻关(批准号:962748202201/07)资助项目 王 权 男,1973年出生,博士研究生,研究方向为耐高温微型压力传感器.Email :wangquan100@https://www.360docs.net/doc/9018013601.html, 2004210230收到,2005201226定稿 Ζ2005中国电子学会 基于SIMOX 的耐高温压力传感器芯片制作 3 王 权1 丁建宁1 王文襄2 熊 斌3 (1江苏大学微纳米科学技术研究中心,镇江 212013)(2昆山双桥传感器测试技术有限公司,苏州 215325)(3中国科学院上海微系统与信息技术研究所,上海 200050) 摘要:针对石油化工等领域中高温下较高压力测量的要求,设计了压阻式压力传感器敏感芯片,采用SIMOX 技术的SOI 晶片,在微加工平台上通过低压化学气相淀积法(L PCVD )均相外延硅测量层、浓硼离子注入、热氧化、光刻、电感耦合等离子体(ICP )深刻蚀、多层合金化等工艺流程制作了该芯片,将其封装后,研制出了高精度稳定性佳的耐高温压阻式压力传感器.封装工艺进一步改善后,该芯片工作温区有望拓宽到300~350℃.关键词:高温压力传感器;SIMOX ;低压化学气相淀积;电感耦合等离子体深刻蚀 PACC :0630N ;6855;8110 中图分类号:TP21211 文献标识码:A 文章编号:025324177(2005)0821595204 1 引言 在石油开采、化工领域的反应釜和冶炼塔等的压力测量中,对压力传感器提出了耐高温、微型化、抗腐蚀等要求[1],传统的硅扩散压阻式压力传感器用重掺杂4个p 型硅应变电阻构成惠斯顿电桥的力敏检测模式,采用p n 结隔离,当温度在100℃以上时,p n 结漏电流很大,使器件无法工作.因此设计制作压阻式高温压力传感器,必须取消p n 结隔离而采用绝缘体介质隔离,较易的方法之一是采用SOI (silicon on insulator )结构[2],此类晶片制作成的传感器芯片,由于采用二氧化硅隔离且力敏电阻仍然由单晶硅构成,因此其灵敏度与体硅压力传感器相当,而工作温度要大于传统的硅扩散压阻式压力传感器的工作温度,理论上达到耐温350℃,此外此芯片能保持长期高温下工作的稳定性和较大的过温容限. 制备SO I 材料的两种主流技术[3]是注氧隔离(separation by implantation of oxygen SIMOX )技术[4]和键合(bonding )技术,SIMOX 技术是指工艺 中大剂量的氧离子被注入到起始硅片中,然后进行 高温退火处理形成SOI 结构;键合技术,包括键合与背面减薄(bonding and etch -back SO I B ESOI )技术[5]和智能剥离SMA R TCU T ((或UN IBOND )技术.键合技术工艺较复杂,成本控制较难. 文献[6]利用SMAR TCU T 技术的SO I 晶片,研制了高温压力传感器,其高温特性测到150℃,量程为0~8M Pa ,灵敏度为63mV/(M Pa ?5V );专利[7,8]利用B ESOI 技术制作了高温压力传感器,其 耐温到200℃;本文针对高温、高压、高频测量的要求,设计了圆平膜硅芯片,采用SIMOX 技术的SOI 晶片在微加工平台上,制作了耐高温压阻式压力传感器芯片,针对-40~220℃的工作环境,完成了耐高温封装工艺,选用了恒流源激励,完成了静态标定,获得了量程0~40M Pa ,高性能稳定性佳,高频响应的耐高温压力传感器. 2 芯片设计 针对高温高压的要求,选用圆平膜设计[9],惠斯登电桥的两对桥臂力敏电阻分别布置在(100)晶面

