直流电机控制(整理版)

直流电机控制(整理版)
直流电机控制(整理版)

直流电机控制

Compiler:Tony

序:因最近一个直流电机项目,在网上找了些资料,对这些资料不置过多评论,只想去其糟粕取其精华,遂将其整理,其一为自己以后翻查方便,其二可以方便他人学习。

摘要

运动控制系统是以机械运动的驱动设备──电机为控制对象,以控制器为核心,以电力电子器件及功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电机的转矩、转速和转角,将电能转换为机械能,实现运动控制的运动要求。可以看出,控制技术的发展是通过电机实现系统的要求,电机的进步带来了对驱动和控制的要求。电机的发展和控制、驱动技术的不断成熟,使运动控制经历了不同的发展阶段。直流电机由于具有速度控制容易,启、制动性能良好,且在宽范围内平滑调速等特点而在冶金、机械制造、轻工等工业部门中得到广泛应用。

本文主要介绍直流电机结构工作原理、PWM调制原理、光电码盘工作原理、以及PID反馈控制简介。

关键词:直流电机;PWM;光电码盘;PID

目录

直流电机控制 (1)

第一章直流电机的结构及工作原理 (1)

1.1 直流电机的结构 (1)

1.1.1 定子 (1)

1.1.2 转子 (3)

1.2 直流电机工作原理 (4)

第二章PWM调制原理 (7)

2.1 PWM控制技术 (7)

2.2.1 PWM概念 (7)

2.2.2 冲量等效理论 (7)

2.2 使用PWM 控制技术控制直流电机 (8)

2.2.1 PWM控制直流电机转速 (9)

2.2.2 PWM控制直流电机正反转 (9)

第三章光电编码器在电机控制中的应用 (10)

3.1 光电编码器介绍 (10)

3.1.1 绝对式光电编码器 (11)

3.1.2 增量式光电编码器 (11)

3.2增量式编码器的工作原理 (12)

3.3光电编码器测量转速与正反转 (15)

3.3.1 使用使用增量式光电编码器来判别电机转速原理 (15)

3.3.2 使用增量式光电编码器来判别电机正反转原理 (17)

3.3.3 增量式光电编码器的反馈脉冲的四倍频原理 (17)

3.4光电编码器的应用电路 (18)

3.4.1 光电编码器在汽车方向盘上的应用 (18)

3.4.2 光电编码器在重力测量仪中的应用 (19)

第四章用PID算法反馈控制直流电机 (22)

4.1 PID算法简介 (22)

4.2 PID闭环控制 (23)

4.3 PID闭环控制性能评价 (24)

参考文献:百度文库 (24)

第一章直流电机的结构及工作原理

1.1 直流电机的结构

直流电机由静止的定子和旋转的转子两大部分组成,在定子和转子之间有一定大小的间隙(称气隙)。

图1-1 直流电机结构

1-直流电机总体图;2-后端盖;3-通风机;4-定子;

5-转子;6-电刷装置;7-前端盖

1.1.1 定子

直流电机定子的作用是产生磁场和作为电机的机械支撑。主要由机座、主磁极、换向极和电刷装置等组成。

(1)机座

机座兼起机械支撑和导磁磁路两个作用。它既用来作为安装电机所有零件的外壳,又是联系各磁极的导磁铁轭。机座通常为铸钢件,也有采用钢板焊接而成的。

(2)主磁极

主磁极是一个电磁铁,如图2-8所示,由主极铁心和主极线圈两部分组成。主极铁心一般用1-1.5mm厚的薄钢板冲片叠压后再用铆钉铆紧成一个整体。小型电机的主极线圈用绝缘铜线(或铝线)绕制而成,大中型电机主极线圈用扁铜线

绕制,并进行绝缘处理,然后套在主极铁心外面。整个主磁极用螺钉固定在机座内壁。

图1-2 主磁极

1-机座;2-主极螺钉;3-主极铁心;4-框架;5-主极绕组;6-绝缘垫衬

(3)换向极

换向极又称为附加极,它装在两个主极之间,用来改善直流电机的换向。换向极由换向极铁心和换向极线圈构成。换向极铁心大多用整块钢加工而成。但在整流电源供电的功率较大电机中,为了更好地改善电机换向,换向极铁心也采用叠片结构。换向极线圈与主极线圈一样也是用圆铜线或扁铜线绕制而成,经绝缘处理后套在换向极铁心上,最后用螺钉将换向极固定在机座内壁。

(4)电刷装置

电刷装置的作用是通过电刷与换向器表面的滑动接触,把转动的电枢绕组与外电路相连。电刷装置一般由电刷、刷握、刷杆、刷杆座等部分组成,如图2-9所示。电刷一般用石墨粉压制而成。电刷放在刷握内,用弹簧压紧在换向器上,刷握固定在刷杆上,刷杆装在刷杆座上,成为一个整体部件。

图1-3 电刷装置

1-刷杆座;2-弹簧;3-刷杆;4-电刷;5-刷握;6-绝缘杆

1.1.2 转子

转子又称电枢,主要由转轴、电枢铁心、电枢绕组和换向器等组成。(1)转轴

转轴的作用是用来传递转矩,一般用合金钢锻压而成。

(2)电枢铁心

电枢铁心是电机磁路的一部分,也是承受电磁力作用的部件。当电枢在磁场中旋转时,在电枢铁心中将产生涡流和磁滞损耗,为了减小这些损耗的影响,电枢铁心通常用0.5mm厚的电工钢片迭压而成,电枢铁心固定在转子支架或转轴上。电枢铁心冲片如图2-10所示,沿铁心外圈均匀地分布有槽,在槽内嵌放电枢绕组。

