数学分析 一致收敛积分的性质

数学分析论文

曲线积分的计算 摘要:曲线积分是定积分的推广,曲线积分的积分区域是平面的或空间的曲线,是某种和式的极限。从计算方法讲,曲线积分要化为定积分来计算。曲线积分分为第Ⅰ型、第Ⅱ型,重点放在第Ⅱ型上。 关键词:对弧长曲线积分 对坐标曲线积分 定积分 对称性 格林公式 积分与路径无关 斯托克斯公式 前言:第二型曲线积分与第一型曲线积分相比有明显不同的几何意义和物理意义,第一型曲线积分可以看成是定积分的计算,其意义较容易理解,计算也相对简单。而第二型曲线积分又称为对坐标的积分,具有第一型曲线积分不具有的方向性,计算较为复杂,物理意义十分明显,变力分别在x 轴,y 轴沿曲线做功,这在物理学上有着重要的应用。对于不同类型的被积函数,对应的计算方法也不同。为了使计算更为简单,本文阐述了曲线积分的计算方法。 一、基本方法 1、曲线积分【第一类 ( 对弧长 )、第二类 ( 对坐标 ) 】→ (转化)定积分 (1) 选择积分变量 Ⅰ.用参数方程 Ⅱ.用直角坐标方程 Ⅲ.用极坐标方程 (2) 确定积分上下限 Ⅰ.第一类: 下小上大 Ⅱ.第二类: 下始上终 2、对弧长曲线积分的计算 (1)设f (x ,y )在曲线弧L 上有定义且连续,L 的参数方程为{ (α≥t ≤β),其中φ(t )、ψ(t )在[α,β] 上具有一阶连续导数且ds y x f L ?),(=dt t t t t f ?+βα ψ?ψ?)(')(')](),([22(α<β) 注意: (1)定积分的下限α一定要小于上限β。 (2)f(x,y)中x,y 不彼此独立,而是相互有关的。 特殊情形 (1) L:y=)(x ψ a b x ≤≤ ds y x f L ? ),(=dx x x x f b a ?+)('1)](,[2ψψ (2)L:x=)(y ? c d y ≤≤ ds y x f L ?),(=y y f d c ?),([?例1求I=?L xyds ,L:椭圆 解:I=22 /02)cos ()sin (sin cos ?+-πt b t a t tb a dt x=φ(t) y=ψ(t)

数学分析的基本内容和方法

渤海大学数理学院 毕业论文 论文题目:简述数学分析中的基本内容和方法 系别:数学系 专业年级:数学与应用数学专业07级 姓名:王迪 学号:07020176 指导教师:王长忠 日期:2011年5月20日

目录 一、数学分析中的研究对象 (3) 二、数学分析的基本内容 (3) 三、数学分析中的基本概念和相互关系 (3) 1.极限概念 (4) 2.连续和一致连续的概念 (5) 3.收敛和一致收敛概念 (6) 4.导数概念 (6) 5.微分概念 (7) 6.原函数和不定积分 (7) 7.定积分 (8) 8.一元函数中极限、连续、导数、微分之间的关系 (8) 9.多元函数中,极限、连续、偏导数、方向导数和全微分之间的关系 (9) 10.连续与一致连续的关系 (9) 11.收敛和一致收敛的关系 (9) 12.连续、不定积分和定积分的关系 (10) 13.微分和积分的关系 (10) 四、数学分析的主要计算 (11) 1.极限的求法 (12) 2.微分学中的计算 (13) 3.积分学中的计算 (14) 4.无穷级数中的计算 (14) 五、数学分析的主要理论 (15) 1.实数的连续性和极限的存在性 (16) 2.连续函数的基本性质 (17) 3.微分学的基本定理和泰勒公式 (18) 4.积分中的理论 (19) 5.无穷级数和广义积分的敛散性 (20) 6.函数级数和广义参变量积分的一致收敛性 (21) 六、数学分析的基本方法 (21) 七、数学分析教学内容的初步实践与思考 (22)

简述数学分析中的基本内容和方法 王迪 (渤海大学数学系辽宁锦州121000中国) 摘要:数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。应全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。 关键词:极限,微分,积分,近似。 Contents and methods of mathematical analysis Wang di (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:Mathematical analysis is based on the theory of real numbers. The real number system is the continuity of the most important feature, with the continuity of real numbers to discuss the limit, continuity, differentiation and integration. It is in discussing the function of the various limits of the legitimacy of the process of operation, it gradually established system of rigorous mathematical theory. Mathematical analysis should be fully grasp the basic theory of knowledge; develop logical thinking and rigorous reasoning ability; people with good computing power and skills; improve the mathematical model, and apply the tools of calculus to solve practical problems. Key word: Limits, differentiation, integration, and similar.