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

压力传感器的安装方法及使用要求

●检查安装孔的尺寸 如果安装孔的尺寸不合适,传感器在安装过程中,其螺纹部分就很容易受到磨损。这不仅会影响设备的密封性能,而且使压力传感器不能充分发挥作用,甚至还可能产生安全隐患。只有合适的安装孔才能够避免螺纹的磨损(螺纹工业标准1/2-20 UNF 2B),通常可以采用安装孔测量仪对安装孔进行检测,以做出适当的调整。 ●保持安装孔的清洁 保持安装孔的清洁并防止熔料堵塞对保证设备的正常运行来说十分重要。在挤出机被清洁之前,所有的压力传感器都应该从机筒上拆除以避免损坏。在拆除传感器时,熔料有可能流入到安装孔中并硬化,如果这些残余的熔料没有被去除,当再次安装传感器时就可能造成其顶部受损。清洁工具包能够将这些熔料残余物去除。然而,重复的清洁过程有可能加深安装孔对传感器造成的损坏。如果这种情况发生,就应当采取措施来升高传感器在安装孔中的位置。 ●选择恰当的位置 当压力传感器的安装位置太靠近生产线的上游时,未熔融的物料可能会磨损传感器的顶部;如果传感器被安装在太靠后的位置,在传感器和螺杆行程之间可能会产生熔融物料的停滞区,熔料在那里有可能产生降解,压力信号也可能传递失真;如果传感器过于深入机筒,螺杆有可能在旋转过程中触碰到传感器的顶部而造成其损坏。一般来说,传感器可以位于滤网前面的机筒上、熔体泵的前后或者模具中。 ●仔细清洁 在使用钢丝刷或者特殊化合物对挤出机机筒进行清洁前,应该将所有的传感器都拆卸下来。因为这两种清洁方式都可能会造成传感器的震动膜受损。当机筒被加热时,也应该将传感器拆卸下来并使用不会产生磨损的软布来擦拭其顶部,同时传感器的孔洞也需要用清洁的钻孔机和导套清理干净。 ●保持干燥 尽管传感器的电路设计能够经受苛刻的挤出加工环境,但是多数传感器也不能绝对防水,在潮湿的环境下也不利于正常运行。因此,需要保证挤出机机筒的水冷装置中的水不会渗漏,否则会对传感器造成不利影响。如果传感器不得不暴露在水中或潮湿的环境下,就要选择具有极强防水性的特殊传感器。

(完整版)四种压力传感器的基本工作原理及特点

(1) 1 dR d R dA A 四种压力传感器的基本工作原理及特点 一:电阻应变式传感器 1 1电阻应变式传感器定义 被测的动态压力作用在弹性敏感元件上, 使它产生变形,在其变形的部位粘 贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称 为电阻应变式压力传感器。 1.2电阻应变式传感器的工作原理 电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片 箔式应变片是以厚度为0.002―― 0.008mm 的金属箔片作为敏感栅材料,,箔 栅宽度为0.003――0.008mm 。丝式应变片是由一根具有高电阻系数的电阻丝 (直 径0. 015--0. 05mm ),平行地排成栅形(一般2――40条),电阻值60――200 ?, 通常为 120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即 制成了纸基的电阻丝式应变片。测量时,用特制的胶水将金属电阻应变片粘贴于 待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时, 电阻片 也跟随变形。如下图所示。B 为栅宽,L 为基长。 I 绘式应吏片 b )笹式应变片 材料的电阻变化率由下式决定:

式中; R—材料电阻2

3 —材料电阻率 由材料力学知识得; K —金属电阻应变片的敏感度系数 式中K 对于确定购金属材料在一定的范围内为一常数,将微分 dR 、dL 改写成增 量出、/L,可得 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形 而形应变值可由丝式应变片或箔式应变片测出,从而得到了 ZR 的变化,也就得 到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。 1.3电阻应变式传感器的分类及特点 「测低压用的膜片式压力传感器 常用的电阻应变式压力传感器包括彳测中压用的膜片一一应变筒式压力传感器 -测高压用 的应变筒式压力传感器 1.3.1膜片一一应变筒式压力传感器的特点 该传感器的特点是具有 较高的强度和抗冲击稳定性,具有优良的静态特性、 动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。 适于测量高频脉动压力,又加上强制水冷却。也适于高温下的动态压力测量,如 火箭发动机的压力测量,内燃机、压气机等的压力测量。 1.3.2膜片式应变压力传咸器的特点 A 这种膜片式应变压力传感器不宜测量较大的压力,当变形大时,非线性 较大。但小压力测量中由于变形很小,非线性误差可小于 0.5%,同时又有较高 的灵敏度,因此在冲击波的测量中,国内外都用过这种膜片式压力传感器。 B 这种传感器与膜片一应变筒式压力传感器相比, 自振频率较低,因此在低dR "R [(1 2 ) C(1 2 )]