图1-4 电枢铁心冲片和铁心

1-电枢铁心;2-换向器;3-绕组元件;4-铁心冲片

(3)电枢绕组

电枢绕组的作用是产生感应电势和通过电流产生电磁转矩,实现机电能量转换。它是直流电机的主要电路部分。电枢绕组通常都用圆形或矩形截面的导线绕制而成,再按一定规律嵌放在电枢槽内,上下层之间以及电枢绕组与铁心之间都要妥善地绝缘。为了防止离心力将绕组甩出槽外,槽口处需用槽楔将绕组压紧,伸出槽外的绕组端接部分用无纬玻璃丝带绑紧。绕组端头则按一定规律嵌放在换向器钢片的升高片槽内,并用锡焊或氩弧焊焊牢。

(4)换向器

换向器的作里是机械整流,即在直流电动机中,它将外加的直流电流逆变成绕组内的交流电流;在直流发电机中,它将绕组内的交流电势整流成电刷两端的直流电势。换向器的结构如图2-11所示。换向器由许多换向片组成,换向片间用云母片绝缘。换向片凸起的一端称升高片,用以与电枢绕组端头相连,换向片下部作成燕尾形,利用换向器套筒、V形压圈及螺旋压圈将换向片、云母片紧固成一个整体。在换向片与换向器套筒、压圈之间用V形云母环绝缘,最后将换向器压装在转轴上。

图1-5 换向器

1-螺旋压圈;2-换向器套筒;3-V形压圈;4-V形云母环;5-换向铜片;6-云母片。

1.2 直流电机工作原理

直流电动机的工作原理是基于载流导体在磁场中受力产生电磁力形成电磁转矩的基本原理。但要获得恒定方向的转矩,需将其外电路的直流电流变为绕组中的交流电流,即同样需要机械整流装置。

图1-6 直流电机的物理模型图

其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的)。

上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

当给电刷加一直流电压,绕组线圈中就有电流流过,由电磁力定律可知导体会受到电磁力作用。导体处于N极下与电刷A接触电流向里流,产生电磁力矩为逆时针;导体处于S极下与电刷B接触电流向外流,产生电磁力矩仍为逆时针。转子在该电磁力矩作用下开始旋转。如图1-7所示,当a、b电刷接在直流电源上,电机的轴上带着被拖动的负载。

图1-7 直流电动机的工作原理

(a)起始位置;(b)转过半周时的位置

当直流电流从电刷a流人,经换向片1、线圈abcd、换向片2,由电刷b流出时,如图1—3(a)所示,载流导体在磁场中将受到电磁力的作用,据左手定则,使线圈沿逆时针方向转动。当电枢转过半周时,如图1—3(b)所示,dc处于n极下,ab处于s极下,此时电流仍从电刷a流入,经换向片2、线圈dcba、换向片1,最后由电刷b流出,据左手定则,此时线圈仍然沿逆时针方向转动。因此,电枢将沿一个恒定方向转动。

实际上,直流电动机的电枢上有许多线圈,这些线圈产生的电磁转矩合成为一个总的电磁转矩,拖动负载转动。

总之,在上述直流电动机的工作过程中,单从电枢线圈的角度看,每个导体中的电流方向是交变的;但从磁极看,每个磁极下导体中电流的方向是固定的,即不管是哪个导体运行到该极下,其中的电流方向总是相同的。因此,直流电动机可获得恒定方向的电磁转矩,使电机持续旋转。这就是直流电动机的工作原理。

第二章PWM调制原理

2.1 PWM控制技术

2.2.1 PWM概念

脉冲宽度调节(PWM)是英文Pulse Width Modulation的缩写,简称脉宽调制。它通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形(含形状和幅值)。脉宽调制是一种对模拟信号电平进行数字编码的方法,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。

2.2.2 冲量等效理论

在采样控制理论中,有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同,低频段非常接近,仅在高频段略有差异。例如用一系列等幅不等宽的脉冲来代替一个正弦半波,将正弦半波N等分,看成N 个相连的脉冲序列,宽度相等,但幅值不等,如图2-1中a图所示;将这些脉冲序列用矩形脉冲代替,等幅、不等宽,二者中点重合,各矩形脉冲的面积(冲量)与a图中对应的脉冲相等,其宽度按正弦规律变化,如图2-1中b图所示。可以看出,等幅值、不同宽度的一系列矩形脉冲与正弦半波的作用是等效的。要改变等效输出正弦波的幅值,按同一比例改变各矩形脉冲宽度即可。

因此可以用等幅值、不同宽度的一系列脉冲来等效模拟信号波形。对于直流电压或电流,可以简单地用一系列等幅值、等宽度的脉冲来等效。而要改变电压或电流大小,只要使用高分辨率的计数器,调整输出方波的占空比(在一串理想的脉冲序列中,正脉冲的持续时间与脉冲周期的比值),即可对模拟电平信号进行编码,实现数字系统对模拟电压或电流大小的精确控制。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM 进行编码。

大多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1KHz到200KHz之间。

图2-1 PWM与正弦波冲量等效

2.2 使用PWM 控制技术控制直流电机

PWM信号只有两种状态,高电平和低电平,对于一个给定的周期来说,高电平所占的时间和总的一个周期时间之比叫做占空比,电机的速度与施加的平均电压成正比,输出转矩则与电流成正比。直流电机高效运行的最常见方法是施加一个 PWM(脉宽调制)方波,其通-断比率对应于所需速度。即直流电机的转速正比于在一个周期内PWM的电压有效值。电机起到一个低通滤波器作用,

将 PWM 信号转换为有效直流电平。PWM 驱动信号很常用,因为使用微处理器的控制器很容易产生 PWM 信号。虽然用精确的脉冲宽度可以调节电机的速度,实际应用中的 PWM 频率却是可变的。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

