研究性实验报告——各向异性磁阻传感器与磁场测量

研究性实验报告——各向异性磁阻传感器与磁场测量
研究性实验报告——各向异性磁阻传感器与磁场测量

γ射线的吸收实验报告

γ射线的吸收 一、实验目的: 1. 了解γ射线在物质中的吸收规律。 2. 掌握测量γ吸收系数的基本方法。 二、实验原理: 1. 窄束 γ射线在物质中的吸收规律。 γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。 准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的减弱服从指数衰减规律,即: x x e I I μ-=0 (1) 其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度, μ为线性吸收系数。用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式 求得线性吸收系数 μ值。 为了减小测量误差,提高测量结果精度。实验上常先测得多组 x I 与 x 的值,再用曲线拟 合来求解。则: x I I x μ-=0ln ln (2) 由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 μ都有贡献, 可得: p c ph μμμμ++= (3) 式中 ph μ为光电效应的贡献, c μ为康普顿效应的贡献, p μ为电子对效应的贡献。它们的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的 γ射线不同的材料、 μ也有不同的值。医疗上正是根据这一原理,来实现对人体内部组织病变的诊断和治疗,如 x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。图1表示 铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。

图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。 为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式: m m x x e I I μ-=0 (4) 式中x m =x·ρ,称为质量厚度,单位是g/cm 2。 半吸收厚度x 1/2: 物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得: μ2 ln 2 1= x (5) 显然也与材料的性质和 γ射线的能量有关。图2表示铝、铅的半吸收厚度与E γ的关系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。 三、实验内容与要求 1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。 2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。 3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。 4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。 5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。 6.把高压降至最低值,关断电源。 7.用最小二乘法求出 γ吸收系数μ及半吸收厚度d ?

研究性实验报告——各向异性磁阻传感器与磁场测量

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 基础物理学 研究性实验报告 题目:各向异性磁阻传感器(AMR)与地磁场测量第一作者: 第二作者: 学院:航空科学与工程学院 专业:飞行器设计与工程 班级:110519 2013年5月14日 1

目录 摘要 ............................................................................................... 错误!未定义书签。关键词 ........................................................................................... 错误!未定义书签。 一、实验要求 ............................................................................... 错误!未定义书签。 二、实验原理 ............................................................................... 错误!未定义书签。 三、实验仪器介绍 ....................................................................... 错误!未定义书签。 四、实验内容 ............................................................................... 错误!未定义书签。 1、测量前的准备工作 ......................................................... 错误!未定义书签。 2、磁阻传感器特性测量...................................................... 错误!未定义书签。 3、测量磁阻传感器的各向异性特性.................................. 错误!未定义书签。 4、赫姆霍兹线圈的磁场分布测量...................................... 错误!未定义书签。 5、地磁场测量 ..................................................................... 错误!未定义书签。 五、思考题 ................................................................................... 错误!未定义书签。 六、误差分析 ............................................................................... 错误!未定义书签。 七、AMR传感器的应用举例 ...................................................... 错误!未定义书签。 八、实验感想 ............................................................................... 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。附录——原始实验数据(影印版).................................................. 错误!未定义书签。 各向异性磁阻传感器与磁场测量 摘要:物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,广泛用于各类需要自动检测与控制的领域。磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。 关键词:AMR,磁阻效应,电磁转换,磁场测量

用磁阻传感器测量地磁场解读

实验三十七 用磁阻传感器测量地磁场 地磁场的数值比较小,约T 5 10-量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。 【实验目的】 1. 掌握磁阻传感器的特性和定标方法。 2. 掌握地磁场的测量方法。 【实验原理】 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。因而输出电压out U 可以用下式

大学物理实验讲义实验04 磁阻效应法测量磁场

实验15 磁阻效应法测量磁场 物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。 磁场的测量可利用电磁感应,霍尔效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。 磁阻元件的发展经历了半导体磁阻(MR ),各向异性磁阻(AMR ),巨磁阻(GMR ),庞磁阻(CMR )等阶段。本实验研究AMR 的特性并利用它对磁场进行测量。 【实验目的】 1. 了解AMR 的原理并对其特性进行实验研究。 2. 测量赫姆霍兹线圈的磁场分布。 3. 测量地磁场。 【仪器用具】 ZKY-CC 各向异性磁阻传感器(AMR )与磁场测量仪 【实验原理】 各向异性磁阻传感器AMR (Anisotropic Magneto-Resistive sensors )由沉积在硅片上的 坡莫合金(Ni 80 Fe 20)薄膜形成电阻。沉积时外加磁场,形成易磁化轴方向。铁磁材料的电阻与电流与磁化方向的夹角有关,电流与磁化方向平行时电阻R max 最大,电流与磁化方向垂直时电阻R min 最小,电流与磁化方向成θ角时,电阻可表示为:θ2 min max min cos )(R R R R -+= (1) 在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。图1中,易磁化轴方向与电流方向的夹角为45度。理论分析与实践表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。 无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个