压力传感器研究现状及发展趋势

压力传感器研究现状及发展趋势 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器) 之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段[1 ] : (1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith) 与1945 发现了硅与锗的压阻效应[2 ] ,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为

电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯[3 ] 。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术[4 ] ,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。 (4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。 通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 从世界范围看压力传感器的发展动向主要有以下几个方向。 2. 1 光纤压力传感器[5 ]

影响压力传感器稳定性的因素

影响压力传感器稳定性的因素 压力传感器的稳定性肯定是我们在购买压力传感器时候要考虑的问题,什么的压力传感器的稳定性呢?压力传感器使用一段时间后,其机能保持不变化 的能力称为稳定性。影响压力传感器稳定性的因素有很多。 ?影响压力传感器的稳定性的一个最大因素那就是量程,压力范围一定要选择对了,变送器测量:先确定系统设备中要确认的最大压力测量值,通常情况下,需要选择比介质最大值还要大1.5倍的压力传感器。这里有很多人不明白,这 里我来解释下,比如我们在测量一些液体介质,油压设备的时候,在收到他们压力撞击的时候,会有峰值上面不规则的波动,这种波动的时候的一霎那间的压力会破环压力传感器上面的传感器的。这个时候我们可以选择一个缓冲阻尼器来降低压力冲击的。在选择压力传感器的时候,一定要考虑压力范围,以避免不必要的麻烦,如毁坏仪器仪表,机器设备等等。 ?影响压力传感器长期稳定性的因素除压力传感器量程外,还有一个就是压力传感器的使用环境。因此,我们要使压力传感器用具有良好的稳定性,必需要有较强的环境适应能力。在选择压力传感器之前,应对其使用环境进行调查,并根据详细的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。压力传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定变送器的机能是否发生变化。在某些要求变送器能长期使用而又不能等闲更换或标定的场合,所选用的变送器稳定性要求更严格,要能够经受住长时间的考验。 ?影响压力传感器稳定性的因素还有很多,所以我们选择压力传感器的时候要注意它的稳定性。只有稳定性好的压力传感器才能给好的为我们服务。 ?tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

压力传感器的分类及应用原理

压力传感器的分类及应用原理 教程来源:网络作者:未知点击:28 更新时间:2009-2-16 10:11:30 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情2、陶瓷压力传感器原理及应用 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。 陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。 3、扩散硅压力传感器原理及应用 工作原理 被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一

智能压力传感器的研究与开发定稿

智能压力传感器的研究与开发 摘要 为了提高压力传感器的精度,解决功能单一的问题设计了一种新型的智能压力传感器。该压力传感器以MSP430单片机为控制核心,通过A/D转换接口实现对压力传感器的温度和压力信号的采集,利用BP网络算法实现了对采集信号的数据拟合,利用LED显示,利用RS485串口通讯实现数据交换及压力值输出,完成功能要求。 详细叙述了压力传感器的温度补偿方法,重点讨论了人工神经网络中的BP网络算法。BP网络算法主要包括BP网络的结构,基于MATLAB神经网络工具箱的BP网络仿真。根据BP网络的数据连接关系实现了BP网络的C语言表示,根据BP网络的权值、阈值由数组连接实现了向MSP430单片机的程序移植,完成信号的控制。提出了基于遗传模拟退火BP网络算法的压力传感器温度补偿系统。 设计了压力传感器的硬件电路。利用MPM280压力传感器测量压力,通过放大器实现温度和压力信号的放大,利用MSP430自带A/D转换的12位MSP430单片机实现信号处理,通过RS485实现输出,设计了显示功能,设计了丰富的电源电路,并且通过相应的电压转换芯片实现对各个模块的不同电压供电。 实现了压力传感器的软件设计,在MSP430编译软件IAR上利用C语言实现了初始化子程序,温度和压力A/D采样程序,BP网络信号处理子程序,显示子程序和RS485通讯子程序。设计了基于MATLAB GUI的串行通讯压力传感器标定软件,在GUI上实现了对单片机的信号采集,BP网络训练以及对单片机的串行通信实现的在线标定的功能。 研究设计的智能压力传感器具有体积小、精度高,并实现了基于MATLAB的BP网络在线标定。通过仿真对软、硬件进行了充分的调试,效果良好,在工业现场已经应用实现,在众多压力测控系统中有着广阔的应用前景。 关键词:压力传感器,MSP430单片机,温度补偿,BP网络算法