《数学分析》中关于极限概念教学的一点探讨

《数学分析》中关于极限概念教学的一点探讨 作者:张彩霞 来源:《科技创新导报》2011年第12期 摘要:在初学数学分析时,共有二十八种极限概念,这些极限概念是数学分析的基础,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。教师在教学过程中要引导学生将各种极限概念的定性描述准确地转化为定量描述,并能深刻理解,逐渐灵活运用。 关键词:数学分析极限概念教学 中图分类号:G6 文献标识码:A 文章编号:1674-098X(2011)04(c)-0147-02 《数学分析》课程是大学数学系一门重要的基础课,对这门课程学习的好坏,直接影响到学生思维能力的形成及对后续课程的接受能力。学生从高中刚入大学,学习内容从原来的具体到抽象、从离散到连续、从有限到无限,使学生感到《数学分析》很难,特别是刚开始接触各种极限概念的定量描述,理解起来很吃力.而数学分析这门课程就其自身而言,有着理论上的严密性和前后的连贯性,极限概念是数学分析的基石,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。本人在教学过程中,深刻体会到关于极限概念教学的重要性。 在初学数学分析时,就有二十八种极限概念(包括正常极限和非正常极限),教师在教学过程中的任务是引导学生将这二十八种极限概念从定性描述准确地转化为定量描述。并使学生对各种极限概念的定量描述能深刻理解,逐渐灵活运用。 1 正常极限概念 1.1 数列极限概念 数列极限的概念是最开始要学习的极限概念,如果学生对这个概念能准确理解的话,对于理解接下来要学习的函数极限概念就容易多了,所以对数列极限概念的教学至关重要。 首先观察数列:: 特征:当无限增大时,无限接近于 此时称该数列收敛于0,或称0为该数列的极限。 “无限增大”和“无限接近”是对数列变化性态的一种形象描述,是定性的说明,而不是定量的描述,这在数学上无法进行严谨地论证。所以我们要定量地描述该数列的特征。

数学分析学年论文

学年论文 题目: 学生: 学号: 院(系): 专业: 指导教师: 2011 年月日

浅谈微积分以及如何学好数学分析 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分的基本原理告诉我们求导和积分是互逆的运算,微积分的精髓告诉我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到很多非线性问题,那么解决这样的问题有没有统一的方法呢?经过研究思考和总结,我认为,微积分的基本方法在于:先微分,后积分。 定理:如果函数F(x)是连续函数,则f(x)在区间[a,b]上的一个原函数.牛顿--莱布尼兹公式公式进一步揭示了定积分与原函数(不定积分)之间的联系。它表明:一个连续函数在区间[a,b]上的定积分等于它的任一个原函数在[a,b]上的增量。因此它就给定积分提供了一个有效而简便的计算方法。通常也把牛顿--莱布尼兹公式称作微积分基本公式 微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。 要学好微积分,我觉得应该注意以下3个方面: 1、基本概念 常常是这样,理解概念比理解定理更困难,而且更基本.概念不清前进.理解概念要从两个方面入手.一是概念的内涵,一是概念的外延.概念的内涵就是概念的基本属性.概念的外延就是概念所概括的一切对象.微积分的基本概念有五个:函数,极限,导数,微分和定积分. 函数概念讲的是两个实数集合间的对应关系.首先使用函数一词的是莱布尼兹,在1692年的论文中他第一次提出函数这一概念.随着数学的发展,函数的定义不断改进和明确.最先将函数概念公式化的是约翰.伯努利,他在1718年说:"一个变量的函数是指由这个变量和常量以任意一种方式组成的一种量."欧拉将伯努利的思想进一步解析化.在《无限小分析引论》(1748)中,他将函数定义为"变量的函数是一个由该变量与一些常数以任意方式组成的解析表达式.并明确宣布:"数学分析是关于函数的科学."微积分被视为建立的微分基础上的函数论.欧拉的函数定义在18世纪后期占据了统治地位.在这一定义的基础上,函数概念本身大大丰富了.欧拉还明确区分了代数函数与超越函数.他把超越函数看成是用无穷多次算术运算得到的表达式,即用无穷级数表示的函数.第一个给出函数一般定义的是