氡测量实验报告

本科生实验报告实验题目氡测量得设计 学院名称核技术与自动化工程学院专业名称辐射防护与环境工程 学生姓名 学生学号 任课教师 设计(论文)成绩 教务处制 2016年1月3日

编写说明 1、专业名称填写为专业全称,有专业方向得用小括号标明; 2、格式要求:格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1、5倍行距,页边距采取默认形式(上下2、 54cm,左右2、54cm,页眉1、5cm,页脚1、75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要得文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开, 小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0、5行) 1、1 ×××××小三号黑体×××××(段前、段后0、5行) 1、1、1小四号黑体(段前、段后0、5行) 参考文献(黑体小二号居中,段前0、5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

室内氡得主要来源及其对人体健康得危害 人得一生中有70%~90%得时间就是在室内度过得,室内环境质量如何,直接关系到人体健康。室内氡就是影响室内环境得主要因素,人们应该对其有所了解,以便采取适当措施减少氡对自身健康得危害。 一、什么就是氡? 氡普遍存在于我们得生活环境中。氡就是由镭、钍衰变产生得自然界唯一得天然放射性惰性气体,它没有颜色,也没有任何气味。氡在空气中得衰变产物被称为氡子体。常温下氡及其子体在空气中能形成放射性气溶胶而污染空气,很容易被呼吸系统截留,并在局部区域不断累积。 二、氡对人体有多大危害? 据美国国家安全委员会估计,美国每年因为氡而死亡得人数高达 30000 人。早在上个世纪80年代,美国卫生部就宣布,氡就是肺癌得第二大诱因。我国也存在着严重得氡污染问题。据部分调查结果显示,室内氡浓度远高于室外,为室外氡浓度得数倍,有得室内氡含量最高得达到国家标准得 6 倍!据不完全统计,我国每年因氡致肺癌为 50000 例以上。因此,氡已被国际癌症研究机构列入室内重要致癌物质,排在世界卫生组织所确认得三类人类致癌物中得第一类物质当中,必须引起我们得注意。中国疾病预防控制中心辐射防护与核安全医学所研究员王作元率领得研究小组在经过长达9年得调查研究之后,首次拿出了室内氡污染所造成得肺癌危险度指数:0、19。它意味着当室内空气中氡浓度每增加100贝克/立方米时,在这种环境里居住得人患肺癌得几率就会增加19%。 三、室内氡就是怎么来得? 室内氡主要有以下几种来源: 1、从房基土壤中析出得氡。在地层深处含有铀、镭、钍得土壤、岩石中人们可以发现高浓度得氡。这些氡可以通过地层断裂带,进入土壤与大气层。建筑物建在上面,氡就会沿着地得裂缝扩散到室内。 2、从建筑材料中析出得氡。1982 年联合国原子辐射效应科学委员会得报告中指出,建筑材料就是室内氡得最主要来源。如花岗岩、砖沙、水泥及石膏之类,特别就是含有放射性元素得天然石材,易释放出氡。另外还有从户外空气中进入室内得

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量 一. 实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当

外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感向不相同,当存在外界磁场时,引起电阻值变化有增有减。因而输出电压out U 可以用下式表示为b out V R R U ??? ? ???= 磁阻传感器的构造示意图 磁阻传感器内的惠斯通电桥 对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压 out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0 上式中,K 为传感器的灵敏度,B 为待测磁感应强度。0U 为外加磁场为零时传感器的输出量。 由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。亥姆霍兹线圈公共

磁阻效应实验

磁阻效应实验 [概述] 磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:交通车辆检测,导航系统、伪钞检测、位置测量等。其中最典型的锑化铟(InSb)传感器是一种灵敏度高的磁电阻,有着十分重要的应用价值。 [实验项目] 1、理解磁阻效应、霍尔效应等概念。 2、掌握测量锑化铟传感器的电阻与磁感应强度的关系的一种方法。 3、作出锑化铟传感器的电阻变化与磁感应强度的关系曲线,并对此关系 曲线的非线性区域和线性区域分别进行拟合。 [实验原理] 一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图2所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁电阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相 图1 磁阻效应