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

市场上常见的压力传感器的种类及原理分析

市场上常见的压力传感器的种类及原理分析 什么是压力传感器呢?压力传感器是指将接收的气体、液体等压力信号转变成标准的电流信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节的元器件。它主要是由测压元件传感器、测量电路和过程连接件等组成的(进气压力传感器)。 那么压力传感器的种类有哪些呢?就目前市场而言,压力传感器一般有差压传感器、绝压传感器、表压传感器,静态压力传感器和动态压力传感器。对于这几者之间的关系,我们可以这样定义定义:差压是两个实际压力的差,当差压中一个实际压力为大气压时,差压就是表压力。绝压是实际压力,而有意义的是表压力,表压力=绝压-大气压力。静态压力是管道内流体不流动时的压力。动态压力可以简单理解为管道内流体流动后发生的压力。 根据不同的方式压力传感器的种类也不尽相同。小编通过搜集整理资料,将与压力传感器的种类相关的知识做如下介绍,下面我们来看具体分析。 1.扩散硅压力传感器 扩散硅压力传感器工作原理是被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。 扩散硅压力传感器原理图 2.压电式压力传感器 (1)压电式压力传感器原理 压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 (2)压电式压力传感器的种类与应用 压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。 现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效

压力传感器文献综述

压力传感器文献综述 摘要:传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术。本文通过部分文献资料对压力传感器的发展过程、研究现状和发展趋势做一简要介绍。关键词:压力;传感器; 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段(1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯与1945 发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。(3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。(4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 传感器是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋。美、日、英、法、德和独联体等国都把传感器技术列为国家重点开发关键技术之一。美国长期安全和经济繁荣至关重要的22项技术中就有6项与传感器信息处理技术直接相关。关于保护美国武器系统质量优势至关重要的关键技术,其中8项为无源传感器。。正是由于世界各国普遍重视和投入开发,传感器发展十分迅速。目前,我国传感器行业规模较小,应用范围较窄。为此,我们亟须转变观念,将传感器的研发由单一型传感器的研发,转化为高度集成的新型传感器研发。新型传感器的开发和应用已成为现代系统的核心和关键,它将成为21世纪信息产业新的经济增长点。改革开放30年来,我国传感器技术及其产业取得了长足进步,主要表现在:建立了传感技术国家重点实验室、微米/纳米国家重点实验室、国家传感技术工程中心等研究开发基地;MEMS、MOEMS等研究项目列入了国家高新技术发展重点;在“九五”国家重科技攻关项目中,传感器技术研究取得了51个品种86个规格新产品的成绩,初步建立了敏感元件与传感器产业;2007年传感器业总产量达到20.93亿只,品种规格已有近6000种,并已在国民经济各部门和国防建设中得到一定的应用。压力传感器的发展动向主要有以下几个方向: 2.1光纤压力传感器 这是一类研究成果较多的传感器,但投入实际领域的并不是太多。光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、

GF型风流压力传感器说明书

ISO9001:2000认证企业 产品使用说明书 GF型风流压力传感器 感谢您选购本产品!为了保证安全并获得最佳效能,安装、使用产品前, 请详细阅读本使用说明书并妥善保管,以备今后参考。 1

前言 本说明书详细地介绍了GF型风流压力传感器的使用方法及使用注意事项,使用者在使用前请务必仔细阅读。GF型风流压力传感器在生产过程中执行的是煤炭科学研究院重庆分院的企业标准Q/MKC 56-2005。 I