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

数学分析中极限的化归转化思想方法

万方数据

万方数据

万方数据

试论数学分析中极限的化归转化思想方法 作者:杨丽星 作者单位:丽江师范高等专科学校数理系 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2010,""(12) 被引用次数:0次 参考文献(18条) 1.华东师大教学系.《数学分析》.高等教育出版社,1991 2.复旦大学数学系.《数学分析》.高等教育出版社,1983 3.解思泽,赵树智.《数学思想方法纵横论》.科学出版社,1987 4.明清河.《教学分析的思想与方法》.山东大学出版社,2004 5.徐利治.《数学方法论选讲》.华中工学院,1988 6.张雄,李得虎.《数学方法论与解题研究》.高等教育出版社,2003 7.米山国藏.《教学的精神、思想和方法》.四川教育出版社,1986 8.史九一,朱梧槚.《化归与归论化联想》.江苏教育出版社,1989 9.解思泽,徐本顺.《数学思想方法》.山东教育出版社,1995 10.M.克莱因.《古今数学思想》.上海科技社,1981 11.王仲春,李元中.《数学思维与数学方法论》.高等教育出版社,1989 12.喻平.《数学问题化归理论与方法》.广西师大出版社,1999 13.钱吉林等.《数学分析题解精粹》.崇文书局,2003 14.杨永平.运用化归思想,探索解题途径,数学通报,1994(08) 15.凌瑞壁.浅谈数学分析中的化归思想.广西教育学报,1995(02) 16.陈向阳.浅谈数学分析中的化归思想和化归法.桂林教育学院学报,1996(03) 17.黄焕萍.倒析数学分析中的化归思想方法.广西师院学报,1997(01) 18.林远华.化归思想在数学分析解题中的应用.河池师专学报,2002(02) 本文链接:https://www.360docs.net/doc/9113149841.html,/Periodical_kjxx201012407.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:7949722f-5a15-4b0c-928e-9dcf008e8a3f 下载时间:2010年8月11日

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

数学分析 重积分

第二十一章重积分 教学目的:1.理解并掌握二重积分的有关概念及可积条件,进而会计算二重积分; 2.理解三重积分的概念,掌握三重积分的计算方法,并能应用其解决有关的数学、物理方面的计算问题; 教学重点难点:本章的重点是重积分的计算和格林公式;难点是化重积分为累次积分。 教学时数:22学时 § 1 二重积分概念 一.矩形域上的二重积分 :从曲顶柱体的体积引入. 用直线网分割 . 定义二重积分 . 例1用定义计算二重积分 . 用直线网 分割该正方形 , 在每个正方形上取其右上顶点为介点 . 解 . 二. 可积条件 : D . 大和与小和. Th 1 , .

Th 2 , . Th 3 在D上连续 , Th 4 设 D ) . 若在D上有界 , 且 ( 或 在D \ 上连续 , 则 三.一般域上的二重积分: 1.定义:一般域上的二重积分. 2.可求面积图形: 用特征函数定义. 四.二重积分的性质 : 性质1 . 性质2 关于函数可加性 . 在D上可积在 性质3 则 和可积 , 且. 性质4 关于函数单调性 . 性质5 .

