狭义相对论基本变换公式

狭义相对论基本变换公式
狭义相对论基本变换公式

狭义相对论

小菜鸟

狭义相对论的思想来源于很多人,但最后由爱因斯坦用两个假设明确地表达出来,在这里,为了了解一下狭义相对论,看了爱因斯坦做的《狭义与广义相对论浅析》,做笔记如下,供以后回顾此三天的感悟。

狭义相对论简单地将是指有两个人甲和乙在相对运动的各自参考系之中观察对方所观察到的结果,其基础为两个基本假设:1)相对性原理:物理定律在一切惯性坐标系中都一样,比如速度x时间=路程。2)光速不变原理:光速真空中传播速度在任何惯性坐标系中观察都是一样的。

具体推导如下的现象:

0. 引言:假设有两个参考系S和S'在0时刻原点O重合,其中在参考系S来看,参考系S'以速度v沿着x轴运动,根据相对性原理,参考系S'来看,参考系S相对于自己以-v沿x轴在运动;在y和z轴方向,根据速度分解定理,两个参考系中的长度保持不变。

另外也可以这样想,如果一个木棒相对S'系静止,参考系S'速度从小到大.开始的时候,两个参考系中的测得的长度相同,如果S'系运动速度逐渐增加,因为是沿着x轴运动的,木棒端点的轨迹在S系中应该是两条直线,否则,S'系就不是惯性系了。因此,其长度应该是不变的。

1. 钟慢效应:在运动参考系里的时间在静止参考系看来变长了,时间膨胀。

因为乙相对于甲运动,可以得到结论:在甲看来,乙中两个时刻之间的时间(乙中的同一地点)变长了。

因为甲相对于乙运动,可以得到结论:在乙看来,甲中两个时刻之间的时间(甲中的同一地点)变长了。

这被称为钟慢效应,表面上看,甲看到的时间比乙长,乙看到的时间比甲长,这不矛盾吗,答案是否定的,因为这两个时间(也就是两个时刻之间的间隔)不是指的同一个。甲看到的时间是指乙参考系中的两个时刻之间的间隔,乙看到的时间是指甲参考系中的两个时刻之间的间隔。

钟慢效应的推导过程如下,假设有一个参考系S'相对于S沿着x轴以v速度前进,我们将时间定格在某一个时刻,世界因此而静止,然后跑过去将S'系和S系的时钟都调为0,我们考察S’系中的时间单位与S系中的时间单位之间的关系,也就是S'系中的一秒钟在S系看来多长。这样做的目的是因为我们关于时间的定义为:1967年第十三届国际计量大会采用以原子内部辐射频率为基准的时间计量系统,成为原子时。按新规定,秒是"铯-133原子基

态的两个超精细能级之间的跃迁所对应辐射的9,192,631,770个周期的持续时间"。对于系统中发生的任何时间都可以用这个时间单位的倍数来表述,即为一个标量来表示,那么在另外一个系看来,这个标量值是不会改变的,例如,我在这个运动的系中看到的10个单位时间(相对于我),那么在你在另外一个系中看到这仍然是10个单位时间(在你看来、相对于你),但是你我看到的单位时间不同。

我们先在S'系中通过理想实验测定时间单位:在y'轴上摆一个平面镜在S=0位置处放置激光器(y 0')并朝向平面镜发出激光,在S'中可以这样测定单位时间,测量从发出信号到接收到信号时刻之间的间隔,进一步将,为光在2倍d'距离传播所需要的时间t'=2d'/c 。

同样的过程,我们换个角度,在S 系中观察,时间为光在上图中红线部分所走距离所需要的时间。事件是一样的事件,时间则都是两个事件对应时刻之间的时间间隔,但是有一个矛盾的问题,在S'系和S 系中观察到的光行进的距离是不一样的,他们相差一个倍数的关系。假如我们认为二者的时间单位相同,则你在S ’系中说我们在第一次定格时间的操作中将各自的时钟调为0,并在此时'我'在原点发射了一个激光,当'我'接受到反射激光时,再次将时间定格,按照时间等于路程除以速度,'我'算出此段时间为一个单位时间t';而我在S 系中观察到的现象为的确你是接受到信号了,但是这段时间确不是你算出的单位时间t',我算出的时间为红线部分路程除以光速,其时间为

't t t t ===?=?=

我们对于同一个过程算出的时间不一样都是因为认定了光速相对于你我都是c ,这样算出的时间就是不一样的,加入我们认为光速相对于你我不是c 是不是就能算出一样的时间来呢,嗯,的确是的,但是光速在不同参考系中是不会变的,这受到了迈克尔逊莫雷实验以及后

边很多实验的验证。这一点毋庸置疑,那怎样协调这中对同一事件的时间间隔测量结果不一样的矛盾呢。

因此我们不得不认为这个两个结果都是有意义的,因此得出结论:

如果你相对于我运动,则你测到你的时间在我看来比它长。

如果你相对于我运动,则你测到我的时间在我看来比它短。

其实就是这样的一个规律:

在初始时刻位于同一位置的两个钟,在下一个时空定格中的静止系中观察,运动的钟上的时间将比静止钟上的时间短。

或者这样理解:若S'系相对S 系向右V 运动,在S 中去某个位置M 的时间间隔要比S ’中观察这个位置的时间间隔要长。

2. 尺缩效应:在运动参考系里的尺子在静止的参考系中看来变短了。

我们的目标是求出S 系中观察到的这个运动尺子(S'系中长度是L')的长度是多少,仍然取上面的装置,不过这次平面反射镜放在了运动方向x'轴上,这时候,S'系中将观察到光从原点出发经过反射镜以后反射回来,耗时为:

2'