2.2.1 PWM 控制直流电机转速

改变加到直流电机电枢两端的直流驱动电压,即可改变电机的转速;改变该驱动电压的极性,即可改变电机的旋转方向。使用PWM(脉宽调制)方法,可以方便地改变加给电机电枢的平均电压的大小,其基本原理可由图2-2说明。设U i 是三极管基极的控制电压,U M 为电机两端的直流电压,它们的波形如图2所示,在一个周期T 内,它的平均电压UM 为 T t U cc M U 1?=△ 令D T

t =1△,称矩形波的占空比,可知,改变控制信号的占空比就可以改变电机的转速。

图2-2 PWM 控制直流电机转速

2.2.2 PWM 控制直流电机正反转

改变加给电枢的直流电压极性,即能改变电机旋转方向;方案之一是使用直流继电器来改变供电极性,另一种方案使用两组晶体三极管构成切换电路,如图2-3所示,全桥式驱动电路的4只开关管都工作在斩波状态,T1、T2为一组,T3、T4 为另一组,两组开关的状态互补,一组导通则 另一组必须关断。当T1、T2导通时,T3、 T4关断,电机两端加正向电压,可以实 现电机的正转或反转制动;当T3、T4导 通时,T1、T2关断,电机两端为反向电 压,电机反转或正转制动。

+UCC Ui Um

M Ui

t

Um

Ucc

T

t

Δt1 +Ucc

+5V C

图2-3 PWM控制直流电机正反转

(1)当A=1(高电平):则B=0 →T1导通→T2导通;C=1 →T3 截上→T4截上;于是

电流i1流经由机M的路径为:Ucc→T1→M→T2→地,电机正转。

(2)若A=0(低电平):则B=1 →T1截上→T2截上;C=0 →T3导通→T4导通;于是

电流i2的流径电机M的路径为:Ucc→T3→M→T4→地,电机反转。

第三章光电编码器在电机控制中的应用

3.1 光电编码器介绍

光电编码器是一种旋转式位置传感器,光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的。在现代伺服系统中广泛应用于角位移或角速率的测量,它的转轴通常与被测旋转轴连接,随被测轴一起转动。它能将被测轴的角位移转换成二进制编码或一串脉冲。

根据光电编码器的工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器两种类型。增量式光电编码器具有结构简单、体积小、价格低、精度高、响应速度快、性能稳定等优点,应用更为广泛。在高分辨率和大量程角速率/位移测量系统中,增量式光电编码器更具优越性。绝对式编码器能直接给出对应于每个转角的数字信息,便于计算机处理,但当进给数大于一转时,须作特别处理,而且必须用减速齿轮将两个以上的编码器连接起来,组成多级检测装置,使其结构复杂、成本高。

3.1.1 绝对式光电编码器

绝对式光电编码器如图所示,他是通过读取编码盘上的二进制的编码信息来表示绝对位置信息的。

编码盘是按照一定的编码形式制成的圆盘。图3-1是二进制的编码盘,图中空白部分是透光的,用“0”来表示;涂黑的部分是不透光的,用“1”来表示。通常将组成编码的圈称为码道,每个码道表示二进制数的一位,其中最外侧的是最低位,最里侧的是最高位。如果编码盘有4个码道,则由里向外的码道分别表示为二进制的23、22、21和20,4位二进制可形成16个二进制数,因此就将圆盘划分16个扇区,每个扇区对应一个4位二进制数,如0000、0001、 (1111)

图3-1 绝对式光电编码器

按照码盘上形成的码道配置相应的光电传感器,包括光源、透镜、码盘、光敏二极管和驱动电子线路。当码盘转到一定的角度时,扇区中透光的码道对应的光敏二极管导通,输出低电平“0”,遮光的码道对应的光敏二极管不导通,输出高电平“1”,这样形成与编码方式一致的高、低电平输出,从而获得扇区的位置脚。

3.1.2 增量式光电编码器

增量式编码器是指随转轴旋转的码盘给出一系列脉冲,然后根据旋转方向用计数器对这些脉冲进行加减计数,以此来表示转过的角位移量。增量式光电编码

器结构示意图如图3-2所示。

图3-2增量式光电码盘结构示意图

光电码盘与转轴连在一起。码盘可用玻璃材料制成,表面镀上一层不透光的金属铬,然后在边缘制成向心的透光狭缝。透光狭缝在码盘圆周上等分,数量从几百条到几千条不等。这样,整个码盘圆周上就被等分成n个透光的槽。增量式光电码盘也可用不锈钢薄板制成,然后在圆周边缘切割出均匀分布的透光槽。

3.2增量式编码器的工作原理

增量式编码器的工作原理如图3-3所示。它由主码盘、鉴向盘、光学系统和光电变换器组成。在图形的主码盘(光电盘)周边上刻有节距相等的辐射状窄缝,形成均匀分布的透明区和不透明区。鉴向盘与主码盘平行,并刻有a、b两组透明检测窄缝,它们彼此错开1/4节距,以使A、B两个光电变换器的输出信号在相位上相差90°。工作时,鉴向盘静止不动,主码盘与转轴一起转动,光源发出的光投射到主码盘与鉴向盘上。当主码盘上的不透明区正好与鉴向盘上的透明窄缝对齐时,光线被全部遮住,光电变换器输出电压为最小;当主码盘上的透明区正好与鉴向盘上的透明窄缝对齐时,光线全部通过,光电变换器输出电压为最大。主码盘每转过一个刻线周期,光电变换器将输出一个近似的正弦波电压,且光电变换器A、B的输出电压相位差为90°。