性质6 . 性质7 中值定理 . Th 若区域D 的边界是由有限条连续曲线 ( 或 在D上可积 . )组成 , 在D上连续 , 则 例3去掉积分中的绝对值 . § 2 二重积分的计算 二. 化二重积分为累次积分: 矩形域上的二重积分: 1. 2. 简单域上的二重积分: 简推公式, 一般结果]P219Th9. 例1 , . 解法一P221例3 , 解法二为三角形, 三个顶点为 . 例2 , . P221例2. 的两直交圆柱所围立体的体积 . P222例4. 例3求底半径为

数学分析论文

数学分析中求极限的方法总结 摘要 数学分析是以极限为工具来研究函数的学科,掌握求极限的方法对学习数学分析有很大帮助,然而求极限的题型多变,技巧性强,本文总结了几种一般的求极限方法,并对专用于求数列极限和函数极限以及两者通用的方法进行归类总结,同时为每种方法相应的举例对方法加以说明. 关键词 极限 数列极限 函数极限 方法 总结 在我们所学过的数学分析中有数列极限和函数极限两种,我将用于专门求数列极限或函数极限,两者通用的方法进行了如下归纳. 1 求数列极限的方法 1.1 定义法 这是求数列极限最基本的方法. 设{n x }是数列,A 为常数,0>?ε,?正整数N ,当N n >有ε<-A x n 成立,称{n x }以A 为极限或{n x }收敛于A ,记作A x n n =∞ →lim .[1] 例1 证明0)1(lim =-∞→n n n 证明:0>?ε,取1]1 [+=εN ,则当N n >时,有 ε<--0)1(n n 0)1(l i m =-∴∞→n n n 1.2 等差等比数列的应用 求等比数列极限用此法必须保证公比1

高等数学中极限问题的解法详析

数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则 求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。 关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中 值定理, 定积分, 泰勒展开式, 级数收敛的必要条件. 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则 有 lim n x y a →∞ = . 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{ } n y 和 { } n z ,使得n n n y x z ≤≤。 例[1] 222111 ....... 1 2 n x n n n n = + ++++ 求n x 的极限 解:因为n x 单调递减,所以存在最大项和最小项

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

如何撰写数学分析优秀论文

数学分析精品课程系列讲座 如何撰写数学分析优秀论文 张开能 (2010年2月10日) 第一章学术论文 §1.何谓学术优秀论文 学术论文是对某科学领域中的某个问题进行探讨、研究,表述其研究成果的文章。学术论文,也称科学论文、研究论文。 一.学术论文 1.可以是在某学科领域中经过自己的观察、实验、实践,有新的发现、发明、创造,陈述新的见解或主张; 2.可以是把一些分散的材料系统化,用新的观点或用新的方法加以论证,得出新的结论; 3.可以是推翻某学科领域中的某种旧的观点,提出新的见解。 二.学术论文的特征 学术论文的显著特征: 论文内容必须具有新发现、新发明、新创造或新推进。 三.学术论文的功能 学术论文的功能: 1.促进社会发展. 2.进行学术交流. 3.为人材考核提供一定的依据. 4.训练提高科研能力和写作能力. 总体上讲,撰写学术论文,可以提高作者调动和运用知识的能力,掌握分析研究问题的方法,可以提高科研能力、科研水平及理论思维水平。研读学术论文,则可以从中获取较为密集的、系统的、深广的知识,从而大大提高读者的知识水平和理论水平. §2.学术论文的性质 一.科学性 1.学术论文应本着科学的态度,运用科学的原理和方法,去阐明新的科学问题. 2.学术论文引用的观点和材料要有科学性. 二.理论性 1.每一门学科都有独特的研究领域,也都有各自的专门的学术语言、理论概念及理论体系. 2.学术论文应以正确的理论为基石,表述有一定的理论深度的科学研究成果. 三.创造性 1.论文一定要有新意.