'L t c =

但是在S 系中看来,这个过程而是:原点发出的光追赶与光行进方向相同的反射镜,然后经过反射以后又与与反射光运动方向相反的接受点。我们可以从S'第二次定格时间的时刻(初始的为0)得到,根据钟慢效应的推导我们知道,同一个地点S'=0处的两个时刻之间的时间间隔在S 系中观察得到的结果比它长:

222222211/L L L c L t c v c v c c v c v c =+==-+--

根据钟慢效应,同一地点的这两个时间间隔满足一个关系,即:

t '

=

因此,可得两个参考系中测得的距离之间的关系:

L L =

这个公式就说明:

如果你相对于我运动,则你测到相对你的距离在我看测来比它短。

如果你相对于我运动,则你测到相对我的距离在我看测来比它长。

要弄清楚这个问题,需要弄清楚一下几个概念:

11)将我系时空定格(时刻)测到的相对于我系不动的一个长度 x=x|s;

12) 这个x|s相对于你系S’的长度x'=x|s',x|s'与x|s是存在收缩关系的。

21)将你系时空定格(时刻)测到相对于你系不动的一个长度 x'=x'|s';

22)这个x'|s'相对于我系S的长度x=x'|s,x'|s'与x'|s存在收缩关系。

测量一个长度需要将时空进行定格,可以算出来这个相对于某个系静止的长度相对于另外系的值。例如运动的尺子相对于不动系(观察者认为)的长度就可以计算出来,当然也可以时空定格而测出来:例如我将时空进行一次定格以后,测量到你系中的一个距离相对于我系的一个长度,则这个长度相对于你系大小比这个值要大。

现在当有一个距离出现的时候,需要弄清楚的不仅仅是这个距离是多少的问题,还应该弄清楚这个距离是相对于那个参考系静止的,相对于那个参考系是运动的。

3. 同时性

假设有两道闪电在路面上的观察者甲观察同时击中路基上的两点AB,他是这样测量的,自己位于AB的中点M,过了Dt=L/c时间之后两束闪电的光同时到达,因此他认为两束闪电同时在这个时刻之前的Dt时间发生。

在相对于甲运动的乙看来,左边的点A到达甲M的时间为L'/(c+v),右边点B的光到达甲M的时间为L'/(c-v),因此在他看来,这闪电击中A点这一事件是后发生的,因为它过了较短的时间就到M了,B点这一事件是先发生的,因为它过了较长的时间才到M,于是我们得到:

在一个坐标系中同时发生的事件在另外一个坐标系中来看是不同时的,如果他认为自己不动,而发生的事件是相对于另外一个坐标系运动的,那么上游的事件先发生,而下游的事件后发生。下游的事件比上游事件后发生的时间为2vL'/(c2-v2).

如果有一个坐标系S’相对于另外一个坐标系S以v向右运动,则在S系中的人来看,在t=0时刻进行整个时空定格,在t时刻又进行了第二次时空定格,任何一个位置均在此时刻保持位置不变,在S'系来看,过了S系中的t时刻以后,位于原点O'的时刻将变为

t'=t/sqrt(1-v2/c2),不过他会认为第二次时间定格中,S系的原点是在一个时刻定格的,由于S系相对于S’系向左运动,故根据运动方向上游事件先发生的规律,S系中的位置x对应

与S’系中的x'位置处的时间将晚于O'处时间(t')为2v x|s'/(c2-v2)=2vx/c2/sqrt(1-v2/c2),于是位于(x,y,z,t)处的时间t在S'系中来看

t'=t/sqrt(1-v2/c2)-2vx/c2/sqrt(1-v2/c2)=(t-2vx/c2)/sqrt(1-v2/c2)

3. 洛伦兹变换

问题描述:此图引用ppt中原图

根据钟慢效应和尺缩效应可以得到相对匀速运动的两个参考系的坐标变换公式,即经过两次定格时间的操作(初始时刻定格一次时空,相对于我的坐标系S过了t时间之后又定格了一次时空)以后计算:第二次定格时空中的空间坐标 (x,y,z,t)与在S'系中观察结果(x',y',z',t')的关系。同样的空间在两个坐标系中观察会出现不同的结果。我们先设定计算方法如下:

运动参考系的空间坐标在初始时刻,两个坐标系的原点重合,O=O',此时认为t=t'=0,将钟对准。假如在另一个时刻将时空定格,空间中的一点在S系中是(x,y,z,t),在S'系中是(x',y',z',t'),我们的目标是测量出这两个坐标系之间的变换关系,根据引言可知,

y=y',z=z',这个是不变的,否则就违背了惯性系速度方向不变的假设。下面求x方向的坐标变换关系。

第二次时空定格时,S系的原点处的钟过了t时间,S'系的原点处的钟过了t'时间,空间中的一点相对于S系在x的位置,则在S系中看来该点在S'系中距离S'系的原点O'的距离为:

-

x vt

但是这个长度相对于你S系,在运动的S’系中人家自己测的长度并不是这个值,人家自己测的长度乘以压缩因子以后才是你能测得的结果,因此,S'系中实际的长度为:

'x =这个问题是,已知在该时间定格相对我系的距离,我要通过我系S 中相对于我系的距离x 去测量你系中的相对于你系的距离x'。而不能是你来测量我这边的距离x 在你那里的长度,因为这个x 相对于你是运动的,而你要的是相对你静止的x'.

另外,我们也可以采用同样的思路去计算在S 系中的坐标在S'系中是如何变化的。

在S'系中,空间中的一点在t'时刻处于x'的位置,我们的目标是求出在S 系中该空间点的坐标x 是多少?