对变化率ΔR/R(0)正比于ΔR=R(B)-R(0),因此也对变FD-MR-II 型磁阻效应实验仪,图2为该仪器示意图 ρ/ρ(0),这里Δ可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。 实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相化率ΔR/R(0)正比于磁感应强度B 的平方,而在强磁场中ΔR/R(0)与磁感应强度B 呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 [实验仪器] 实验采用 图2 FD-MR-II 磁阻效应实验仪 FD-MR-II 型磁阻-2V 直流数字电压表、效应验仪包括直流双路恒流电源、 0电磁铁、数字式毫特仪(GaAs 作探测器) 、锑化铟(InSb)磁阻传感

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

磁阻效应及磁阻传感器实验

一、实验题目:磁阻效应及磁阻传感器的特性研究 二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法; 2、测量锑化铟传感器的电阻与磁感应强度的关系; 3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线 和直线拟合; 4、学习用磁阻传感器测量磁场的方法。 三、实验原理: 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。 一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。如果将图1中U H短路,磁阻效应更明显。因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。 当磁感应强度平行于电流时,是纵向情况。若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。 通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/ R(0)正比于Δρ/ρ(0),这里ΔR=R (B)-R(0)。因此也可以用磁阻传感器电阻的相对改变量ΔR/ R(0)来表示磁阻效应的大小。 测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/ R(0)与外磁场的关系都是相似的。实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。一般情况下外加磁场较弱时,电阻相对变化率ΔR/ R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/ R (0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/ R(0)与磁感应强

氡测量实验报告

本科生实验报告 实验题目氡测量的设计 学院名称核技术与自动化工程学院专业名称辐射防护与环境工程 学生姓名 学生学号 任课教师 设计(论文)成绩 教务处制 2016年1月3日

编写说明 1、专业名称填写为专业全称,有专业方向的用小括号标明; 2、格式要求:格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4 号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

室内氡的主要来源及其对人体健康的危害 人的一生中有70%~90%的时间是在室内度过的,室内环境质量如何,直接关系到人体健康。室内氡是影响室内环境的主要因素,人们应该对其有所了解,以便采取适当措施减少氡对自身健康的危害。 一、什么是氡? 氡普遍存在于我们的生活环境中。氡是由镭、钍衰变产生的自然界唯一的天然放射性惰性气体,它没有颜色,也没有任何气味。氡在空气中的衰变产物被称为氡子体。常温下氡及其子体在空气中能形成放射性气溶胶而污染空气,很容易被呼吸系统截留,并在局部区域不断累积。 二、氡对人体有多大危害? 据美国国家安全委员会估计,美国每年因为氡而死亡的人数高达30000 人。早在上个世纪80年代,美国卫生部就宣布,氡是肺癌的第二大诱因。我国也存在着严重的氡污染问题。据部分调查结果显示,室内氡浓度远高于室外,为室外氡浓度的数倍,有的室内氡含量最高的达到国家标准的 6 倍!据不完全统计,我国每年因氡致肺癌为50000 例以上。因此,氡已被国际癌症研究机构列入室内重要致癌物质,排在世界卫生组织所确认的三类人类致癌物中的第一类物质当中,必须引起我们的注意。中国疾病预防控制中心辐射防护与核安全医学所研究员王作元率领的研究小组在经过长达9年的调查研究之后,首次拿出了室内氡污染所造成的肺癌危险度指数:0.19。它意味着当室内空气中氡浓度每增加100贝克/立方米时,在这种环境里居住的人患肺癌的几率就会增加19%。 三、室内氡是怎么来的? 室内氡主要有以下几种来源: 1.从房基土壤中析出的氡。在地层深处含有铀、镭、钍的土壤、岩石中人们可以发现高浓度的氡。这些氡可以通过地层断裂带,进入土壤和大气层。建筑物建在上面,氡就会沿着地的裂缝扩散到室内。2.从建筑材料中析出的氡。1982 年联合国原子辐射效应科学委员会的报告中指出,建筑材料是室内氡的最主要来源。如花岗岩、砖沙、水泥及石膏之类,特别是含有放射性元素的天然石材,易释放出氡。另外还有从户外空气中进入室内的氡,以及从供水及用于取暖和厨房设备的天然气中释放出的氡。