目次 前言…………………………………………………………………………………………I 1 概述 (1) 2 工作原理与结构 (2) 3 技术特性 (3) 4 尺寸、重量 (4) 5 使用、调校 (4) 6 典型故障处理 (5) 7 维护、保养 (6) 8 运输、贮存 (6) 9 开箱及检查 (6) 10 其它 (7) II

GF型风流压力传感器 1 概述 GF型风流压力传感器,是一种专门用于监测煤矿井下巷道及瓦斯抽放管道负压的模拟量传感器,对于监测井下风压变化,确保矿井正常通风、配风及瓦斯抽放管路安全等方面有着重要作用,用于老塘漏风,隔墙密闭质量的连续监测的重要传感器,能就地数字显示风压或管道压力变化。 1.1 产品特点 1.1.1 GF型风流压力传感器在设计中采用了新型单片微机和高集成数字化电路,简化了电路结构,提高了整机性能的可靠性,便于维护与调试。 1.1.2 本传感器在整机的零点、灵敏度调校上实现了红外遥控调校功能,方便了仪器的调校工作。 1.1.3 本传感器在电源设计上采用新型开关电源,大大降低了整机功耗,增加了传感器的传输距离。 1.1.4 本传感器增设了故障自检功能,方便了使用与维护。 1.1.5本传感器的外壳采用了高强度结构,使整机具有很强的抗冲击能力。 1.2 主要用途和适用范围 1.2.1 主要用途 GF型风流压力传感器主要用于老塘漏风,隔墙密闭质量的连续监测。 1.2.2 适用范围 井下煤尘巷道、回风巷的通风配风、瓦斯抽放管道的负压监测。 1.3 型号的组成及其代表意义 G F □□ (A) 设计序列号 F代表负压传感器,Z代表正压传感器 测量范围 风流压力 传感器 1.4 环境条件 1.4.1 工作条件 a) 工作温度: 0 ℃~40 ℃; b) 相对湿度: ≤95 %; c) 大气压力: 80 kPa~106 kPa; 1

高温压力传感器现状与展望

*国家自然科学基金资助项目(基金号:69876027)收稿日期:2001-10-24 修改稿日期:2002-01-14 高温压力传感器现状与展望 * 张 为 姚素英 张生才 刘艳艳 曲宏伟天津大学电子信息工程学院 天津市 300072 =摘要>论述了多晶硅、SOI(绝缘体上硅)、碳化硅、SOS(蓝宝石上硅)、石英、溅射合金薄膜、陶瓷厚膜和光纤等高温压力传感器的基本结构、工作原理、特点及研究现状,展望了压力传感器的未来。 关键词:压力传感器 高温 现状 展望中图分类号:TN354 Status Quo of High -Temperature Pressure Sensor and Its Prospect Zhang Wei Yao Suying Zhang Shengcai Liu Yanyan Qu Hongwei School of Electronics and Information Engineer ing ,T ianjin U niv ersity,T ianjin 300072 Abstract:Discusses the structure,principle,performance and research status quo of polysilicon,silicon on insulator,sil-i con on sapphir e,quartz,allo y thin-film,ceramic thick-film,optic-fiber high-temper ature pressur e sensor respectively ,and for ecasts the future of the pr essure sensor. Key Words:Pr essure Sensor;High-T emperature;Status Quo;P rospect 1 引言 传感器技术是现代科学技术发展水平的重要标志,它与通信技术、计算机技术构成现代信息产业的三大支柱。在各种传感器中,压力传感器是应用最为广泛的一种。但目前使用的硅压力传感器主要是扩散硅压力传感器,其应变电桥采用p 型扩散电阻,而应变膜是n 型硅衬底,两者之间是自然的pn 结隔离。当工作温度超过120e ,应变电阻与衬底间的pn 结漏电加剧,使传感器特性严重恶化以至失效,因而不能在较高温度环境下进行压力测量。而石油、汽车、航天等领域的使用要求,使高温压力传感器的研究成为必然。 随着新材料、新工艺的不断出现,人们提出了多种高温压力传感器结构。目前已经研制出多晶硅压力传感器、SOI(Silicon on Insulator)单晶硅压力传感器、SiC 压力传感器、SOS(Silicon on Sapphire)蓝宝石上硅压力传感器、石英压力传感器、溅射合金薄膜压力传感器、陶瓷厚膜压力传感器和光纤压力传感器等。文中分别从结构、工作原理、特性和国内外研究现状等方面对以上几种高温压力传感器进行了论述,并探讨了压力传感器未来的发展方向。 2 高温压力传感器发展现状 211 多晶硅压力传感器 多晶硅是半导体集成电路中广泛应用的薄膜材料。它的物理和化学性质通常取决于薄膜的结构(如 晶粒的尺寸)和掺杂的类型与浓度。80年代后期,基于多晶硅较大的压阻系数和良好的温度特性,有人提出了多晶硅高温压力传感器[1] 。 图1 多晶硅压力传感器结构 多晶硅压力传感器的结构如图1所示。采用掺杂多晶硅膜作应变电阻膜,4个构成惠斯通电桥的应变电阻分布在单晶硅膜片上的不同区域,以期得到最大的应变。 多晶硅压力传感器以SiO 2介质隔离代替pn 结隔离,减小了器件在高温下的漏电,从而提高了传感器的工作温度。多晶硅的应变因子较大,因而传感器灵敏 度高。多晶硅薄膜工艺成熟,传感器制作工艺为半导体集成电路平面工艺结合微机械加工技术,芯片易于批量制作,成本低廉。 目前由天津大学微电子技术开发研究中心研制的多晶硅高温压力传感器,压力量程有0~1MPa 、0~215MPa 和0~6MPa 3个系列,工作温区-40~220e ,满量程输出大于40mV/mA,零点温度系数和灵敏度温度系数均小于5@10 -4 /e .据现有文献报 6 仪表技术与传感器 2002年