首先,在S'系中,可以看到该点距离运动着的S 系的原点的长度为

x vt ''+

这个长度相对于S'系是运动的,不是S 系中的原长,相对于S 系中的原长乘以一个压缩因子才是S'系中测量到的结果,因此,我们可以知道:

x '

=

根据这个长度的关系我们可以推导出时间的关系:

1(1()t x x v t x v =-==''===

这里有一个需要注意的问题:那就是通过尺缩效应容易得到空间坐标之间的变换关系,之后,根据光速不变原理可以直接得到时间的关系,也算是第二种推导方法吧,那就是对于一束光x2+y2+z2=c2t2,在第S'系中的坐标应该是x'2+y'2+z'2=c2t'2,既然光线的传播方程具有这样的关系,那么认为整个空间的变换应该具有不变性质,如果不是这样,这个变换不满足这个关系,那么光速就不是不变的了,与假设矛盾,因此要这样求解。 运动参考系的时间坐标

根据在一个坐标系中去观察另一个坐标系中的运动关系可得如下关系式:

2

2

22

''

x x vt

x vt

v

t x

x

t

v

v

t x

x

t

v

v v

t x t x

t t

=

=

?

''

+

''

=-==

-

'

'===

?

''

?+??-?

'

?=?=

这个方程的解就得到了两个坐标系中时间和空间的变换关系。

4. 洛伦兹变换的逆变换在物理上仍然讲得通,即已知S系中的时空坐标去求解S'系中的时空坐标与已知S’系的时空坐标去求解S系中的时空坐标是相同的。其基本的差别就是相差了一个速度的方向问题。

5. 光速在洛伦兹变换之下都为c,即在S系中的光运动方程x=ct经过洛伦兹变换以后,在S'系中仍然具有形式x'=ct'.

狭义相对论的时空观

4.3 狭义相对论的时空观 4.3.1 同时的相对性 光速相对于所有惯性系中的观测者以不变的速率传播,其惊人的结果是:时间一定是相对的。 1 “同时”的定义 设A 、B 两处发生两个事件,在事件发生的同时,发出两光信号,若在A 、B 的中心点同时收到两光信号,则A 、B 两事件是同时发生的。这就是用光前进的路程来测量时间,而这样定义的理由就是光速不变,这样的定义适用于一切惯性系。 2 爱因斯坦理想的 “火车对钟实验” 设有一列火车相对于站台以匀速向右运动,站台上的观测者测得当列车的首尾两点与站台上的A ,B 两点重合时,站台上的A ,B 两点同时发出一个闪光,所谓“同时”,就是两闪光同时传到站台上的中心点C 。但对于列车来说,由于它向右行驶,车上的中点先接到来自车头方(即站台上的A 点)的闪光,后接到来自车尾方(即站台的B 点)的闪光。于是对于列车上中点的观察者来说,A 点的闪光早于B 点。就是说,对于站台参照系是同时的事件,对于列车参照系就不是同时的,即事件的同时性是相对的。 在一个惯性系中的两个同时事件,在另一个惯性系中观测不是同时的,这是时空均匀性和光速不变原理的一个直接结果。 3 同时的相对性 设在惯性系S 中,在不同地点同时发生两事件,时空坐标分别为(x 1,0,0 ,t )和(x 2,0,0,t ),则根据洛仑兹变换式(4-4a ),有 2221'11c u c ux t t -- =, 2222'21c u c ux t t --=,即()012 2122 '1'2≠---=-c u x x c u t t 讨论 1 从上可知,在某一惯性系同时不同地发生的两个事件,在另一惯性系中观测则是不同时发生, 这就是狭义相对论的同时相对性。同时相对性的本质在于在狭义相对论中时间和空间是相互关联的。若u 沿x 轴正方向,且12x x ->0,则0' 1' 2<-t t ,可得出结论,沿

狭义相对论_完整版_

《大学物理》作业 No.6 狭义相对论 班级 ________ 学号 _________ 姓名 _________ 成绩 _______ 一、选择题 1.按照狭义相对论的时空观,判断下列叙述中正确的是: [ ] (A ) 在一个惯性系中,两个同时的事件,在另一个惯性系中一定是同时事件 (B ) 在一个惯性系中,两个同时的事件,在另一个惯性系中一定是不同时事件 (C ) 在一个惯性系中,两个同时同地的事件,在另一个惯性系中一定是同时同地事件 (D )在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同时不同地 (E )在一个惯性系中,两个同时不同地的事件,在另一个惯性系中只可能同地不同时 2.在狭义相对论中,下列说法正确的是 [ ] ① 一切运动物体相对于观测者的速度都不能大于真空中的光速 ② 长度、质量、时间的测量结果都是随物体与观测者的相对运动状态而改变的 ③ 在一个相对静止的参考系中测得两事件的时间间隔是固有时 ④ 惯性系中的观测者观测一只与他做相对匀速直线运动的时钟时,会发现这只钟比与他静止的相同的钟走得慢些。 (A )① ③ ④(B )① ② ④(C )① ② ③(D )② ③ ④ 3. 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线 运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) [ ] (A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . 4. 有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 正方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角 (A) 大于45° (B) 小于45° (C) 等于45° (D) 无法确定 [ ] *5. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹. 在火箭参考系中测得子弹从射出到击中靶的时间间隔是: [ B ] 在地面参考系中测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速) [ C ] (A) 21v v +L . (B) 2v L (C) 21212)/v (1c v c L v L -+ . (D) 222) /v (1v c L - .