图3-3增量式编码器工作原理图3-4光电编码器的输出波形

光电编码器的光源最常用的是自身有聚光效果的发光二极管。当光电码盘随工作轴一起转动时,光线透过光电码盘和光栏板狭缝,形成忽明忽暗的光信号。光敏元件把此光信号转换成电脉冲信号,通过信号处理电路后,向数控系统输出脉冲信号,也可由数码管直接显示位移量。

光电编码器的测量准确度与码盘圆周上的狭缝条纹数n有关,能分辨的角度α为:α=360°/n;分辨率=1/n ,例如:码盘边缘的透光槽数为1 024个,则能分辨的最小角度α=360°/1 024=0.352°。

为了判断码盘旋转的方向,必须在光栏板上设置两个狭缝,其距离是码盘上的两个狭缝距离的(m+1/4)倍,m为正整数,并设置了两组对应的光敏元件,如图1中的A、B光敏元件,有时也称为cos、sin元件。当检测对象旋转时,同轴或关联安装的光电编码器便会输出A、B两路相位相差90°的数字脉冲信号。光电编码器的输出波形如图3-4所示。为了得到码盘转动的绝对位置,还须设置一个基准点,如图3-5中的“零位标志槽”。码盘每转一圈,零位标志槽对应的光敏元件产生一个脉冲,称为“一转脉冲”,见图3-4中的C0脉冲。

图3-5 增量式光电编码器

图3-6给出了编码器正反转时A、B信号的波形及其时序关系,当编码器正转时A信号的相位超前B信号90°,如图4(a)所示;反转时则B信号相位超前A信号90°,如图4(b)所示。A和B输出的脉冲个数与被测角位移变化量成线性关系,因此,通过对脉冲个数计数就能计算出相应的角位移。根据A和B之间的这种关系正确地解调出被测机械的旋转方向和旋转角位移/

速率,就是所谓的脉冲辨向和计数。脉冲的辨向和计数既可用软件实现也可用硬件实现。

图3-6 正反转波形及时序

3.3光电编码器测量转速与正反转

3.3.1 使用使用增量式光电编码器来判别电机转速原理

可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。具体的测速方法有M法、T法和M/T法3种。

M法又称之为测频法,其测速原理是在规定的检测时间Tc内,对光电编码器输出的脉冲信号计数的测速方法,如图3-7所示,例如光电编码器是N线的,则每旋转一周可以有4N个脉冲,因为两路脉冲的上升沿与下降沿正好使编码器信号4倍频。现在假设检测时间是Tc,计数器的记录的脉冲数是M1,则电机的每分钟的转速为。

图3-7 M法测速原理

在实际的测量中,时间Tc内的脉冲个数不一定正好是整数,而且存在最大半个脉冲的误差。如果要求测量的误差小于规定的范围,比如说是小于百分之一,那么M1就应该大于50。在一定的转速下要增大检测脉冲数M1以减小误差,可以增大检测时间Tc单考虑到实际的应用检测时间很短,例如伺

服系统中的测量速度用于反馈控制,一般应在0.01秒以下。由此可见,减小测量误差的方法是采用高线数的光电编码器。

M法测速适用于测量高转速,因为对于给定的光电编码器线数N机测量时间Tc条件下,转速越高,计数脉冲M1越大,误差也就越小。

T法也称之为测周法,该测速方法是在一个脉冲周期内对时钟信号脉冲进行计数的方法,如图3-8所示。例如时钟频率为fclk,计数器记录的脉冲数为M2,光电编码器是N线的,每线输出4N个脉冲,那么电机的每分钟的转速为

为了减小误差,希望尽可能记录较多的脉冲数,因此T法测速适用于低速运行的场合。但转速太低,一个编码器输出脉冲的时间太长,时钟脉冲数会超过计数器最大计数值而产生溢出;另外,时间太长也会影响控制的快速性。

与M法测速一样,选用线数较多的光电编码器可以提高对电机转速测量的快速性与精度。

图3-8 T法测速原理

M/T法测速是将M法和T法两种方法结合在一起使用,在一定的时间范围内,同时对光电编码器输出的脉冲个数M1和M2进行计数,则电机每分钟的转速

实际工作时,在固定的Tc时间内对光电编码器的脉冲计数,在第一个光电编码器上升沿定时器开始定时,同时开始记录光电编码器和时钟脉冲数,定时器定时Tc时间到,对光电编码器的脉冲停止计数,而在下一个光电编码器的上升沿到来时刻,时钟脉冲才停止记录。采用M/T法既具有M法测速的高速优点,又具有T法测速的低速的优点,能够覆盖较广的转速范围,测量的精度也较高,在电机的控制中有着十分广泛的应用。

3.3.2 使用增量式光电编码器来判别电机正反转原理

增量式光电编码器输出两路相位相差90o的脉冲信号A和B,当电机正转时,脉冲信号A的相位超前脉冲信号B的相位90o,此时逻辑电路处理后可形成高电平的方向信号Dir。当电机反转时,脉冲信号A的相位滞后脉冲信号B的相位90o,此时逻辑电路处理后的方向信号Dir为低电平。因此根据超前与滞后的关系可以确定电机的转向。其转速辩相的原理如图3-9所示

图3-9转向判别原理图

3.3.3 增量式光电编码器的反馈脉冲的四倍频原理

在使用增量式编码器时,通过计相位相5差的两路正交脉冲信号A和B的上升沿与下降沿已达到将增量式编码器的反馈脉冲四倍频的目的。这样在不增加增量式光电编码器的线数的情况下,就可以获得更精度高的位置脉冲信息,以实现对电机位置的精确控制。其工作原理与脉冲的相位关系如图3-10所示。

图3-10 脉冲四倍频相位关系图

PWM控制直流电机的系统的设计

电力电子与电机拖动综合课程设计 题目: PWM控制直流电机的系统 专业: 05自动化 学号: 200510320219 姓名:张建华 完成日期: 指导教师:李晓高