辐射探测实验2-实验报告

符合法测量放射源活度实验报告 班级: 姓名: 学号: 一. 实验目的 1、 学习符合测量的基本方法。 2、 学习用符合方法测定60Co 放射源的活度。 二. 实验内容 1、调整符合系统的参量,选定工作条件,观察各级输出信号波形及其时间关系。 2、测量符合装置的分辨时间。 3、用γβ-符合方法测量60Co 级联衰变的放射性活度。 三. 实验原理 符合技术是利用电子学方法在不同探测器的输出脉冲中把有时间关联的事件选择出来。选择同一时刻脉冲的符合称为瞬时符合。选择不同时的,但有一定时间联系的脉冲符合称为延迟符合。相反,排斥同一时刻或有时间关联脉冲的技术就是反符合或延迟反符合。符合法是研究相关事件的一种方法,在核物理与核技术应用的各领域中获得了广泛应用,如测量放射源的活度、研究核反应产物的角分布、激发态的寿命及角关联的测量、测量飞行粒子的能谱,研究宇宙射线和实现多参数测量等。γβ-符合实验装置图如图2-1。 图2-1 γβ-实验装置 脉冲线性定时延迟线性定时延迟符合光电光电塑料跟随器 跟随器 高压电源 发生器高压电源 放大器单道成形 定标器 放大器单道成形 定标器 定标器 电路 示波器 NIM 机箱低压电源 γ 探头 倍增管倍增管 β 探头 闪烁体 NaI 晶体

1、 符合分辨时间τ 探测器的输出脉冲总有一定的宽度,在选择同时事件的脉冲符合时,当从两个探测器输出的脉冲起始时间差别很小,以至于符合装置不能区分它们的时间差别时,就会被当作同时事件而记录下来,即符合装置有一定的时间分辨能力,符合装置所能够区分的最小时间间隔称为符合分辨时间,它的大小与输入脉冲的形状、持续时间、符合电路的性能都有关系。 分辨时间是符合装置的基本参量,它决定了符合装置研究不同事件间的时间关系时所能达到的精确度,对于大量的在时间上互不相关的独立事件来说,只要两个探测器的输出信号偶然地同时发生在τ时间间隔内,这时符合电路也将把它们作为同时事件而输出符合脉冲,但这个事件不是真符合事件,这种不具有相关性的事件之间的符合称为偶然符合。例如某个核在某时刻发生衰变,其β粒子被β探测器记录,但级联的γ没有被γ探测器记录到,然而此时恰好γ探测器记录了另外一个衰变核的γ射线,那么这两个来自于不同原子核衰变的β和γ射线在符合电路中产生的符合就是无时间关联事件的符合,即属于偶然符合。 假定不具有时间关联的两道脉冲均为理想的矩形脉冲,其宽度为τ,偶然符合的计数率和两个输入道的计数率分别为n rc 、n 1和n 2 ,则有 212n n n rc ??=τ 2 12n n n rc = τ (2-1) 显然,减少τ,能够减少偶然符合几率,但由于辐射进入探测器的时间与输出脉冲之间存在统计性的时间离散,当τ太小时,使得某些同时事件的脉冲因前沿离散而时距大于符合电路分辨时间的可能性增加,从而使得真符合丢失的几率增大。 2、 测量符合分辨时间的方法 1) 偶然符合方法测量分辨时间 通过测定偶然符合计数率rc n 和两道各自的计数率1n 和2n ,根据(2-1)式就可以得到符合分辨时间τ。其中两道的计数率应是时间上无关联的粒子在两个探测器中分别引起的计数率;符合道计数率rc n 应纯粹是偶然符合。但实际测量到的符合计数率中还包含有本底符合计数率 b n 。本底符合计数率是由宇宙射线和周围物体中天然放射性核素的级联衰变,以及散射等产生的符合计数所构成。所以实际测量到的符合计数率rc n '为:

实验报告磁阻传感器和地磁场的测量

实验报告磁阻传感器和 地磁场的测量 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

磁阻传感器和地磁场的测量 一. 实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率 )(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电 阻值变化有增有减。因而输出电压out U 可以用下式表示为b out V R R U ??? ? ???=

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、了解GMR效应的原理 2、测量GMR模拟传感器的磁电转换特性曲线 3、测量GMR的磁阻特性曲线 4、用GMR传感器测量电流 5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 电 阻 \ 欧 姆 磁场强度/ 高斯 图3 某种GMR材料的磁阻特性

