第4章 X射线衍射仪实验技术与应用.

第4章 X射线衍射仪实验技术与应用.
第4章 X射线衍射仪实验技术与应用.

第4章 X射线衍射仪实验技术与应用

Beijing China , 2010.09

He Chong Zhi

1. D8 X射线衍射仪系列系统与功能简介

2. 核心部件与功能

3. Bragg-Brentano 衍射几何

4. 光学系统及其参数选择对采集数据质量影响

5. 平行光束-Geobel 镜和掠射入射衍射

6. X射线透镜

7. 探测器

8. 控测、采集数据与测量条件

9. 非常态结构动态衍射分析

10. 应用X射线衍射仪衍射关心的具体问题1. D8 X射线衍射仪系列系统与功能简介

配置光学编码器的测角仪

高精度的Dovetail导轨, 模块化的

光学器件快速互换

射线防护好:0.2 Sv/h 通过欧

洲安全论证,2 套安全电路

配置各种特殊功能的附件,即

可组成具有各种功能的衍射

仪系统,如高低温及不同气氛

与压力下的结构变化的动态

分析等。

在 D8 Advance 基础上,组建 D8 X射

线衍射仪系列产品。

D8 Advance

D8 DISCOVER

单晶外延膜、薄膜分析高分辨衍射分析单晶外延膜的结构特征,

用Bond法超精度地测点阵参数、点阵错

配、化学组份,用Rocking曲线测定测算

嵌镶结构、取向,作倒易空间测绘; 用

于分析薄膜的厚度、密度、表面与界面

粗糙度等。

高精度的尤拉环

高强度的织构及应力测量

D8 GADDS 系统Fast phase ID microdiffraction percent crystallinity 功能:Powders, Texture, Stress,SAXS.

特点:Fast speed,Micro-diffraction, Versatility.

fast stress

fast texture

2D SAXS

GADDS - all applications with ONE instrument

18Kw 转靶 X射线衍射仪

X射线光源: X射线发生器最大输出功率≥18kW ;额定

电压20-

60kV; 最大额定电流450 mA;电流电压稳定度优于

±0.01% (外电压波动10%时, X光源自旋转阳极; 光

源震动0.2 微米以下; 焦斑尺寸0.5 x 10 mm

测角仪: 扫描方式θ/2θ测角仪,测角仪垂直放置;

测角仪采用光学编码器技术;角度重现性 0.0001?, 驱动方式:步进马达驱动; 最高定位速度:1500?/min

狭缝系统:包括索拉狭缝、发散狭缝、防散射狭缝、

接受狭缝等

闪烁计数器;线性范围:≥2 x 106 cps; 背底噪声:

<0.5

cps,可配备闪烁计数器、万特探测器、固体探测器、面探测器

等。

循环水冷系统:要求连续工作; 控温精度≤±2℃;

供水流量, 满足发生器要求, 进水度可调; 过

热保护

最新X射线衍射技术-The New D8 ADVANCE

with DAVINCI.DESIGN

DAVINCI.DESIGN: A revolutionary 3-level design

DAVINCI.MODE

Component Recognition

DAVINCI.SNAP-LOCK

Tool-free Change of Optics

DIFFRAC.DAVINCI

The Virtual Goniometer

DIFFRAC.DAVINCI=The Virtual Goniometer ?Graphical representation of the actual goniometer showing all mounted components plus their status

?Softwar e validated instrument configuration with real-time conflict detection

Dynamic list displaying all currently mounted

components

Component

Component

status

Unique icon of

optical component Current setting

1. Component

parameterisation

3. Conflict 2. Component detection

selection

1 Component parameterisation, e.g. TWIN Optic

Component

status: OK Push-button switch between

Bragg-Brentano and parallel

beam geometry

Slit aperture

2 Component selection, e.g. slits

Component

status: HINT

Push-button selection of any of the slits configured for the present instrument, e.g. - Absorber

- Filter

- Divergence slit

- No slit

- ... HINT: No slit inserted! - By intention? - By mistake?