电力电子与电机拖动综合课程设计任务书 班级:自动化05 姓名:张建华指导老师:2008年6月10日 年月日

目录

1 引言 直流电机由于具有速度控制容易,启、制动性能良好,且在宽范围内平滑调速等特点而在冶金、机械制造、轻工等工业部门中得到广泛应用。直流电动机转速的控制方法可分为两类,即励磁控制法与电枢电压控制法。励磁控制法控制磁通,其控制功率虽然小,但低速时受到磁饱和的限制,高速时受到换向火花和换向器结构强度的限制;而且由于励磁线圈电感较大,动态响应较差。所以常用的控制方法是改变电枢端电压调速的电枢电压控制法。调节电阻R即可改变端电压,达到调速目的。但这种传统的调压调速方法效率低。随着电力电子技术的进步,发展了许多新的电枢电压控制方法,其中PWM(脉宽调制)是常用的一种调速方法。其基本原理是用改变电机电枢(定子)电压的接通和断开的时间比(占空比)来控制马达的速度,在脉宽调速系统中,当电机通电时,其速度增加;电机断电时,其速度减低。只要按照一定的规律改变通、断电的时间,即可使电机的速度达到并保持一稳定值。最近几年来,随着微电子技术和计算机技术的发展及单片机的广泛应用,使调速装置向集成化、小型化和智能化方向发展。 本电机调速系统采用脉宽调制方式, 与晶闸管调速相比技术先进, 可减少对电源的污染。为使整个系统能正常安全地运行, 设计了过流、过载、过压、欠压保护电路, 另外还有过压吸收电路。确保了系统可靠运行。 2 系统概述 2.1 系统构成 本系统主要有信号发生电路、PWM速度控制电路、电机驱动电路等几部分组成。整个系统上采用了转速、电流双闭环控制结构,如图1所示。在系统中设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器

基于单片机的直流电机控制器的设计

目录 摘要............................................................................................................................................................... I I ABSTRACT ................................................................................................................................................. III 1系统论述 (5) 1.1设计思路 (5) 1.2基本原理 (5) 1.3总体设计框图 (5) 2直流电机单元电路设计与分析 (6) 2.1直流电机驱动模块 (6) 2.2直流电机的中断键盘控制模块 (11) 2.31602LCD液晶显示模块 (13) 3直流电机PWM控制系统的实现 (15) 3.1总电路图 (15) 3.2总电路功能介绍 (16) 3.3直流电机控制程序 (16) 4系统仿真 (23) 5结束语 (26) 参考文献资料 (27)

摘要 本文是对直流电机PWM调速器设计的研究,主要实现对电机的控制。本课程设计主要是实现PWM调速器的正转、反转、加速、减速、停止等操作。并实现电路的仿真。为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示和测量;由命令输入模块、光电隔离模块及H型驱动模块组成。采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,不断给光电隔离电路发送PWM 波形,H型驱动电路完成电机正反转控制.在设计中,采用PWM调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。 关键词:AT89C51单片机;PWM调速;正反转控制;仿真。

基于单片机对直流电机的控制

基于单片机对直流电机的控制 第十五组 姓名:吴代露20131325010 张鹏飞20131325012 金静丽20131325014 周敏20131325015 胡会华20131325017 顾蓉20131325018 专业:2013级信息工程(系统工程方向) 指导老师:周旺平 2014.12.22

基于单片机对直流电机的控制 内容摘要 电动机作为最主要的动力源,在生产和生活中占有重要地位。电动机的调速控制过去多用模拟法,随着计算机的产生和发展以及新型电力电子功率器件的不断涌现,电动机的控制也发生了深刻的变化。 关键字:电动机飞思卡尔 PWM控制 一、引言 (一)直流电机的定义 直流电机(direct current machine):是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 (二)直流电机的基本结构 由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 (三)直流电机工作原理

直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 (四)直流电机的分类 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。(1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机:又可分为永磁直流电动机和电磁直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等;铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域;铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,直流串励电

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

直流电机控制系统设计

直流电机控制系统设计

XX大学 课程设计 (论文) 题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 2012年7 月9 日至2012年7 月20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。 指导教师年月日 负责教师年月日

学生签字年月日 目录 0 前言 (1) 1 总体方案设计 (2) 1.1 系统方案 (2) 1.2 系统构成 (2) 1.3 电路工作原理 (2) 1.4 方案选择 (3) 2 硬件电路设计 (3) 2.1 系统分析与硬件设计 (3) 2.2 单片机AT89C52 (3) 2.3 复位电路和时钟电路 (4) 2.4 直流电机驱动电路设计 (4) 2.5 键盘电路设计 (4) 3软件设计 (5) 3.1 应用软件的编制和调试 (5) 3.2 程序总体设计 (5) 3.3 仿真图形 (7) 4 调试分析 (9) 5 结论及进一步设想 (9) 参考文献 (10) 课设体会 (11) 附录1 电路原理图 (12) 附录2 程序清单 (13)

单片机PWM控制直流电机的速度

用单片机控制直流电机的速度 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: ?1、改变电枢电压; ?2、改变激磁绕组电压; ?3、改变电枢回路电阻。 使用单片机来控制直流电机的变速,一般采用调节电枢电压的方式,通过单片机控制PWM1,PWM2,产生可变的脉冲,这样电机上的电压也为宽度可变的脉冲电压。根据公式 U=aVCC 其中:U为电枢电压;a为脉冲的占空比(0