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

压力传感器

压力传感器综述 压力传感器是在压力测量系统中,用来感应压力并将压力转换成与压力值成一定关系的电信号输出的敏感元件。根据工作原理不同压力传感器有压阻式、压电式、电容式、应变式、压磁式等类型;由于测量压力高低的不同,压力传感器有高压、中压、低压、微压和负压传感器等;由于用途不同,又有压差传感器、深度传感器、液面传感器、医用传感器以及应用在特殊场合的特种压力传感器;由于应用环境不同,又有一般型、防腐型、防高温型等压力传感器。为了输出标准直流电信号,便于计算机采集及与二次仪表规范配置,压力敏感元件可以与集成运算放大电路组成压力变送器。 1 压力传感器研究现状及发展趋势 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器)之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。 1.1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段: (1)发明阶段(1945-1960年):这个阶段主要是以1947年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(CS。Smith)与1945发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2)技术发展阶段(1960-1970年):随着硅扩散技术的发展,技术人员在硅的(001)或(110)晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点实现了金属-硅共晶体,为商业化发展提供了可能。 (3)商业化集成加工阶段(1970-1980年):在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术,主要有V形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。 (4)微机械加工阶段(1980年-今):上世纪末出现的纳米技术,使得微机械加工工艺成为可能。通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制