The new D8 ADVANCE

TWIST TUBE Line

focus

Loosen

screws

Point

focus

tighten

screws Turn tube

head

Secondary

TWIN

Primary

LYNXEYE TWIN

TWIN optic for primary beam: TWIN optic for secondary beam: ? Variable slit ? Variable slit

? G?bel mirror ? Equatorial soller 0.2°

Switching modes:

motorized

software-controlled

alignment-free

The new D8 ADVANCE

TWIN - TWIN for Bragg-Brentano

LYNXEYE 1D Variable slit Variable slit

The new D8 ADVANCE

TWIN - TWIN for GID

LYNXEYE 0D

G?bel mirror

Equatorial

soller

The new D8 ADVANCE

TWIN - TWIN for XRR

LYNXEYE 0D

G?bel

KEC turned 90°mirror

Variable slit

The new D8 ADVANCE TWIN - TWIN for Microdiffraction G?bel LYNXEYE 1D

mirror

Variable slit

Micro

slit

15000 14000 13000 12000 11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000

15

Compare

Greem: D8 ADVANCE+LYNXEYE

Blue: D2 PHASER+ LYNXEYE

Red D8 ADVANCE+SC

20 30 40 50 60 70 8

2-Theta - Scale

File: LFP-02(SUZHOU_SC.raw - Type: 2Th/Th locked - Start: 15.000 ? - End: 79.993 ? - Step: 0.020 ? - Step time: 0.5 s - Temp.: 25 ? (Room - Time Started: 3 s - 2-Theta: 15.000 ? - Theta: 7.500 ? -

Operations: Import

Commander Sample ID - File: BJLTP010.6s.raw - Type: Locked Coupled - Start: 14.999 ? - End: 79.991 ? - Step: 0.020 ? - Step time: 0.6 s - Temp.: 25 ? (Room - Time Started: 0 s - 2-Theta: 14.999

Operations: Import

Commander Sample ID - File: BJLTP022.4s.raw - Type: Locked Coupled - Start: 14.999 ? - End: 79.991 ? - Step: 0.020 ? - Step time: 2.4 s - Temp.: 25 ? (Room - Time Started: 0 s - 2-Theta: 14.999

Operations: Import

The D2 PHASER

The Whole World of XRD on a Desktop

? World's fastest desktop

X-ray diffractometer

? Compact all-in-one

instrument

? Mobile for on-location

operation

? New DIFFRAC.SUITE

software

The D2 PHASERPlug'n Analyze

? No installation

? No alignment

? No instrument configuration

点、线、面探测器比较scintillation

detector

small spot measured scan necessary long measuring time

PSD

large 2θ range measured simultaneously

medium measuring time

GADDS

large 2θand chi range measured simultaneously

measurement of oriented samples

very short measuring times intensity versus 2θ by

integration of the data

核心部件与功能

2. 核核心部件

1高压发生器与X 光管

2精度测角仪与B-B衍射几何

3光学系统及其参数选

择对采集数据质量影响

4探测器

5控测、采集数据与数

据处理。

高压发生器与X光管

? 4 kW 发生器稳定性: ±0.005% ;

?3KW 陶瓷X光管,质保期4000小时寿命长,焦斑位置稳定;

?细焦斑 0.4×12mm,具有比功率高和分辨率好的优点;

?管焦斑大小和比功率的重要指标;

?冷却水耗:3.5升/分流量,如内部冷却<1.8 升/分。

高精度测角仪

步进马达加光学编码器确保测角仪快速准确定位,精度高,角度重现性达±0.0001?;

直径在φ380~760mm之间位置,以

利高分辨率和高强度选择;

2θ角扫描范围是-110~169?,最小步

长.0001?;

测角仪步进扫描采集数据并保存数据;

多种功能应用於测定试样多种信息。

3.Bragg-Brentano 衍射几何

设计原理:R1=R2=R ,试样转θ角,探测器转2θ角(2θ/θ

偶合

或试样不动,光管转θ,探测器转θ(θ/ θ偶合

θ

2 θ

聚焦圆随衍射角大小而变化,衍射角越大、聚焦圆半径越小,当2θ=0,聚焦圆半径r=∞;当2θ=1800时,r=R/2,且r = R/2sinθ。2010-9-11 He Chong Zhi 27

常规的X射线衍射 BB 几何

2010-9-11 He Chong Zhi 28

2010-9-11 He Chong Zhi 29

θ/2θ scan

N s N s

θ

Sample

Diffracting

planes

2010-9-11 He Chong Zhi 30

D8一维阵列探测器

聚焦圆

F

Sample

2010-9-11 He Chong Zhi 一维探测器

闪烁或固体探测器

31

4.光学系统及其参数选择对采集数据质量影响Equatorial

Axial

2010-9-11 He Chong Zhi 33

Irradiated specimen length vs detector

angle for fixed DS 50

45

40

35

30

25

20

15

10

5

0 10 20 2010-9-11 L

30 40 50 60

2θ (deg.

DS = 2mm

DS = 1mm

70 80 90 100 110 He Chong Zhi

L = Rα / sin θ

L is irradiated length

R is diffractometer radius

(250mm

α is divergence angle

34

Effect of Divergence slit

19000

18000

17000

16000 15000 14000 13000 12000 11000 10000 9000

8000

7000

6000

5000

4000

3000

2000

1000

42.81

2.0° Div slit

0.1° Div slit

42.9 43.0 43.1 43.2 43.3 43.4 43.5 43.6 43.7 43.8 43.9

2-Theta - Scale

Larger divergence slit results in much more intensity, but the peak position is shifted to lower angle due to flat specimen error.