电动机的电枢电压受单片机输出脉冲控制,实现了利用脉冲宽度调制技术(PWM)进行直流电机的变速。 因为在H桥电路中,只有PWM1与PWM2电平互为相反时电机才能驱动,也就是PWM1与PWM2同为高电平或同为低电平时,都不能工作,所以上图中的实际脉冲宽度为B, 我们把PWM波的周期定为1ms,占空比分100级可调(每级级差为10%),这样定时器T0每0.01ms产生一次定时中断,每100次后进入下一个PWM波的周期。上图中,占空比是60%,即输出脉冲的为0.6ms,断开脉冲为0.4ms,这样电枢电压为5*60%=3V。 我们讨论的是可以正转反转的,如果只按一个方向转,我们就只要把PWM1置为高电平或低电平,只改变另一个PWM2电平的脉冲变化即可,,如下图(Q4导通,Q3闭合,电机只能顺时针调整转动速度)

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

基于单片机的直流电机

摘要 本课程主要是设计一个基于单片机的直流电机 PWM 控制系统。PWM 控制提高了调速范围,提高了调速精度,改善了快速性能、功率和功率因数。系统在设计中被控对象采用 5V 的直流电机,以 MCS-51 单片机为控制核心,采用 LCD12864 液晶作为显示元件,进行软硬件的设计。硬件电路由protel 设计制作,主要设计了液晶显示电路、键盘控制电路、复位电路、测速电路和驱动电路。软件设计在 Keil 开发平台用 C 语言编写,程序采用模块化设计方案,包括液初始化程序、晶显示程序、键盘控制程序。 本系统 PWM 控制直流电机采用调压调速的方法,整体设计包括软件和硬件两个部分。通过利用单片机产生 PWM 控制信号控制直流电机,详细介绍脉宽调制 ( PWM) 控制原理,直流电机的工作原理和数学模型以及用 H型桥电路基本原理设计的驱动电路。通过硬件电路的模拟情况,说明系统运行正常,各个功能模块实现是可行的,控制精度比较高,能够满足系统的基本要求。 关键词:单片机;PWM;直流电机;L298N;LCD12864;

目录 一、设计任务 (1) 二、设计方案 (1) 三、系统硬件设计 (3) 1、 STC52最小系统 (3) 2、电机模块 (8) 3、 L298N模块 (9) 4、测速模块 (11) 5、测压模块 (12) 6、液晶模块 (13) 7、按键模块 (15) 8、灯光信号模块 (16) 四、系统软件设计 (17) 1、软件流程图 (17) 2、 PWM程序设计 (18) 3、测压程序设计 (18) 4、测速程序设计 (19) 5、液晶驱动程序设计 (20) 6、菜单程序设计 (21) 7、按键程序设计 (23) 8、电机反电动势系数计算程序 (24) 9、电机力矩系数计算程序 (25) 10、逼近算法控制程序 (25) 11、比例控制程序 (25) 12、 PID控制程序 (26) 五、直流调速系统动态数学模型的建立 (28) 六、调速数据 (32) 1、比例调速数据 (32) 2、 PID调速数据 (33) 3、逼近算法调速数据 (34) 4、反电动势系数和电机力矩系数数据 (34) 七、心得体会 (34) 参考文献 (36) 附录一硬件原理图 (37) 附录二硬件PCB图 (38) 附录三程序清单 (39)

基于51单片机控制直流电机的设计

可以实现的功能是: 按下左转键则开始向左转动 按下右转键则向右转动 按下停止键则开始逐渐停止转动 按下调速键一次则会加速一档 按下调速键二次则会加速二档 按下调速键三次则会加速三档 按下调速键四次则会加速四档 按下调速键五次则会回到最初速度重新记档位 设计思路: 直流电机只要能提供一定的直流就可以转动,改变电压极性可以改变转动方向,可以通过给直流电机提供脉冲信号来驱动它,脉冲信号的占空比可以影响到直流电机的平均速度,因此可以通过调整占空比从而能实现调速的目的。直流电机的驱动电路要有过流保护作用,图中的二极管就直到这个作用,另外电机的驱动电流是比较大的所以需要用三极管来放大电流。程序的关键就是如何实现占空比的调整,这个可以通过对51单片机定时器重装初值进行改变,从而改变时间。用51实现PWM信号的输出,相对麻烦点,要是AVR就可以方便地实现PWM信号,由见51单片机的局限性与AVR单片机的优势。 原理图

详细程序: #include #define uchar unsigned char #define uint unsigned int sbit PW1=P2^0 ; sbit PW2=P2^1 ; //控制电机的两个输入 sbit accelerate=P2^2 ; //调速按键 sbit stop=P2^3 ; //停止按键 sbit left=P2^4 ; //左转按键 sbit right=P2^5 ; //右转按键 #define right_turn PW1=0;PW2=1 //顺时针转动 #define left_turn PW1=1;PW2=0 //逆向转动 #define end_turn PW1=1;PW2=1 //停转 uint t0=25000,t1=25000; //初始时占空比为50% uint a=25000; // 设置定时器装载初值 25ms 设定频率为20Hz uchar flag=1; //此标志用于选择不同的装载初值 uchar dflag; //左右转标志 uchar count; //用来标志速度档位 void keyscan(); //键盘扫描 void delay(uchar z); void time_init(); //定时器的初始化 void adjust_speed(); //通过调整占空比来调整速度 void main()

直流电机控制电路集锦

直流电机控制电路集锦 直流电机的类型 按:直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。直流电机控制电路集锦,将使读者“得来全不费功夫”! 在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。所以直流电机的控制是一门很实用的技术。本文将详细介绍各种直流电机的控制技术。 站长的几句说明:本文内容比较详实完整,但遗憾的是原稿的印刷质量和绘图的确很差,尽管采取了很多措施,有些图仍可能看不太清楚。 直流电机,大体上可分为四类: 第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。 步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。 步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。 第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。 第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。 唱机或激光唱机的转盘常用伺服电机。天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。 最后一类为两相低电压交流电机。这类电机通常是直流电源供给一个低频振荡器,然后再用低频低压的交流去驱动电机。这类电机偶尔也用在转盘驱动机构中。 步进电机的基本工作原理