单元九洛仑兹变换,狭义相对论的时空观

单元九: 洛仑兹变换,狭义相对论的时空观 一、选择题 1.下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同. 其中哪些说法是正确的? [ D ] (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的. 2. 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是 (A )221/)(c u ut x x --=' (B )22 1/)(c u ut x x -+=' (C )22 1/)(c u t u x x -'+'= (D )ut x x +=' [ D ] 3. 远方的一颗星以0.8c 的速度离开我们,地球惯性系的时钟测得它辐射出来的闪光按5昼夜的周期变化,固定在此星上的参照系测得的闪光周期为 (A )3昼夜 (B )4昼夜 (C )6.5昼夜 (D )8.3昼夜 [ A ] 4. 设想从某一惯性系K' 系的坐标原点O' 沿X' 方向发射一光波,在K'系中测得光速u' x =c ,则光对另一个惯性系K 系的速度u x 应为 (A )c 32 (B )c 54 (C )c 3 1 (D )c [ D ] 5. 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c ,则两个电子的相对速度大小为 (A )0.67c (B )0.47c (C )0.92c (D )c [ C ] 6. 一宇宙飞船相对于地面以0.8c 的速度飞行,一光脉冲从船尾传到船头,飞船上的观察者 测得飞船长为90m ,地球上的观察者测得脉冲从船尾发出和到达船头两个事件的空间间隔为 (A) 90m (B) 54m (C) 270m (D) 150m [ C ] 7. 宇宙飞船相对地面以匀速度v 直线飞行,某一时刻宇航员从飞船头部向飞船尾部发出一光

狭义相对论推导详细计算过程

狭义相对论 狭义相对论基本原理: 1. 基本物理定律在所有惯性系中都保持相同形式的数学表达式,因此一切惯性系都是等价 的。 2. 在一切惯性系中,光在真空中的传播速率都等于c ,与光源的运动状态无关。 假设S 系和S ’系是两个相对作匀速运动的惯性坐标系,规定S ’系沿S 系的x 轴正方向以速度v 相对于S 系作匀速直线运动,x ’、y ’、z ’轴分别与x 、y 、z 轴平行,两惯性系原点重合时,原点处时钟都指示零点。 Ⅰ洛伦兹变换 现假设,x ’=k(x-vt)①,k 是比例系数,可保证变化是线性的,相应地,S ’系的坐标变换为S 系,有x=k(x ’+vt) ②,另有y ’=y ,z ’=z 。将①代入②: x=k[k(x-vt)+vt ’] x=k^2*(x-vt)+kvt ’ t ’=kt+(1-k^2)x/kv 两原点重合时,有t=t ’=0,此时在共同原点发射一光脉冲,在S 系,x=ct ,在S ’系,x ’=ct ’,将两式代入①和②: ct ’=k(c-v)t 得 ct ’=kct-kvt 即t ’=(kct-kvt)/c ct=k(c+v)t ’ 得 ct=kct ’+kvt ’ 两式联立消去t 和t ’ ct=k(kct-kvt)+kv(kct-kvt)/c ct=k^2ct-k^2vt+k^2vt-k^2v^2t/c c^2=k^2c^2-k^2v^2 k= 2 2 /11c v - 将k 代入各式即为洛伦兹变换: x ’=2 2 /1c v vt x -- y ’=y z ’=z t ’= 2 2 2/1/c v c vx t -- 或有 x=k(x ’+vt ’) x ’=k(x-vt) =k(1+v/c)x ’ =k(1-v/c)x 两式联立, x ’=k(1-v/c)k(1+v/c)x ’ k= 2 2 /11c v - Ⅱ同时的相对性

狭义相对论尺缩效应的数学推导

狭义相对论之尺缩效应高中数学推导 1首先依据光速不变原理,假设垂直光子钟,在相对于地面以V 速度匀速运行的火车上相对于火车垂直上下运动,推导出钟慢效应公式 22 1C V t T -= 此处T 表示相对运动坐标系观察的时间(数值大) t 表示在相对运动物体静止的时钟观察到的时间(数值小)。 2 假设在该火车上有人自车尾部使用激光测距朝列车运行方向照射测量火车长度,则火车上 人测量的距离 2ct l = ,而地面上的人观察到的测量过程为光子在某一时刻自火车后面追击火车头,飞向前方,列车运行t1时刻后,追上列车头反射,间隔t2时间长度与相向而行的火车尾部的观测仪器相遇。 T t t ct vt L ct vt L =++==+212 21 1 L cT t t 221≠> 由此必须使用时间这唯一能沟通两个参照系的量来测算距离 22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-= +=+=-=

22 212112,2//c v t T c l t ct l V C L V C L t t T V C L t V C L t -===++-=+=+=-= 最后三个公式可形成等式 2222221212c v c l c v t V C LC V C L V C L T -=-=-=++-= 22 2222222222222222 22221, 1,11,1, 1,1c v l L l c v L c v l C V L c v l C V C L c v l V C LC V v c C c v c l V C LC -==--=--=--=-==-=- 由此可知 运动物体在空间中所占有的的长度 在运动方向上会减少,数值为静止坐标系下

10.相对论坐标速度变换

H.Yin H.Yin 一、经典力学的时空观 ——牛顿力学的基础 §4.1狭义相对论基本原理洛仑兹变换 H.Yin 惯性参考系之间的时空变换x Z X X Z §4.1狭义相对论基本原理洛仑兹变换H.Yin 换z z u u ?′=?换z z u u ?′=?r r r Δ=Δ+Δ §4.1狭义相对论基本原理洛仑兹变换 H.Yin (二) §4.1狭义相对论基本原理洛仑兹变换H.Yin (三) 绝对时空观遇到挑战 1887年,美国物理学家迈克尔逊和莫雷为证明以太的存在一起设计了测量地球在以太中运动速度的实验 §4.1狭义相对论基本原理洛仑兹变换

H.Yin M 若地球相对以太以v 运动,则以太风从右边吹来。 §4.1狭义相对论基本原理洛仑兹变换H.Yin 1.在实验室v 以太风 21v c c ??? ? ? §4.1狭义相对论基本原理洛仑兹变换 H.Yin 2.在实验室S’系观察v 以太风 v ?22 c v ?u u u =+ §4.1狭义相对论基本原理洛仑兹变换H.Yin 2l 2l 2211c c c c ????????? ?§4.1狭义相对论基本原理洛仑兹变换 H.Yin 如果实验前提正确,应该观察到0.4条的条纹移(2)光在真空中的速度与发射体的运动状态无关 ——光速不变原理 §4.1狭义相对论基本原理洛仑兹变换 H.Yin 讨论 力学规律二、洛仑兹变换-----时空坐标的变换 §4.1狭义相对论基本原理洛仑兹变换