2010-9-11 He Chong Zhi 35

光学系统狭缝大小的选择决定光束的强度和分辨率Detector

Divergence slit Tube

Antiscatter- slit

slit

Sample

Mono-

chromator

Soller 狭缝——限制轴向发散度

如不用 Soller狭缝,将导致衍射峰的位移与不对称性Effect of Soller slits

2100

2000

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

24.1 25 26

2-Theta - Scale

2010-9-11 He Chong Zhi 38

Effect of Detector slit 6000

5000

4000

3000

2000

1000

2010-9-11 52.2 52.3 52.4 52.5 52.6 52.7 52.8 52.9 He Chong Zhi

?0.6 mm,0.2 mm,0.1 mm

? Inverse relationship

between Intensity and

Resolution

?The smaller the slit the

better the resolution

? The larger the slit the

better the intensity

39

狭缝设置消除平面试样导致的半焣焦效应试样表面的曲率与聚焦圆的半径随衍射角θ的变化而改

变。采用平面试样―半聚焦‖方法衍射线不完全聚焦,出

现宽化,入射光束水平发散增大时,更为明显。

入射和衍射光路程中,设置各种狭缝,减少因辐射宽化和发散造成的测试误差。DS和SS称为发散和防发散狭缝,用以防止线束的宽化;RS称为接收狭缝用以减少寄生辐射。

入射线和衍射线还存在着垂直发散。S1和S2称为索拉狭缝,用以防止线束的垂直发散。

DS,SS,RS,S1,S2,狭缝大小的选择将影衍射线的强度和分辨率,应根据实验目的析衰选取。

光学系统参数选择对采集数据质量影响

考虑原则:在保证强度情况下提

高分辨率根据实验要求具体考

D8 Advance (闪烁计数器、固体探测器DS-SS-RS 光学参数常用设置:

1-1-0.1 高分辨率

1-1-0.2 强度与分辨率

2-1-0.2 强度与分辨率

2-2-0.2 高强度

2-2-0.6 高强度

sollor slit=2.3 & 4.0

LynxEye 阵列探测器光学系统参数

设置: DS 0.2-1; SS 3 or 8; RS-free

β过滤片

单色化几种方法晶体单色器

波高分析器 PHA

固体探测器能量分辨

2017X射线衍射及物相分析实验报告写法

请将以下内容手写或打印在中原工学院实验报告纸上。 实验报告内容:文中红体字部分请删除后补上自己写的内容班级学号姓名 综合实验X射线衍射仪的使用及物相分析 实验时间,地点 一、实验目的 1.了解x射线衍射仪的构造及使用方法; 2.熟悉x射线衍射仪对样品制备的要求; 3.学会对x射线衍射仪的衍射结果进行简单物相分析。 二、实验原理 (X射线衍射及物相分析原理分别见《材料现代分析方法》第一、二、三、五章。)三、实验设备 Ultima IV型变温全自动组合粉末多晶X射线衍射仪。 (以下为参考内容) X衍射仪由X射线发生器、测角仪、记录仪等几部分组成。

图1 热电子密封式X射线管的示意图 图1是目前常用的热电子密封式X射线管的示意图。阴极由钨丝绕成螺线形,工作时通电至白热状态。由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。为防止灯丝氧化并保证电子流稳定,管内抽成1.33×10-9~1.33×10-11的高真空。为使电子束集中,在灯丝外设有聚焦罩。阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等。当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。为了保护阳极靶面,管子工作时需强制冷却。为了使用流水冷却和操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。x射线管有相当厚的金属管套,使X射线只能从窗口射出。窗口由吸收系数较低的Be片制成。结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。用螺线形灯丝时,焦点的形状为长方形(面积常为1mm×10mm),此称为实际焦点。窗口位置的设计,使得射出的X射线与靶面成60角(图2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。一般的照相多采用点焦点,而线焦点则多用在衍射仪上。 图2 在与靶面成60角的方向上接收X射线束的示意图 自动化衍射仪采用微计算机进行程序的自动控制。图3为日本生产的Ultima IV型变温全自动组合粉末多晶X射线衍射仪工作原理方框图。入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。衍射线被探测器所接收,电脉冲经放大后进人脉冲高度分析器。信号脉冲可送至计数率仪,并在记录仪上画出衍射图。脉冲亦可送至计数器(以往称为定标器),经徽处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。控制衍射仪的专用微机可通过带编码器的步进电机控制试样(θ)及探测器(2θ)进行连续扫描、阶梯扫描,连动或分别动作等等。目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。 物相定性分析是X射线衍射分析中最常用的一项测试,衍射仪可自动完成这一过程。首先,仪器按所给定的条件进行衍射数据自动采集,接着进行寻峰处理并自动启动程序。

x光衍射实验报告doc

x光衍射实验报告 篇一:X射线衍射实验方法和数据分析 X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X 射线管产生连续X射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作