磁阻传感器与地磁场试验仪

磁阻传感器与地磁场实验仪 一、实验装置组成 测量地磁场装置主要包括底座、转轴,带有角度刻度的转盘、磁阻传感器及引线、亥姆霍兹线圈、地磁场测定仪的控制主机(包括数字式电压表、5V 直流电源等)。 实验转盘经过精心设计,可自由转动,方便地调节水平和铅直,内转盘具有一对游标刻度,便于消除偏心差,读数准确,测量误差小。 二、仪器主要用途 1. 给磁阻传器定标,测量磁阻传感器的灵敏度K ; 2.测量地磁场的水平分量B ∥; 3.测量地磁场的磁感应强度B 总;地磁场的垂直分量B ⊥及磁倾角β; 4.用磁阻传感器测量通电单线圈产生磁场分布,并与理论值进行比较。 三、仪器技术要求 1.磁阻传感器. (1)磁阻传感器的工作电压 5V 或6V ,灵敏度约50V/T 。 (2)分辨率可达8 710~10--T ,稳定性好。 2.亥姆霍兹线圈:单只线圈匝数N=500匝,半径10.0cm ;亥姆霍兹线圈轴线上中心位置的磁感应强度为(二个线圈串联): I I r NI B 42372301096.445100.0850010458 --?=?????=?=πμ 式中B 为磁感应强度,单位T(特斯拉);I 为通过线圈的电流,单位A(安培) 3.直流恒流源:输出电流 0—500mA 连续可调 4.三位半直流电压表:量程200mV

5.仪器的工作电压:AC 220±10V 四.实验注意事项 1.测量地磁场水平分量,须将转盘调节至水平;测量地磁场B总和磁倾角β时,须将转盘面处于地磁子午面方向。 2.实验仪器周围一定范围内不应存在铁磁金属物体,以保证测量结果的准确性。 3.磁阻传感器遇强磁场时,会产生磁畴饱和现象使灵敏度降低。这时可按“复位”按钮使恢复到原灵敏度。 4.带有磁阻传感器的转盘平面的水平和铅直调整要仔细到位,否则会影响测量结果。

实验报告磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量 一.实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2而输出电压out U 可以用下式表示为b out V R R U ??? ? ???= 磁阻传感器的构造示意图 磁阻传感器内的惠斯通电桥 对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0 上式中,K 为传感器的灵敏度,B 为待测磁感应强度。0U 为外加磁场为零时传感器的输出量。 由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。亥姆霍兹线圈公共轴线中心点位置的磁感应强度为:I R NI B 42 /301096.445 8 -?== μ 上式中N 为线圈匝数(500匝);亥姆霍兹线圈的平均半径cm R 10=;真空磁导率270/104A N -?=πμ。

磁阻传感器以及磁场测量

北航基础物理实验研究性报告各向异性磁阻传感器(AMR)与地磁场测量 第一作者: 13271138 卢杨 第二作者: 13271127 刘士杰 所在院系:化学与环境学院 2014年5月27日星期三

摘要 物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。 磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。 磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。 关键词:磁阻传感器;磁电转换;赫姆霍兹线圈;车辆检测;罗盘

目录 一、实验目的 (4) 二、实验原理 (4) 三、实验仪器介绍 (5) 四、实验内容 (8) 1.测量前的准备工作 (8) 2.磁阻传感器特性测量 (8) a.测量磁阻传感器的磁电转换特性 (8) b.测量磁阻传感器的各向异性特性 (9) 3.赫姆霍兹线圈的磁场分布测量 (9) a. 赫姆霍兹线圈轴线上的磁场分布测量 (9) b.赫姆霍兹线圈空间磁场分布测量 (11) 4.地磁场测量 (12) 五、实验数据及数据处理 (13) 1.磁阻传感器特性测量 (13) a.测量磁阻传感器的磁电转换特性 (13) b.测量磁阻传感器的各向异性特性 (14) 2.赫姆霍兹线圈的磁场分布测量 (15) a.赫姆霍兹线圈轴线上的磁场分布测量 (15) b.赫姆霍兹线圈空间磁场分布测量 (16) 3.地磁场测量 (17) 六、误差分析与思考题 (17) 1、误差分析 (17) 2、思考题 (18) 七、实验中注意事项及改进方法 (19) 1、注意事项 (19) 2、实验改进 (19) 八、总结与收获 (20) 九、原始数据照片 (20)

相关文档
最新文档