H.Yin 1,时空坐标的测量测量某时某地发生闪电用静止尺子两个条件:满足相对性原理及光速不变原理; 质点速度远小于光速时,退化为伽利略变换H.Yin ''x vt +2 1c ?2 1v c ?§4.1狭义相对论基本原理洛仑兹变换 H.Yin H.Yin 令 1 v 的必然结果 2)时间(t ,t ’)与空间(x ,x ’)、速度(v )相关,非独立§4.1狭义相对论基本原理洛仑兹变换 H.Yin 5)速度有极限 v v c ≤§4.1狭义相对论基本原理洛仑兹变换 H.Yin 甲乙两人所乘飞行器沿o x 轴作相对运动。甲测得221t t x c β′= ?? ??? ?例题4-1 H.Yin 可知, 乙所测得的这两个事件的时间间隔是 2 1c ?例题4-1解

狭义相对论的基本原理

基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了xx的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理: _______________. (2)光速不变原理: ___________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的

D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( )

A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈xx一xx实验得出的结果是: 不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的 A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A 到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( )

狭义相对论公式及证明

狭义相对论公式及证明 单位符号单位符号 坐标: m (x, y, z) 力: N F(f) 时间: s t(T) 质量:kg m(M) 位移: m r 动量:kg*m/s p(P) 速度: m/s v(u) 能量: J E 加速度: m/s^2 a 冲量:N*s I 长度: m l(L) 动能:J E k 路程: m s(S) 势能:J E p 角速度: rad/s ω力矩:N*m M 角加速度:rad/s^2α功率:W P 一: 牛顿力学(预备知识) (一):质点运动学基本公式:(1)v=dr/dt, r=r0+∫rdt (2)a=dv/dt, v=v0+∫adt (注:两式中左式为微分形式,右式为积分形式) 当v不变时,(1)表示匀速直线运动。 当a不变时,(2)表示匀变速直线运动。 只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。 (二):质点动力学: (1)牛一:不受力的物体做匀速直线运动。 (2)牛二:物体加速度与合外力成正比与质量成反比。 F=ma=mdv/dt=dp/dt (3)牛三:作用力与反作与力等大反向作用在同一直线上。 (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。 F=GMm/r2,G=6.67259*10-11m3/(kg*s2) 动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化) 动量守恒:合外力为零时,系统动量保持不变。 动能定理:W=∫Fds=E k2-E k1(合外力的功等于动能的变化) 机械能守恒:只有重力做功时,E k1+E p1=E k2+E p2 (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。) 二: 狭义相对论力学:(注:γ=1/sqr(1-u2/c2),β=u/c, u为惯性系速度。) (一)基本原理:(1)相对性原理:所有惯性系都是等价的。 (2)光速不变原理:真空中的光速是与惯性系无关的常数。 (此处先给出公式再给出证明) (二)洛仑兹坐标变换: X=γ(x-ut) Y=y Z=z

【精品试卷】教科版高中物理选修3-4第4节 相对论的速度变换定律 质量和能量的关系复习专用试卷

高中物理学习材料 (精心收集**整理制作) 第4节相对论的速度变换定律质量和能量的关系 第5节广义相对论点滴 1.相对论的速度变换公式:以速度u相对于参考系S运动的参考系S′中,一物体沿与u 相同方向以速率v′运动时,在参考系S中,它的速率为________________.2.物体的质量m与其蕴含的能量E之间的关系是:________.由此可见,物体质量________,其蕴含的能量________.质量与能量成________,所以质能方程又可写成________.3.相对论质量:物体以速度v运动时的质量m和它静止时的质量m0之间有如下的关系________________. 4.广义相对论的两个基本原理 (1)广义相对性原理:在任何参考系中物理规律都是____________. (2)等效原理:一个不受引力作用的加速度系统跟一个受引力作用的惯性系统是等效的. 5.广义相对论的几个结论: (1)光在引力场中传播时,将会发生________,而不再是直线传播. (2)引力场使光波发生________. (3)引力场中时间会__________,引力越强,时钟走得越慢. (4)有质量的物质存在加速度时,会向外辐射出____________. 6.在高速运动的火车上,设车对地面的速度为v,车上的人以速度u′沿着火车前进的方向相对火车运动,那么他相对地面的速度u与u′+v的关系是() A.u=u′+v B.uu′+v D.以上均不正确 7.以下说法中错误的是() A.矮星表面的引力很强 B.在引力场弱的地方比引力场强的地方,时钟走得快些 C.引力场越弱的地方,物体的长度越短 D.在引力场强的地方,光谱线向绿端偏移 概念规律练 知识点一相对论速度变换公式的应用 1.若一宇宙飞船对地以速度v运动,宇航员在飞船内沿同方向测得光速为c,问在地上观察者看来,光速应为v+c吗?

20章狭义相对论基础习题解答分析

狭义相对论基础习题解答 一 选择题 1. 判断下面几种说法是否正确 ( ) (1) 所有惯性系对物理定律都是等价的。 (2) 在真空中,光速与光的频率和光源的运动无关。 (3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。 A. 只有 (1) (2) 正确 B. 只有 (1) (3) 正确 C. 只有 (2) (3) 正确 D. 三种说法都正确 解:答案选D 。 2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生? (2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生? 关于上述两个问题的正确答案是:( ) A. (1) 同时, (2) 不同时 B. (1) 不同时, (2) 同时 C. (1) 同时, (2) 同时 D. (1) 不同时, (2) 不同时 解:答案选A 。 3.在狭义相对论中,下列说法中哪些是正确的?( ) (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速. (2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。 A. (1),(3),(4) B. (1),(2),(4) C. (1),(2),(3) D. (2),(3),(4) 解:同时是相对的。 答案选B 。 4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( ) A. 90m B. 54m C. 270m D. 150m 解: ?x ′=90m, u =0.8 c , 87 90/(310)310s t -'?=?=?