3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1) X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X 光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ… (2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线 X射线与物质的作用 X射线与物质相互作用产生各种复杂过程。就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。 图2X射线与物质的作用

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

x射线衍射仪原理

x射线衍射仪原理及应用 课程名称材料分析测试技术 系别金属材料工程系 专业金属材料工程 班级材料**** 姓名______ * *_ 学号******** 化学工程与现代材料学院制

x射线衍射仪原理及应用 基本原理: x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子,在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。 基本特征: X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰 基本构成: 1,高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。

x射线衍射实验

X-射线衍射法进行物相分析 一. 实验题目 X射线衍射物相定性分析 二. 实验目的及要求 学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。 三. 实验原理 根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X 射线物相分析法。 每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的 物相。 四. 实验仪器 图一X射线衍射仪 页脚内容1

本实验使用的仪器是Y-2000射线衍射仪( 丹东制造)。X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。衍射仪如图一所示。 1.X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS 配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 页脚内容2

X射线衍射实验

X 射线布拉格衍射实验 一、 实验目的 1) 观察用X 射线对NaCl 单晶的Bragg 衍射。 2) 确定X 射线αK 和βK 线的波长。 3) 验证Bragg 衍射定律 4) 明确X 射线的波长的性质。 二、 实验装置 德国莱宝教具公司生产的X 射线装置是用微处理器控制的可进行多种实验的小型X 射线装置。该装置的高压系统、X 光管和实验区域被完全密封起来,正面装有两扇铅玻璃门,当它们其中任意一扇被打开时会自动切断高压,具有较大的安全性。其测量结果通过计算机实时采集和处理,使用极其方便。 本实验所用装置为554 81X-RAY APPARATUS 。 在X 射线装置中,左侧上方是控制面板,其下方是连接面板。中间是X 光管室,装有Mo (钼)阳极的X 光管,其高度可通过底部的调解螺杆进行调整。右面是实验区域,如图1所示,其中左边装有准直器和锆滤片;中间是靶台,NaCl 和LiF 单晶就安装在靶台上;右边 是测角器,松开锁定杆可调整测角器的位 图1 实验区域图 置,端窗型G-M 计数管也安装在测角器上。X 射线装置的左侧面是主电源开关,右侧面有一圆形的荧光屏,它是一种表面涂有荧光物质的铅玻璃平板,用于在“透照法”实验中观察X 光线,平时用盖板罩起来以避免损坏荧光物质。其下方是空通道,它构成实验区域内外沟通的渠道,被设计成迷宫,以不使X 射线外泄。装置的底部有四个脚,上方有两个提手柄。 如图2,是控制面板的示意图。

b5 图 2 控制面板 其中b1是显示位置,其顶部显示当前计数率,底部显示所用键的设置参数。在“耦合”模式下,靶的角度位置显示在显示区域的底部而顶部则显示传感器的计数率与角度位置。b2是调节旋钮,所有的参数设置均通过它来调节。b3是参数选择区域,它们是:U (管电压)、I (管电流)、△t (测量时间)、△β(测角器转动的角 步幅)、β(测角器的转动范围,即上限角和下限角)。b4扫描模式区域,共有SENSOR (传感器)、TARGET (靶)和COUPLED (耦合,即传感器和靶以2:1的方式运动)三种模式,ZERO 按钮用于复位到系统的零位置。b5是操作键区域,主要有:RESET (复位到系统的缺省值)、REPLAY (将最后的测量数据传送至XY 记录仪或PC 机)、SCAN ON/OFF (开启/关闭自动扫描)、 (开启声音脉冲)、HV ON/OFF (开启/关闭高压),当开启高压时,其上方的指示灯将发出闪烁的红光,表示正在发射X 射线。 三、 实验原理 1) X 射线的产生和性质 X射线的产生一般利用高速电子和物质原子的碰撞实现。常见的X射线管是一个真空二极管,管内阴极是炽热的钨丝,可发射电子,阳极是表面嵌有靶材料的钼块。两极加上几十千伏的高压,由此产生很强的电场使电子到达阳极时获得高速。高速运动的电子打在阳极靶面上,它的动能一部分转化为X射线的能量,其余大部分变为热能使阳极温度迅速升高,工作时需要对阳极散热。 从X射线管发出的X射线可以分为两部分:一是具有连续波长的X射线,构成连续x射线谱;另一部分是具有特定波长的标识谱,又名特征谱,它叠加在连续谱上成为几个尖锐的峰,如图3所示。 产生连续谱和标识谱的机理不同: 连续谱:高速电子到达阳极表面时,电子的运动 突然受阻,根据电磁场理论,这种电子产生韧制辐射, 图3 X 射线光谱图