直流电机控制系统设计范本

直流电机控制系统 设计

XX大学 课程设计 (论文)题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 7 月 9 日至 7 月 20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。

指导教师年月日 负责教师年月日 学生签字年月日 目录 0 前言...................................................................................... 错误!未定义书签。 1 总体方案设计 ...................................................................... 错误!未定义书签。 1.1 系统方案 ...................................................................... 错误!未定义书签。 1.2 系统构成 ...................................................................... 错误!未定义书签。 1.3 电路工作原理............................................................... 错误!未定义书签。 1.4 方案选择 ...................................................................... 错误!未定义书签。 2 硬件电路设计 ...................................................................... 错误!未定义书签。 2.1 系统分析与硬件设计................................................... 错误!未定义书签。 2.2 单片机AT89C52............................................................ 错误!未定义书签。 2.3 复位电路和时钟电路................................................... 错误!未定义书签。 2.4 直流电机驱动电路设计 ............................................... 错误!未定义书签。 2.5 键盘电路设计............................................................... 错误!未定义书签。 3 软件设计 ............................................................................ 错误!未定义书签。 3.1 应用软件的编制和调试 ............................................... 错误!未定义书签。 3.2 程序总体设计............................................................... 错误!未定义书签。 3.3 仿真图形 ...................................................................... 错误!未定义书签。 4 调试分析 .............................................................................. 错误!未定义书签。

基于单片机的直流电机控制设计性实验报告

设计题目:直流电机控制电路设计 一设计目得 1掌握单片机用PWM实现直流电机调整得基本方法,掌握直流电机得驱动原理。 2学习模拟控制直流电机正转、反转、加速、减速得实现方法. 二设计要求 用已学得知识配合51单片机设计一个可以正转、反转或变速运动得直流电机控制电路,并用示波器观察其模拟变化状况。 三设计思路及原理 利用单片机对PWM信号得软件实现方法.MCS一51系列典型产品8051具有两个定时计数器。因为PWM信号软件实现得核心就是单片机内部得定时器,所以通过控制定时计数器初值,从而可以实现从8051得任意输出口输出不同占空比得脉冲波形。从而实现对直流电动机得转速控制。 .AT89C51得P1、0—P1、2控制直流电机得快、慢、转向,低电平有效.P3、0为PWM波输出,P3、1为转向控制输出,P3、2为蜂鸣器。PWM控制DC电机转速,晶振为12M,利用定时器控制产生占空比可变得PWM波,按K1键,PWM值增加,则占空比增加,电机转快,按K2键,PWM值减少,则占空比减小,电机转慢,当PWM值增加到最大值255或者最小值1时,蜂鸣器将报警 四实验器材 DVCC试验箱导线若电源等器件

PROTUES仿真软件KRIL软件 五实验流程与程序 #include 〈 reg51、h > sbitK1 =P1^0;增加键 sbit K2 =P1^1 ; 减少键 sbit K3 =P1^2;转向选择键 sbit PWMUOT =P3^0; PWM波输出?? sbitturn_around =P3^1 ;?转向控制输出 sbit BEEP =P3^2 ;蜂鸣器 unsigned int PWM; void Beep(void); void delay(unsigned int n); void main(void) { TMOD=0x11;//设置T0、T1为方式1,(16位定时器) TH0=0 ; 65536us延时常数{t=(65536—TH)/fose/12} ?TL0=0; TH1=PWM; //脉宽调节,高8位 ? TL1=0; EA=1;? //开总中断 ET0=1; //开T0中断? ET1=1;??//开T1中断

基于单片机的直流电机控制(正反转、开关控制)

基于单片机的直流电机控制(正反转,开关控制)原理图如下: 程序如下: /*用电机来代表门的转动情况*/ #include //定义变量 sbit kaimen=P0^0; sbit zanting=P0^1; sbit fanxiang=P0^2; sbit P2_0=P2^0; sbit P2_1=P2^1; bit Flag = 1;//定义电机正反向标志 //函数声明 void motor_turn(void); //正反向控制 void Timer0_init(void); //定义定时器0初始化 /******************************延时处理***************************/ void Delay(unsigned int z)

{ unsigned int x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } /***************************************************************/ void Timer0_int(void) interrupt 1 using 1//定时器0中断处理主要用来处理换方向的时候 { TR0 = 0; TL0=(65536-50000)/ 256; //定时50ms TH0=(65536-50000)% 256; TR0 = 1; if(Flag == 1)//代表改变方向 { P2_0 = 0; P2_1 = 1; } else //方向不变 { P2_1 = 0; P2_0 = 1; } } /****************开始转动:人满时候开始转动**************/ void motor_start(void) { if(kaimen==1) { //Delay(10); if(kaimen==1) { P2_0 = 0; P2_1 = 1; } } } /***************有人但是人未满时或者有夹到人的时候暂停*************/ void motor_pause(void) { if(zanting==1) { Delay(10);

直流电动机控制电路的设计

课程设计(论文) 题目名称直流电动机控制电路的设计 课程名称电力拖动基础课程设计 学生姓名周孝雄 学号0941202031 系、专业电气工程系、09自动化 指导教师邱雄迩 2011年12 月18 日

邵阳学院课程设计(论文)任务书 注: 1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

指导教师(签字):学生(签字):

邵阳学院课程设计(论文)评阅表 学生姓名周孝雄学号0941202031 系电气工程系专业班级09自动化班 题目名称直流电动机控制电路的设计课程名称电力拖动基础一、学生自我总结 二、指导教师评定 注:1、本表是学生课程设计(论文)成绩评定的依据,装订在设计说明书(或论文)的“任务书”页后面;