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导 省永春县东关中心小学 金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示: 图1 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 V 光秒/秒 A (0秒) B (0秒) Q V 光秒/秒 A B Q S 系 秒) S’系 S 系

A (0秒) B (t 2 21c v 秒) 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0 V 光秒/秒 A ’ B ’(t 秒) P ’

《狭义相对论》

3狭义相对论 3.1狭义相对论基本假设 1. 有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的. (2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的. 答案:(D) 参考解答: 光速不变原理和相对性原理是爱因斯坦在创立狭义相对论时提出的两大基本假设。光速不变原理:在真空中的任何惯性参考系上,光沿任意方向的传播速度都是C;相对性原理:所有物理规律在所有不同惯性参考系中的形式都相同。 所有选择,均给出参考解答,进入下一题。 3.2狭义相对论时空观 1. 在狭义相对论中,下列说法中哪些是正确的? (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速. (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些. (A) (1),(3),(4).(B) (1),(2),(4). (C) (1),(2),(3).(D) (2),(3),(4). 答案:(B) 参考解答: 在狭义相对论中,根据洛仑兹变换物体运动速度有上限,即不能大于真空中的光速;质量、长度、时间都是相对的,其测量结果取决于物体与观察者的相对运动状态,有动尺收缩和运钟膨胀的相对论效应。 对于所有选择,均给出以下思考题。 1.1相对论的时间和空间概念与牛顿力学的有何不同?有何联系? 参考解答: 牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。 牛顿力学时空概念是相对论时空观在低速(即运动速度远远小于光速)时的

狭义相对论的整个推导过程

狭义相对论的整个推导过程 一、两大假设 1.惯性系的平权 2.光速不变原理 二、洛仑兹变换 令x’=k1(x-ut) x=k2(x’+ut’) 根据假设1,有k1=k2 令k1=k2=γ 所以x’x=γ^2(x-ut)(x’+ut’) 根据假设2,有 x=ct,x’=ct’ 所以c^2tt’=γ^2(c-u)(c+u)tt’ 所以γ=1/sqr(1-u^2/c^2) 所以x’=γ(x-ut) x=γ(x’+ut’) 由x’=γ(x-ut),得 ct’=γ(x-ut) 所以t’=γ(x/c-ut/c) 所以t’=γ(t-ux/c^2) 同理,有t=γ(t’+ux’/c^2) 因为很自然的有 y’=y,z’=z y=y’,z=z’ 所以 x’=γ(x-ut) x=γ(x’+ut’) y’=y y=y’ z’=z z=z’ t’=γ(t-ux/c^2) t=γ(t’+ux’/c^2)

其中:γ=1/sqr(1-u^2/c^2) 三、洛仑兹速度变换 v x’=dx’/dt’=(dx’/dt)*[1/(dt’/dt)]=(v x-u)/(1-uv x/c^2) v y’=dy’/dt’=(dy’/dt)*[1/(dt’/dt)]=v y sqr(1-u^2/c^2)/(1-uv x/c^2) v z’=dz’/dt’=(dz’/dt)*[1/(dt’/dt)]=v z sqr(1-u^2/c^2)/(1-uv x/c^2) 同理,有 v x=(v x’+u)/(1+uv x’/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2) 所以 v x’=(v x-u)/(1-uv x/c^2) v x=(v x’+u)/(1+uv x’/c^2) v y’= v y sqr(1-u^2/c^2)/(1-uv x/c^2) v y=v y’sqr(1+u^2/c^2)/(1+uv x’/c^2) v z’=v z sqr(1-u^2/c^2)/(1-uv x/c^2) v z=v z’sqr(1+u^2/c^2)/(1+uv x’/c^2)四、 因为t’=γ(t-ux/c^2) 所以t1’=γ(t1-ux1/c^2) t2’=γ(t2-ux2/c^2) 所以t’=t2’-t1’=γ[(t2-t1)-u(x2-x1)/c^2] (x1=x2) 所以t’=γt 又因为x=γ(x’+ut’) 所以 x1=γ(x1’+ut1’) X2=γ(x2’+ut2’) 所以l0=x2-x1=γ[(x2’-x1’)+u(t2’-t1’)] 所以l0=γl 所以l=l0/γ 所以 t’=γt’, l=l0/γ其中:γ=1/sqr(1-u^2/c^2) 五、

狭义相对论新的延伸推导、纵质量、横质量

关于爱因斯坦狭义相对论中02 1m m v c = ??- ??? 的证明,探讨洛伦兹的纵质量与横质 量与爱因斯坦狭义相对论的联系 作者:王逸源 单位:华北电力大学 摘要:本文通过运用,动量守恒定律,和其相关的一个实验,联系相似性原理,通过数学推导,证明了,狭义相对论的质量关系式。再深入探讨,结合爱因斯坦相对论中,其它关系式,进一步推导出,与相对论相有关的另一个新的质量关系式。 关键词:相似性原理、新的质量关系式、纵质量、横质量 著名的爱因斯坦狭义相对论中,已经通过数学的方法证明了两个公式,一个公式为: 2 1v t t c ?? ?=?- ??? ,另一个公式为:2 1v l l c ?? =- ??? ,而著名的2 1v m m c ??=- ??? 公式,爱因斯坦并没有给出数学证明,下面通过爱因斯坦的狭义相对论,动量守恒定律等来证明。 全日制普通高中教材的第二册物理书中,学生实验部分有验证动量守恒定律的实验。这个实验的实验原理是:1、质量分别为1m 和2m 的两个小球,发生正碰,若碰前1m 运动,2m 静止,根据动量守恒有:**111122m v m v m v =+;2、若能测出1m 、2m 及1v 、*1v 、* 2v 代入上式,则可验证碰撞中动量守恒;3、1m 、2m 用天平测出,1v 、* 1v 、* 2v ,用小球碰撞后运动的水平距离代替,(让各小球在同一高度做平抛运动,其水平速度等于水平位移和运动的比值,而各小球运动时间相同,则它们的水平位移之比等于他们的水平速度之比),则动量守恒时112m op m om m on =+(如下图)。 从这个实验,联系相似性原理,在不受其它任何场的影响下,即真空状态下,一个单独小球,小球静止不动时,测出它的质量为0m (静止质量);当这个小球在真空状态下,以恒定速度v 运动时,有加速过程,取无限远处(不会受到加速过程中,外部条件干扰的地方),不考虑相对论的情况下,则这个单独小球的动量守恒,即:000=-v m v m ,若这个