X射线衍射试验指导书

实验指导书 实验一“衍射仪的结构、原理及物相分析” 一.实验目的及要求 学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤。 二.实验原理 根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。 三.实验仪器 本实验使用的仪器是D/max 2500 X射线衍射仪(日本理学)。X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。图1是D/max 2500 X射线衍射仪。 图1 Rigaku D/max2500

1.X射线管 衍射用X射线管实际都属于热电子二极管,有密闭式和转靶式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2.5千瓦,转靶式一般在10千瓦以上,其特点是阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的。本实验中使用的日本理学D/max 2500X射线衍射仪采用旋转靶,最高功率高达18kw。图2是X射线管结构示意图。阴极由钨丝绕成螺线形,工作时通电至白热状态。由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。为防止灯丝氧化并保证电子流稳定,转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度。为使电子束集中,在灯丝外设有聚焦罩。阳极靶由熔点高、导热性好的铜制成,靶面上镀一层纯金属。常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等,本实验中靶材料为Cu。当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。为了保护阳极靶面,管子工作时需强制冷却。为了使用流水冷却,也为了操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。X射线管有相当厚的金属管套,使X射线只能从窗口射出。窗口由吸收系数较低的Be片制成。 图2 X射线管示意图 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2. 测角仪 测角仪是粉末X射线衍射仪的核心部件,实现对衍射角的测量。本实验中测角仪

实验一-X射线衍射技术及物相分析

实验一 X射线衍射技术及物相分析 一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 1.X射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,

实验2X射线衍射法测定晶胞常数

实验1 Gaussian03初步运用--分子构建、优化和红外光谱模拟计算 一、实验目的 掌握Gaussian软件的安装过程,了解Gaussian软件的作用; 掌握分子几何构型的输入方法;苯、乙炔、乙烯、乙烷、乙酰氯分子 运用高斯软件进行乙酰氯分子模型的构建及优化并且计算乙酰氯分子的相关热力学性质 二、实验过程: (实验软件为guassview 3.07,计算机系统为wins7 32位的。) Ⅰ、Gaussian软件的安装: 第一步:从公共邮箱下载了一个Gaussian03的压缩包,进行解压后得到一个名为Gaussian03的文件夹。 第二步:在名为Gaussian03的文件夹中找到一个后缀名为exe的应用程序文件,双击后安装过程就开始了。安装需要注册码,在名为Gaussian03的文件夹中有一个名为keys的文件中注册码,输入注册码后安装过程来到了下一步。 第三步: 安装的种类有三种:typical,compact和custom,其中typical是一种大多数使用者选择的安装方式,不需要自己选择安装的具体信息,因此选择了这种安装方式。第四步:选择好安装方式后,就需要选择安装路径,选择好E:/应用程序/高斯软件这个安装路径,然后电脑完成了Gaussian03软件的安装。 II、操作过程:(1)乙酰氯分子的优化: 打开gaussian view View→builder 弹出下框:

画完后计算优化:Calculate→gaussian 点击submit进行计算即可,但可能由于软件安装时出了问题,该键不能点击,故优化分子失败。 (2)计算乙酰氯的热力学性质 Calculate→gaussian 在如下图所示的Job Type中选择“opt+freq”:

X射线衍射实验样品制备要求

X射线衍射实验样品制备要求 金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。 对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。因此要求测试时合理选择响应的方向平面。 对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛 光,消除表面应变层。 粉末样品要求磨成320目的粒度,约40微米。粒度粗大衍射强度底,峰形不好,分辨率低。要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。 粉末样品要求在3克左右,如果太少也需5毫克。 样品可以是金属、非金属、有机、无机材料粉末。 对于研究课题使用的、购买的各种原料一定要进行鉴定,如材料分子式,晶型,结晶度,粒度等。以免用错原料。 对于不同基体的薄膜样品,要了解检验确定基片的取向,X射线测量的膜厚度约20个纳米。 对于纤维样品的测试应该提出测试纤维的照射方向,是平行照射还是垂直照射,因为取向不同衍射强度也不相同。 对于焊接材料,如断口、焊缝表面的衍射分析,要求断口相对平整,