2.创造性或创新性、创见性、独创性,是科学研究和学术论文的生命,是衡量学术论文价值的根本标志. 四.规范性 1.学术论文行文格式上要规范. 2.学术论文语言表达上要规范. §3.学术论文的分类 一.科研专业论文 科研专业论文,是记述创新性研究工作成果的书面文章。这种文章是指: 1.学科领域中专业技术人员表述科研的研究成果. 2.某些实验性理论性或观测性的新知识的科学记录. 3.某些已知原理应用于实际并取新进展的科学总结. 二.学业论文 (一).学年论文 学业论文指在校学生撰写的学术论文,它包括学年论文和毕业论文.在校学生在老师的指导下,通过撰写学年论文和毕业论文,培养科学研究的能力,同时借以考察同学掌握知识的深度、广度及解决问题的能力。 学年论文,是高等学校三年级学生的一种独立作业,写作目的是使学生初步学会运用专业知识进行科学研究的方法. (二). 毕业论文 (Ⅰ) .毕业论文 毕业论文,是高等学校应届毕业生的一种总结性的独立作业. 写毕业论文是高等学校学生为完成学业必须科目之一,是高等学校(包括函授、自学考试等办学形式)教学过程中的重要环节之一.其目的在于总结学生在校期间的学习成果,培养其具有综合应用所学知识解决实际问题的能力,并使学生受到科学研究的基本训练. 毕业论文根据学生所学专业的培养要求,在老师的指导下,选定题目,进行研究和撰写. 毕业论文完成后要进行答辩并评定成绩。 (Ⅱ).毕业论文的基本性质 毕业论文具有三方面的基本性质: 1.作为高等学校一种独立作业,毕业论文富有科学研究能力的培养性. 2.毕业论文需有一定的创见性. 3.毕业论文应具有科学性. 4.毕业论文应具有规范性. (三).学位论文 学位论文是学位申请者为申请学位在导师的指导下,完成的学术论文。学位论文包括学士论文、硕士论文、博士论文。 (Ⅰ) .学士论文 学士论文,是写得合乎要求的大学毕业论文:表明学位申请者,一是能够较好地掌握本学科的基础理论,专门知识和基本技能,二是初步具备从事科学研究工作或担负专门技术工作的能力。

浅谈数学分析中的数学思想

浅谈数学分析中的数学思想 李静 赤峰学院 10级 数学与统计学院 数学与应用数学2班 10041100332 摘要: 在学习数学分析中,首先接触到的就是关于数学名词的概念问题,那么毫无疑问,深入了解概念是学习掌握数学分析的第一要务;在掌握了概念之后,接下来就是运算能力以及对数学符号的熟识程度;然后就是在学习过程中及做题中学习实践的做题技巧,这就逐渐形成了数学思想方法。 数学知识中蕴含的思想方法是极其丰富的,尤其是隐藏于数学知识背后的数学思想的价值不可忽视.本文对数学分析内容中的函数思想、极限思想、连续思想、数形结合思想、化归思想进行初步的分析. 关键词: 数学分析; 数学思想; 分析 一、函数思想 函数概念和函数思想的提出和运用,使得变量数学诞生了,常量数学发展到变量数学,函数思想起了决定性作用.函数是数学分析的研究对象.函数思想就是运用函数的观点,把常量视作变量、化静为动、化离散为连续,将待解决的问题转化为函数问题,运用函数的性质加以解决的一种思想方法.在数学分析中,我们通常用来解决不等式的证明、方程根的存在性与个数、级数问题、数列极限等. 例1 证明 当0x >时,()2 ln 12 x x x -<+. 分析 这是一个不等式证明问题,直接证明有一定难度,但是将此问题转化为函数问题的单调性,即可解决问题. 证明 构造辅助函数()f x =()2ln 12x x x +-+,则()f x '=111x x -++,可证当0x > 时,()0f x '>,因此单调递增.又因为()00f =,所以当0x >时, ()()00f x f >=,即原不等式成立. 例2 判断() ()1ln 111 n n n n ∞=+-+∑的敛散性. 分析 这是一个级数问题,该级数为交错级数.从函数的观点出发,化离散为连续,转化为函数问题,运用函数的性质,从而解决问题. 解 该级数为交错级数,由莱布尼兹判别法知,要判断其敛散性,只需判断通项的绝对值

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

华东师范大学数学系《数学分析》讲义重积分【圣才出品】

第21章重积分 21.1本章要点详解 本章要点 ■二重积分的概念 ■二重积分的定义、存在性及性质 ■格林公式 ■曲线积分与路径无关的定义 ■二重积分的变量替换 ■三重积分的定义、计算 ■重积分的应用 重难点导学 一、二重积分的概念 1.平面图形的面积 (1)设P是一平面有界图形,用某一平行于坐标轴的一组直线网T分割这个图形(如图21-1所示)这时直线网T的网眼——小闭矩形Δi可分为三类 ①Δi上的点都是P的内点; ②Δi上的点都是P的外点,即; ③Δi上含有P的边界点.