狭义相对论的时空变换效应

狭义相对论的时空变换效应 我们经验所能及的唯一空间,是用尺度上二刻度间的距离所规定的长度标准来测量的,唯一时间是用天文现象所规定的时钟来测量的.如果我们的标准也发生了菲茨杰拉德收缩这样的变化,这种变化是我们觉察不到的,因为我们和这些标准一道前进,也发生相同变化,但是,以不同方式运动的观察者却是可以觉察到这种变化的.所以时间与空间,不是绝对的,而只是与观察者相对的.这样,可知由于时间与空间的性质,相对于任何观察者,光总是以所测得的相同的速度进行.长度、质量与时间并非绝对的量.它们真正的物理数值,就是由测量所表示的.它们对双方不一样这一事实说明,它们的意义只能相对于某一观测者而规定. 绝对长度、绝对空间、绝对时间或甚至时间流动的观念都是形而上学的概念,远远超过观测或实验所表示或证明的.相对论摆脱了绝对时间.这些充分表现了狭义相对论引起了时空观 发生重大的变革.狭义相对论揭示了时间和空间的内在联系,并且告诉人们对时空的测量是依赖于参考系的选择的. 中科院朱重远研究员的观点,狭义相对论在理论上很难找到突破口.用美国UAH研究员张先生的话:“如果狭义相对论在数学上、理论上有问题,那狭义相对论当时就不会被世界物理界公认,当时Einstein还是个小人物”.倪光炯说过,“不同时的”光学畸变,抵消了必须“同时”观测的洛仑兹收缩,…………没有绝对的收缩,这才是相对论. 1、从静系到另一个相对于它做匀速移动的坐标系的坐标和时间的变换理论: “尺缩钟慢”是一种几何效应,物体本身是怎样就是怎样的.相对论说的主要是不同坐标系中测量物理量的变换规则.牛顿认为惯性系之间的“变换是相等的”,这只是一个假设.实验证明很多物理量在不同坐标系中,测量结果是不同的.设在“静止的”空间中有两个坐标系,每一个都是由三条从一点发出并且互相垂直的刚性物质直线所组成.设想这两个坐标系的X 轴是叠合在一起的,而它们的 Y 轴和 Z 轴则各自互相平行着②(注:②本文中用大写的拉丁字母 XYZ 和希腊字母ΞHZ 分别表示这两个坐标系 (K系和k系 ) 的轴,而用相应的小写拉丁字母x,y,z 和小写的希腊字母ξ,η,ζ分别表示它们的坐标值一一译者注.)设每一系都备有一根刚性量杆和若干只钟,而且这两根量杆和两坐标系的所有的钟彼此都是完全相同的. 现在对其中一个坐标系 ( k ) 的原点,在朝着另一个静止的坐标系 (K) 的χ增加方向上给一个 ( 恒定 ) 速度v ,设想这个速度也传给了坐标轴、有关的量杆,以及那些钟. 因此,对于静系K 的每一时间 t ,都有动系轴的一定位置同它相对应,由于对称的缘故,

狭义相对论

狭义相对论 关于狭义相对论发现和形成的历史,请见“狭义相对论发现史”。 沿着快速加速的观察者的世界线来看的时空。 竖直方向表示时间。水平方向表示距离,虚划线是观察者的时空轨迹(“世界线”)。图的下四分之一表示观察者可以看到的事件。 上四分之一表示光锥- 将可以看到观察者的事件点。小点是时空中的任意的事件。 世界线的斜率(从竖直方向的偏离)给出了相对于观察者的速度。注意看时空的图像随着观察者加速时的变化。 狭义相对论(Special Theory of Relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,应用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《论动体的电动力学》论文中提出了狭义相对论[1]。 牛顿力学是狭义相对论在低速情况下的近似。 背景 伽利略变换与电磁学理论的不自洽 到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典 力学的伽利略变换下不具有协变性。而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。麦克尔逊寻找以太的实验 为解决这一矛盾,物理学家提出了“以太假说”,即放弃相对性原理,认为麦克斯韦方程组只对一个绝对参考系(以太)成立。根据这一假说,由麦克斯韦方程组计算得到的真空光速是相对于绝对参考系(以太)的速度;在相对于“以太”运动的参考系中,光速具有不同的数值[2]。 实验的结果——零结果 但斐索实验和迈克耳孙-莫雷实验表明光速与参考系的运动无关。该实验结果否定了以太假说,表明相对性原理的正确性。洛伦兹把伽利略变换修改为洛伦兹变换,在洛伦兹变换下,麦克斯韦方程组具有相对性原理所要求的协变性。洛伦兹的假说解决了上述矛盾,但他不能对洛伦兹变换的物理本质做出合理的解释。随后数学家庞加莱猜测洛伦兹变换和时空性质有关。 爱因斯坦的狭义相对论