提供断口所含元素。如果一个断口照射面积小则可用两个或三个断口拼起来。 为保证对实验样品有一个好的实验结果,对于特殊的样品可以找老师帮助提出衍射实验方案。 要求研究生、博士生、具备材料X射线衍射数据的分析解析能力,能独立的鉴定对照PDF卡标准衍射数据。实验室为同学们提供PDF数据库的检索。 X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、各种纤维结构与取相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥的物相分析等。 非金属材料的X射线衍射技术可以分析材料合成结构、氧化物固相相转变、电化学材料结构变化、纳米材料掺杂、催化剂材料掺杂、晶体材料结构、金属非金属氧化膜、高分子材料结晶度、各种沉积物、挥发物、化学产物、氧化膜相分析、化学镀电镀层相分析等。 X射线实验室接受同学们的XRD衍射技术咨询和指导,并提供PDF检索数据库供同学们检索。 如果对样品的成分不了解可以利用X射线荧光光谱仪测定成分为X射线衍射分析提供成分信息。 X射线衍射实验的准确性和实验得到的信息质量好与坏与样品的制备有很大关系,在做XRD衍射实验时合理处理样品和制备样品。

X射线衍射图

X射线衍射分析的实验方法及其应用 自1896年X射线被发现以来,可利用X射线分辨的物质系统越来越复杂。从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。此外,在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。本文主要介绍X射线衍射的原理和应用。 1、 X射线衍射原理 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。 衍射线空间方位与晶体结构的关系可用布拉格方程表示: 1.1 运动学衍射理论 Darwin的理论称为X射线衍射运动学理论。该理论把衍射现象作为三维Frannhofer衍射问题来处理,认为晶体的每个体积元的散射与其它体积元的散射无关,而且散射线通过晶体时不会再被散射。虽然这样处理可以得出足够精确的衍射方向,也能得出衍射强度,但运动学理论的根本性假设并不完全合理。因为散射线在晶体内一定会被再次散射,除了与原射线相结合外,散射线之间也能相互结合。Darwin不久以后就认识到这点,并在他的理论中作出了多重散射修正。 1.2 动力学衍射理论 Ewald的理论称为动力学理论。该理论考虑到了晶体内所有波的相互作用,认为入射线与衍射线在晶体内相干地结合,而且能来回地交换能量。两种理论对细小的晶体粉末得到的强度公式相同,而对大块完整的晶体,则必须采用动力学理论才能得出正确的结果。动力学理论在参考文献里有详细介绍。 2 X射线衍射方法: 研究晶体材料,X射线衍射方法非常理想非常有效,而对于液体和非晶态物固体,这种方法也能提供许多基本的重要数据。所以X射线衍射法被认为是研究固体最有效的工具。在各种衍射实验方法中,基本方法有单晶法、多晶法和双晶法。 2.1 单晶衍射法 单晶X射线衍射分析的基本方法为劳埃法与周转晶体法。 2.1.1 劳埃法 劳埃法以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的

X射线衍射实验报告

华东理工大学 实验报告 实验名称:X射线衍射实验 姓名:陈维 学号:030100890 专业:化学工程 班级:工程105班 页脚内容1

X射线衍射实验报告 实验目的 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 实验原理 根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X 射线物相分析法。每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。 衍射线空间方位与晶体结构的关系可用布拉格方程表示: 页脚内容2

页脚内容3 实验仪器 本实验使用的X 射线衍射仪是由日本理学制造的。X 射线衍射仪主要由X 射线发生器(X 射线管)、测角仪、X 射线探测器、计算机控制处理系统等组成。衍射仪的结构如下图所示。 1 X 射线管 X 射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式, 由阴极灯丝、阳极、聚焦罩等组成, 功率大部分在 1~2千瓦。可拆卸式X 射线管又称旋转阳极 靶,其功率比密闭式大许多倍, 一般为 12~60千瓦。常用的X 射 线靶材有 W 、Ag 、Mo 、Ni 、Co 、Fe 、Cr 、Cu 等。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X 射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2测角仪 测角仪是粉末X 射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、