当今,自动化控制系统在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。直流电动机应用如此之广,主要在于其采用了PWM脉宽调制电路来控制直流电动机的调速。在这里介绍了PWM脉宽产生的电路。该电路运用模拟电子电路基础知识完成,利用产生的方波信号带动负载转动。本设计原理简单,易于理解,电路实现简单。我们先概括介绍了电路中锁需要的电路模块,然后给出了整体的电路图,并做了测试及得出测试结果。 关键词:直流电动机,PWM,三极管

1绪论 (7) 1.1概述 (7) 1.2 直流电动机的基本理论 (7) 1.3直流脉宽调速系统 (10) 2 元器件介绍 (13) 2.1 SG2731 (13) 2.2 三极管C4466 和 A1693 (16) 3 系统设计方案 (17) 3.1直流电动机控制电路 (17) 4直流电动机控制电路的测试 (19) 4.1 测试步骤 (19) 4.2 测试结果 (19) 5实验总结 (21) 参考文献 (22)

直流电机控制系统设计(1)

湖南工程学院课程设计《DSP原理及应用》 题目:直流电机控制系统设计 专业: 班级: 姓名: 学号: 指导教师: 2015年5 月19 日

摘要 直流电动机具有优良的调速特性,调速平滑,方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。电动机调速系统采用微机实现自动控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统体积小,结构简单、可靠性高、操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。 本篇论文介绍了基于单片机的直流电机PWN调速的基本办法,直流电机调速的相关知识以及PWM调速的基本原理和实现方法。重点介绍了基于TMS320LF2407单片机的用软件产生PWM信号以及信号占空比调节的方法。对于直流电机速度控制系统的实现提供了一种有效的途径。 关键词:单片机最小系统;PWM ;直流电机调速,TMS320LF2407;

前言 电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。然而近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。所以选用单片机作为控制系统的核心以

基于89C51单片机的直流电机控制系统设计

目录 摘要 (3) 关键词: (3) 1直流电动机 (3) 1.1直流电动机的工作原理 (3) 1.1.1直流电动机的运动特性与优点 (4) 1.2直流串励电动机 (5) 1.2.1串励电动机的特点 (5) 1.3直流他励电动机 (5) 1.3.1他励电动机的特点 (6) 2设计概要 (6) 2.1硬件设计概要 (7) 2.2程序设计流程图 (7) 3硬件设计 (8) 3.1.1电机驱动电路 (8) 3.1.2单片机及控制电路 (10) 3.1.3单片机介绍 (12) 3.1.3.3管脚说明 (14) 4程序设计 (16) 4.1主程序设计 (19) 4.1.1定义说明程序 (19) 4.1.2执行主程序 (20) 4.2子程序设计 (22) 4.2.1定义延时程序函数 (22) 4.2.2定时器1中断服务程序 (22)

4.2.3定时器2中断服务程序 (23) 4.3调速原理 (23) 4.3.1PWM(脉冲宽度调制)原理 (23) 4.3.2PWM(脉冲宽度调制)特点 (24) 5调试与仿真 (25) 参考文献 (25) 附录 (26)

摘要 通过单片机改变输出脉冲波的宽度井陉调节,以便实现直流电的起动、正反转、加速、减速功能,在这种调速方法下,可以有效的减少其损耗功率。 关键词:单片机;直流电机;调速 1直流电动机 直流电动机主要由静止的定子和旋转的转子组成。定子由主磁极、换向极、电刷装置和机座组成。主磁极铁芯上套有线圈,通入直流励磁电流便会产生磁场,即主磁场。换向极也由铁芯及套在上面的线圈组成,其作用是产生附加磁场。以减弱换向片与电刷之间的火花,避免烧蚀。机座除作电动机的机械支架外,还作为各磁极间磁的通路。转子由转子铁芯、转子绕组、换向器、轴和风扇组成。转子铁芯用来安装转子绕组,并作为电动机磁路的一部分。转子绕组的主要作用是产生感应电动势并通过电流,以产生电磁转矩。换向器由换向片组成,换向片按一定规律与转子绕组的绕组元件连接。 1.1直流电动机的工作原理 直流电动机包括俩个在空间固定的永久磁铁,一个为N极,另一个为S极。在磁极的中间,装有一个可以转动的线圈,它的首末两端分别接到两片圆弧形的换向片(铜片)上,两个换向片之间、换向片与转轴(与线圈一起旋转)之间均相互绝缘,为了把电枢绕组和外电路接通,在换向器上安置了两个固定不动的电刷。由于电刷和电源固定连接,因此无论线圈怎样转动,总是上半边的电流向里,下半边的电流向外。由左手定则可知,通电线圈在磁场中受到逆时针方向的力矩作用。虽然电流方向是交替变化的,但所受的电磁力的方向不改变,因此线圈可以连续地按逆时针方向旋转。这就是直流电动机的工作原理。

直流电动机控制系统设计

X X X X X学院 题目:直流电动机控制系统 学 院 XXXXXX学院 专 业 自动化 班 级 XX班 姓 名 XXX 学 号 XXXXX 指导老师 XXX 2012年 12 月 25 日 1、 设计题目:直流电动机控制系统 1、前言 近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。 采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开

关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。 2、系统设计原理 脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需 要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数, ,p为电磁对数,a为电枢并联支路数,N为导体数。 由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 3、方案选择及论证 3.1、方案选择 3.1.1、改变电枢回路电阻调速 可以通过改变电枢回路电阻来调速,此时转速特性公式为 n=U-【I(R+Rw)】/KeФ (2)式中Rw为电枢回路中的外接电阻(Ω)。 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R= (Ra+Rw)增大,电动机转速就降低。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,

相关文档
最新文档