解读“狭义相对论”——从方法论视角

解读“狭义相对论” ——从方法论视角 张丽 重庆大学贸易行政学院科技哲学室(400044) 中共中央党校哲学部2008级博士研究生(100091) 摘要:爱因斯坦的狭义相对论以相对经济和解释性简化而著称于世界,其影响之大,更是其他理论所不能望其项背。以致许多理论学家们自觉或不自觉地把它作为构建理论的方法论模板。其实在与经典热力学的三次类比中(其中有二次是爱因斯坦本人给出的比较)我们不难发现,在很大程度上这是一种误读,误导,其实质是陷入一场方法论的危机。此文的目的正是要抵制这一思想,并指出爱因斯坦1905年创立的方法论理论仅代表的是一种功利主义,实用主义的胜利,而远远不是解释深度的胜利,它的作用效果也仅限于在混乱、无秩序的状态背景下。 关键词:狭义相对论;经典热力学;方法论;量子力学; CBH法则 比较狭义相对论和量子力学,前者以它的相对经济和解释性简化而著称于世界,其影响之大,更是其他理论所不能望其项背。以至于此后的大量的理论物理学家们自觉或不自觉的受此引导去寻找少量的基本假设,基本原理。期望他们能够在量子力学中发挥作用,就象相对性原理和光假设曾经联合起来在爱因斯坦1905年创立的狭义相对论中发挥基础作用一样,达到简化量子力学的目的。其实在与经典热力学的三次类比中(其中有二次是爱因斯坦本人给出的)我们不难发现,这是一种误读,误导,其实质是陷入一场方法论的危机。此文的目的正是要抵制这一思想,并指出爱因斯坦1905年创立的方法论理论仅代表的是一种功利主义,实用主义的胜利,而远远不是解释深度的胜利,它的作用效果也仅限于在混乱、无秩序的状态背景下。这一点,也正是爱因斯坦本人所非常熟知的。 第一次类比与CBH法则的启示: 爱因斯坦本人曾坦言:相对论原则是使可能性缩小的理论;它不是一个模型(模版),恰似热力学第二定律不是一个模版一样。①(the principle of relativity is a principle that narrows the possibilites ; it is not a model, just as the second law of thermodynamics is not a model.). 另外,在量子力学最近的重要进展中,克利夫顿(CLIFTON)、巴伯(BUB)、哈沃森(HALVORSON)即CBH以三个“information_ _theoretic constraints ”为依据提出的“知识初概念”(notion of information)在理解量子理论中的作用已经变得值得注目了。CBH所关注的正是处于一种危险状态中的“方法论”。在其论文的开头,CBH写到:一个人能够仅以少数几个简单的知识理论原则来刻画量子理论特征的这一事实,是提供信任给这样一种思

狭义相对论的基本原理

第五章相对论 第一节狭义相对论的基本原理 基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了牛顿的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理:_____________________________. (2)光速不变原理:_____________________________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的 D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( ) A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈克耳逊一莫雷实验得出的结果是:不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( ) A.电磁波与机械波一样有衍射、干涉现象,所以它们没有本质的区别 B.在一个与光速方向相对运动速度为u的参考系中,电磁波的传播速度为c+u或c-u C电磁场是独立的实体,不依附在任何载体中 D.伽利略相对性原理包括电磁规律和一切其他物理规律 11.一列火车以速度v相对地面运动,如果地面上的人测得,某光源发出的闪光同时到达车厢的前壁和后壁(如图5-1-1).那么按照火车上人的测量,闪光先到达前壁还是后壁?火车上的人怎样解释自己的测量结果? 12.如图5-1-2所示,在地面上M点,固定一光源,在离光源等距的A、B两点上固定有两个光接收器,今使光源发出一闪光,问 (1)在地面参考系中观察,谁先接收到光信号?

狭义相对论几个公式公式推导

狭义相对论几个公式公式推导 福建省永春县东关中心小学 陈金江 运动物体的长度缩率公式和不同点上的时刻公式推导 爱因斯坦曾假设:“在真空中,光的传播速度相对任何参照系都一样:不论发光体的运动速度如何,也不论光接受体的运动速度如何,光波相对它们的传播速度都是一样的。”否则,我们观察到遥远的恒星(特别是双星)将会发生十分混乱的现象。 根据这个假设,可以推导出:运动方向上长度的缩率和另参照系看我参照系同时事件的情况的规律。 设在S 系中看到两条等长线段AB 和A ’B ’,它们分别在S 参照系和S ’参照系。S 和S ’相对运动速度为v 光秒/秒。并且在S 参照系看来:AB=A ’B ’=a 光秒。如图所示: 图1 V 光秒/秒 A B Q V 光秒/秒 A (0秒) B (0秒) Q S ’系 S 系 秒) S’系 S 系 B ’

A (0秒) B (t 2 21c v 秒) 设A 和A ’相遇时,A 和A ’会发出闪光,或B 和B ’相遇时,B 和B ’也会发出闪光。 我们在S 系看来,由于AB=A ’B ’,所以A 和A ’与B 和B ’是同时相遇的,所以它们同时发出闪光。光波将在AB 中点Q 相遇,在S ’系中光波也必在相应点Q ’相遇(因为光波对S ’系的传播速度和S ’运动无关)。 由于Q ’点不在A ’B ’的中间,所以在S ’系看来,两次闪光不是同时的。因为B ’发出的光波走的距离B ’Q ’比A ’发出的光波走的距离A ’Q ’ 多。因而是B ’先闪光,A ’后闪光。也就是B 和B ’先相遇,A 和A ’后相遇。A ’和B ’的时刻在S ’系看来是不同时的,而是B ’早,A ’迟。 在S ’系中,由于A 、A ’和B 、B ’不同时相遇,所以S ’系看到的两条段AB 和A ’B ’也不相等。因为B 、B ’先相遇,所以必是A ’B ’>AB 。情况如图2所示: t 秒后 A ( 秒) B (0秒) V 光秒/秒 S’系 S 系 A ’(0 V 光秒/秒 A ’ B ’(t 秒) P ’

相关文档
最新文档