耐高温压力传感器研究现状与发展_张晓莉

2011年第30卷第2期 传感器与微系统(T r a n s d u c e r a n dM i c r o s y s t e mT e c h n o l o g i e s) 综述与评论 耐高温压力传感器研究现状与发展 张晓莉1,陈水金2 (1.江西理工大学机电工程学院,江西赣州341000; 2.华南理工大学机械与汽车工程学院,广东广州510640) 摘 要:现有商业化压力传感器绝大多数工作在常温条件下,工作温度高于200℃者尚不多见,远不能满 足高温下的压力测量要求,因此对高温压力传感器的研究成为必然。论述了国内外几类高温压力传感器 的研究进展、关键技术及应用情况,并探讨了主要存在的问题和未来的发展趋势。 关键词:高温压力传感器;多晶硅;碳化硅;声表面波;光纤 中图分类号:T H7 文献标识码:A 文章编号:1000—9787(2011)02—0001—04 R e s e a r c h s t a t u s a n dp r o g r e s s o f h i g h-t e m p e r a t u r e r e s i s t a n c e p r e s s u r e s e n s o r s Z H A N GX i a o-l i1,C H E NS h u i-j i n2 (1.S c h o o l o f Me c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g,J i a n g x i U n i v e r s i t yo f S c i e n c e&T e c h n o l o g y,G a n z h o u341000,C h i n a; 2.S c h o o l o f Me c h a n i c a l&A u t o m o t i v e E n g i n e e r i n g,S o u t hC h i n aU n i v e r s i t yo f T e c h n o l o g y,G u a n g z h o u510640,C h i n a) A b s t r a c t:A t p r e s e n t,m o s t p r e s s u r es e n s o r sw o r ka t n o r m a l t e m p e r a t u r e,a n ds e l d o m p r e s s u r es e n s o r w o r ka t t e m p e r a t u r e a b o v e200℃.I t i s f a r f r o mm e e t i n g t h e n e e d o f m e a s u r e m e n t r e q u i r e m e n t s o ns p e c i a l b a c k g r o u n d.S o t h e r e s e a r c ho f h i g h-t e m p e r a t u r er e s i s t a n c ep r e s s u r e s e n s o r i sn e c e s s a r y.S e v e r a l m a i nh i g h-t e m p e r a t u r e p r e s s u r e s e n s o r i nw o r l d w i d ei sd i s c u s s e df r o m r e s e a r c hp r o g r e s s,k e yt e c h n o l o g ya n d a p p l i c a t i o n s.T h em a i np r o b l e m e x i s t i n g a n d t h e f u t u r ed e v e l o p m e n t t r e n da r e a n a l y z e d. K e yw o r d s:h i g h-t e m p e r a t u r ep r e s s u r es e n s o r;p o l ys i l i c o n;s i l i c o nc a r b o n;s u r f a c ea c o u s t i cw a v e(S A W); o p t i c a l f i b e r 0 引 言 高温压力传感器以其优良的高温工作能力在压力传感器中一直受到高度重视,是传感器研究的重要领域之一,也是各国政府努力掌握的高科技技术之一。 高温压力传感器是指在高于125℃环境下能正常工作的压力传感器。其在石油、化工、冶金、汽车、航空航天、工业过程控制、兵器工业甚至食品工业中都有着广阔的应用前景,例如:高温油井内的压力测量、各种发动机腔体内的压力测量、宇宙飞船和航天飞行器的姿态控制、高速飞行器或远程超高速导弹的飞行控制、喷气发动机、火箭、导弹、卫星等耐热腔体和表面各部分的压力测量。尤其在武器系统中高温压力传感器是动力系统所不可缺少的。因此,对高温压力传感器的研究与开发具有重要意义。 1 国内外研究现状 1.1 S O I单晶硅高温压力传感器 S O I(s i l i c o no n i n s u l a t o r)是新兴的半导体材料,最早应收稿日期:2010—05—13用于大功率半导体器件,S O I材料的特殊结构使之成为制作新型压力传感器的理想材料,也是国内外研究新型压力传感器的研究重点。国外已有研制成功的S O I单晶硅压力传感器,如,美国K u l i t e公司采用B E S O I技术开发出超高温的压力传感器X T E H—10L A C—190(M)系列,工作温度为-55~480℃;法国L E T I研究所目前也正在开发工作温度达400℃的S O I高温压力传感器。国内的研究也取得一些成绩,如西安交通大学采用先进的S I M O X技术成功研制出S O I耐高温微压力传感器,能在-30~250℃环境下完成1000M P a以下任意量程范围的压力测量,能承受2000℃瞬时高温冲击;天津大学也研制出了温度达300℃的S O I高温压力传感器。 S O I器件由于采用绝缘介质隔离,器件与衬底之间不存在电流通道,消除了体硅电路中常见的门锁效应,提高了电路的可靠性。其材料的特殊结构使它克服了传统体硅材料的不足,具有良好的抗辐射特性即抗软失效能力,并可以 1

相关文档
最新文档