X射线衍射实验报告

实验报告:X 射线衍射 一、实验原理 X 射线衍射分析技术是一种十分有效的材料分析方法,在众多领域的研究和生产中被广泛应用。X 射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质(晶体或非晶体) 进行衍射分析时,该物质被X 射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。X 射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。因此,X 射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。 X 射线与物质的相互作用 X 射线与物质的相互作用分为两个方面,一是被原子吸收,产生光电效应;二是被电子散射。X 射线衍射中利用的就是被电子散射的X 射线。 X 射线散射:当光子和原子上束缚较紧的电子相互作用时,光子的行进方向受到影响而发生改变,但它的能量并不损失,故散射线的波长和原来的一样,这种散射波之间可以相互干涉,引起衍射效应,这是相干散射,是取得衍射数据的基础。 X 射线的相干散射是XRD 技术应用的基础,接下来研究一下X 射线衍射的条件,找到其与物质本身结构之间的关系。 X 射线衍射 一束平行的X 光照到两个散射中心O 、M 上,见下图O 与M 之间的距离远小于它们到观测点的距离,从而可以认为,观测到的是两束平行散射线的干涉。 下面考查散射角为2θ时散射线的干涉情况。 0?s 和?s 分别表示入射线和散射线方向上的单位矢量。两条散射线之间的光程差为mo on δ=+ 即00????()s r s r s s r δ=-?+?=-? 其中r 为两个散射中心之间的 位置矢量,与δ相应的相位差φ应 为 0??22s s r π φδπλλ-=?=? 散射线之间的相位差φ是决定 散射线干涉结果的关键量。因此有 必要再进一步讨论。 定义 0??s s s λ-= 为散射矢量 如右图所示,散射矢量与散射角2θ的角平分线垂直,它 的大小为 2sin s θ λ= 由此可见,散射矢量的大小只与散射角和所用波长有关,

X射线衍射实验方法和数据分析

X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作 3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1)X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…

X射线衍射实验报告

1、前言和实验目的 (1)了解X射线产生和X射线衍射的原理。 (2)掌握使用X射线衍射仪测定晶体晶面间隔的方法。 2、实验原理 (1)X射线产生机理:X射线管的灯丝发射的电子在强磁场的作用下加速,以很高的速度打在金属靶上,从而产生X射线。其中由于金属给电子带来的巨大的减速作用会使电子发出具有连续波谱的X射线;而若是高速电子将金属原子的内层电子打出,则其他层的电子就会向内跃迁,从而产生具有特定波长的X射线。故由此得到的X射线是具有特征峰的连续波谱。其它层向K层跃迁产生的射线统称为K线系(其中L层来的称为Kα线,M层来的称为Kβ线),向L层跃迁的称为L线系。 (2)晶体学基础:晶体中的原子、分子或离子都是有规则呈周期性排布的,排布方式称为晶格结构,在晶体学上常取与客观晶体有同等对称性的平行六面体作为构成晶体体积的最小单元,称为晶胞。 (3)X射线衍射机理:由于X射线的波长很小,不可能拿一般的光栅做衍射实验,但晶体中晶胞的线度却跟X射线波长在同一数量级上,因此可以用晶体来做X射线的衍射实验(如图一)。当两反射光同相时,产生干涉加强,此时满足如下关系式 QA'Q'-PAP'=SA'+A'T=nλ n=0,±1,±2……即: 满足此式则在该处能观察到衍射极大,试验中通过测量不同角度在相同时间内所接收到的X射线粒子数来进行判断,得到极大衍射角也可由上式推得晶格系数d。

图一 3、实验器材 采用德国莱宝教具公司所生产的X射线装置,它是用微处理器控制的可进行多种实验的小型X射线装置。该装置的高压系统、X光管和实验区域被完全密封起来,正面装有两扇铅玻璃门,当它们其中任意一扇被打开时会自动切断高压,具有较大的安全性。其测量结果通过计算机进行实时采集和处理,使用极其方便。 4、注意事项 1.NaCl单晶易潮、易碎,要小心安放 2.不能用手拿NaCl晶体的正面,只能拿侧面 3.调节时要细致,由于要调节两个参数,可往复固定一个调节另一个4.可通过修改参数使得实验进行的更快或者更加精确,可灵活运用5、实验数据、实验数据处理、计算结果和估算不确定度等 实验所用的X射线发生器阳极材料为Mo,其Kα线波长 λ2=71.073pm,Kβ线波长为λ1=63.2288pm. 实验得到的NaCl的X射线衍射图样如下图所示:

第4章 X射线衍射仪实验技术与应用.