图21-1 将所有介于直线网T 的第①类小矩形(如图21-1中阴影部分)的面积加起来,记这个和数为s p (T ),则有(这里ΔR 表示包含P 的那个矩形R 的面积);将所有第①类与笫③类小矩形(如图21-1中粗线所围部分)的面积加起来,记这个和数为S p (T ),则有s p (T )≤S p (T ). 由确界存在定理可以推得,对于平面上所有直线网,数集{s p (T )}有上确界,数集{S p (T )}有下确界,记 显然有 通常称I P 为P 的内面积,P I 为P 的外面积. (2)若平面图形P 的内面积I P 等于它的外面积P I ,则称P 为可求面积,并称其共同值P P P I I I ==为P 的面积. (3)平面有界图形P 可求面积的充要条件是:对任给的ε>0,总存在直线网T ,使得 S p (T )-s p (T )<ε (4)平面有界图形P 的面积为零的充要条件是它的外面积0P I =,即对任给的ε>0,存在直线网T ,使得S p (T )<ε或对任给的ε>0,平面图形P 能被有限个面积总和小于ε的

大学《数学分析论文》原创

《函数极限的求法和技巧》论文 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 关键词:函数极限 正文 一、求函数极限的方法 1、运用极限的定义 lim ()0,0,:,x f x b A x x A ε→∞=??>?>?>有()f x b ε-< lim ()0,0,,x f x b A x A ε→-∞ =??>?>?<-有()f x b ε-< lim ()0,0,,x f x b A x A ε→+∞ =??>?>?>有()f x b ε-< lim ()0,0,:0,x a f x b x x a εδδ→=??>?>?<-<有()f x b ε-< lim ()0,0,:,x a f x b x a x a εδδ→+=??>?>?<<+有()f x b ε-< lim ()0,0,:,x a f x b x a x a εδδ→-=??>?>?-<<有()f x b ε-< 例1: 用极限定义证明 1 11lim x x x →+∞ -=+ 证明:不妨设想x>-1,? ε>0 ,要使不等式 12 111 x x x ε--=<++ 成立.解得x> 2 1ε -(限定0< ε<2)取A= 2 1ε -.于是, 2 0,1,,A x A εε ?>?= -?>有 1 11 x x --+< ε,即

数学分析3.4两个重要的极限

第三章函数极限(下载后可解决看不到公式的问题) 4 两个重要的极限 一、证明:=1. 证:∵sinx

∴=e. 注:e的另一种形式:=e. 证:令a=,则当a→0时,→∞,∴==e. 例3:求. 解:==e2. 例4:求. 解:==. 例5:求. 解:<→e(n→∞),又当n>1时有 =≥→e(n→∞,即→0). 由迫敛性定理得:=e.

习题 1、求下列极限: (1);(2);(3);(4);(5);(6);(7);(8);(9);(10). 解:(1)==2; (2)==··=0; (3)== -1; (4)=·=1; (5)=== ====; (6)令arctan x=y,则x=tany,且x→0时,y→0, ∴===1; (7)==1; (8)==·2sin a =··2sin a= sin2a; (9)==8=8; (10)=== 2、求下列极限:

数学分析论文(第一版)

函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。本论文将通过对函数的诞生与发展、函数在各个领域的应用及函数在未来的发展进行研究,从而让我们对函数有进一步的认识。 了解函数的诞生背景 1.早期函数的概念——几何观念下的函数 十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。 1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。 2.十八世纪函数概念——代数观念下的函数 1718年约翰?贝努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。 1755,欧拉把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”18世纪中叶欧拉给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰?贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰?贝努利的定义更普遍、更具有广泛意义。 3.十九世纪函数概念——对应关系下的函数 1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。 1822年傅里叶发现某些函数也可以用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。 1837年狄利克雷突破了这一局限,认为怎样去建立x与y之间的关系无关

相关文档
最新文档