第4章 X射线衍射仪实验技术与应用 Beijing China , 2010.09 He Chong Zhi 1. D8 X射线衍射仪系列系统与功能简介 2. 核心部件与功能 3. Bragg-Brentano 衍射几何 4. 光学系统及其参数选择对采集数据质量影响 5. 平行光束-Geobel 镜和掠射入射衍射 6. X射线透镜 7. 探测器 8. 控测、采集数据与测量条件 9. 非常态结构动态衍射分析 10. 应用X射线衍射仪衍射关心的具体问题1. D8 X射线衍射仪系列系统与功能简介 配置光学编码器的测角仪 高精度的Dovetail导轨, 模块化的 光学器件快速互换 射线防护好:0.2 Sv/h 通过欧 洲安全论证,2 套安全电路

配置各种特殊功能的附件,即 可组成具有各种功能的衍射 仪系统,如高低温及不同气氛 与压力下的结构变化的动态 分析等。 在 D8 Advance 基础上,组建 D8 X射 线衍射仪系列产品。 D8 Advance D8 DISCOVER 单晶外延膜、薄膜分析高分辨衍射分析单晶外延膜的结构特征, 用Bond法超精度地测点阵参数、点阵错 配、化学组份,用Rocking曲线测定测算 嵌镶结构、取向,作倒易空间测绘; 用 于分析薄膜的厚度、密度、表面与界面 粗糙度等。 高精度的尤拉环 高强度的织构及应力测量 D8 GADDS 系统Fast phase ID microdiffraction percent crystallinity 功能:Powders, Texture, Stress,SAXS.

特点:Fast speed,Micro-diffraction, Versatility. fast stress fast texture 2D SAXS GADDS - all applications with ONE instrument 18Kw 转靶 X射线衍射仪 X射线光源: X射线发生器最大输出功率≥18kW ;额定 电压20- 60kV; 最大额定电流450 mA;电流电压稳定度优于 ±0.01% (外电压波动10%时, X光源自旋转阳极; 光 源震动0.2 微米以下; 焦斑尺寸0.5 x 10 mm 测角仪: 扫描方式θ/2θ测角仪,测角仪垂直放置; 测角仪采用光学编码器技术;角度重现性 0.0001?, 驱动方式:步进马达驱动; 最高定位速度:1500?/min 狭缝系统:包括索拉狭缝、发散狭缝、防散射狭缝、 接受狭缝等 闪烁计数器;线性范围:≥2 x 106 cps; 背底噪声: <0.5 cps,可配备闪烁计数器、万特探测器、固体探测器、面探测器

实验一-X射线衍射技术及物相分析

一、实验目的与要求 1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤; 3.给定实验样品,设计实验方案,做出正确分析鉴定结果。 二、实验仪器 本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。 射线管 X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。 选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。 2.测角仪 测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。 (1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为毫米,成为×10平方毫米的线状X射线源。 (2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。 (3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给毫米、毫米、毫米宽的接收狭缝。 (4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS 配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。 (5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射

x射线衍射成像技术最新发展

课程论文 题目X射线衍射成像技术的 原理以及最新发展与应用学院 专业 班级 学生 学号 二〇年月日

摘要 随着科技的发展,基于傅里叶光学的X射线衍射技术发展越来越先进,形成了X射线衍射成像(X-ray diffraction imaging,XDI)和相干X射线衍射成像(coherent X-ray diffractive imaging,CXDI/CDI)等技术,它们广泛应用于材料、医学、生物、物理等领域,为人们探索微观世界的结构提供很好的工具。本文主要论述了X射线衍射的基本原理,并讲述了它们在不同应用中的最新发展,包括X 射线衍射成像和相干X射线衍射成像的二维、三维成像等技术,同时简单的说明了它们在一些领域的应用。 关键词:X射线衍射;X射线衍射成像;相干X射线衍射成像 1前言 近几十年来,X射线衍射成像技术得到快速发展,它具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点,大量的用于材料内部结构分析、生物分子探究、医学以及危险品扫描等领域。近一个世纪以来,科学家们不断探索测定物质结构的方法,希望能够看到物质内部的原子是如何排列的。而传统用的最多的方法是X射线晶体衍射分析的方法(XRD)能够实现物质的结构的测定,但它存在一定的局限性,然而在实际应用中,会受到很多的限制,为了更好的研究物质的结构,科学家们做了大量的工作,对X射线衍射技术进行改进升级,取得了一些最新的更成果,例如X射线衍射成像技术(X- ray diffraction imaging,XDI)、相干X射线衍射成像技术(coherent X-ray diffractive imaging,CXDI/CDI)等。 近年来,X射线衍射增强成像(X Ray Diffraction enhanced imaging,DEI)也发展迅速。射线相位衬度成像是一种新型的X射线成像技术,通过记录射线穿过物体后相位的改变对物体进行成像,可以提供比传统的X射线吸收成像更高的图像衬度以及空间分辨力。衍射增强成像方法(X Diffraction enhanced imaging,DEI)是X射线相位衬度成像方法之一,利用一块放置在物体和探测器之间的分析晶体提取物体的吸收、折射以及散射信息并进行成像。但是它跟X射线衍射成像方法不同,不是同一种技术。 2 X射线衍射基本原理

相关文档
最新文档