混凝土化学_力学损伤本构模型

混凝土化学_力学损伤本构模型
混凝土化学_力学损伤本构模型

第23卷第9期 Vol.23 No.9 工 程 力 学 2006年 9 月 Sep. 2006 ENGINEERING MECHANICS

153

———————————————

收稿日期:2004-12-11;修改日期:2005-03-19 基金项目:国家自然科学基金资助项目(50379004)

作者简介:张 研(1979),男,江苏南京人,博士生,主要从事工程材料和工程力学研究;

*张子明(1951),男,江苏姜堰人,教授,硕士,主要从事工程力学和水工结构工程研究(E-mail :ziming58@https://www.360docs.net/doc/9113822492.html,);

邵建富(1961),男,浙江宁波人,教授,博士,岩石力学研究室主任,主要从事岩石和混凝土材料本构模型的试验和理论研究。

文章编号:1000-4750(2006)09-0153-04

混凝土化学—力学损伤本构模型

张 研1,2,*张子明1,邵建富2

(1. 河海大学土木工程学院, 南京 210098;2. 里尔科技大学, 里尔59650 法国)

摘 要:水使混凝土孔隙溶液中钙离子流失是混凝土结构力学性能劣化的重要原因。根据试验结果,提出了一个新的混凝土化学—力学损伤耦合本构模型,用各向同性损伤变量描述混凝土化学—力学损伤。混凝土孔隙中钙浓度满足钙离子质量守恒的非线性扩散方程。有限元计算和试验结果表明,计算值和试验数据吻合很好,提出的本构模型能较好地反映混凝土化学—力学损伤耦合作用。

关键词:固体力学;化学—力学损伤;本构模型;混凝土;耐久性;耦合作用 中图分类号:O346.5 文献标识码:A

CONSTITUTIVE MODEL OF CHEMICAL-MECHANICAL DAMAGE IN

CONCRETE

ZHANG Yan 1,2, *ZHANG Zi-ming 1, SHAO Jian-fu 2

(1. Institute of Civil Engineering, Hohai Univ., Nanjing 210098, China; 2. Lille University of Science and Technology, Lille 59650 France)

Abstract: Deterioration of mechanical behavior of concrete structures results from the leaching of calcium ion in concrete pore solution, which is caused by water. Based on the experimental data, a new coupled constitutive model of chemical-mechanical damage is presented. An isotropic damage variable is used to describe the chemical-mechanical damage. The calcium concentration in concrete pore solution satisfies the nonlinear diffusion equation of calcium mass conservation. The results of finite element computations and experiments demonstrate that the calculated values agree very well with the testing data and the model can describe the chemical-mechanical coupling effects fairly.

Key words: solid mechanics; chemical-mechanical damage; constitutive model; concrete; durability; coupling

混凝土作为重要的建筑材料被广泛应用于水利、海洋与核电站等工程。水将混凝土中氢氧化钙Ca(OH)2溶解,使水泥液相中氧化钙CaO 浓度低于某些水泥水化产物稳定存在的极限浓度。因此,这些水化物随即发生分解,形成没有粘结力的SiO 2?nH 2O 及Al(OH)3,造成水泥中钙缓慢流失,形成孔隙,使混凝土强度降低。混凝土孔隙结构的变化加速钙离子扩散,导致混凝土力学性能进一步劣化。因此,研究混凝土化学-力学损伤本构模型,对于掌握混凝土结构使用期内产生不同损伤的机理

和数值模拟方法,预测混凝土的耐久性,具有重要理论意义和实用价值。

1 受化学侵蚀混凝土的本构模型

不同种类混凝土的力学性质不同,可以根据试验用弹塑性模型描述混凝土的力学性质。假定热力学势Ψ可以表示为弹性自由能和塑性能p Ψ之和,

p Ψ是反映塑性硬化内变量k V 的函数。热力学势可

以表示为

154 工 程 力 学

/ /

)(])([k p e ij e ij e v V Ψe e k Ψ++=με22

12 (1)

式中,体积弹性模量)](/[v E k 213?=,剪切模量

)](/[v E +=12μ,E 为弹性模量,ν为泊松比,e

νε为

弹性体积应变,e

ij

ε为弹性正应变。 1.1 化学-力学耦合本构模型

混凝土受侵蚀介质的侵害,使其中氢氧化钙溶解,导致混凝土孔隙增加和强度降低。因此,混凝土固体钙流失和微裂纹扩展产生化学损伤。假定化学损伤过程与塑性硬化耦合作用,则化学损伤材料的热力学势可表示为[1,2]

),(])())(([k ch p e ij e ij ch e ch V d Ψe e d d k Ψ++=μεν22

12 (2)

式中,ch d 为化学损伤变量,p Ψ为化学损伤材料的塑性能;假定化学损伤与力学损伤相似,则材料损伤后的弹性模量k 和μ可以表示为

)()(),()(ch ch ch ch ch ch d d d k d k βμμα?=?=1100 (3)

式中,参数ch α和ch β的值取决于化学反应速度,可根据试验确定;0k 和0μ分别为无损伤材料的体积弹性模量和剪切模量。

)()(),(k p ch ch k ch p V Ψd d Ψ01χν?= (4) 式中,)(0k p V Ψ为无损伤材料的塑性能,ch χ为考虑

塑性损伤耦合的参数。状态方程可以表示为 e ch e d C Ψεεσ:)(=??= (5) )(]2)([2

10

020k p ch e ij e ij ch e ch ch

d V Ψ

e e k d Y χμβεαΨν++=???= (6) σεε=??=???=e p p Ψ

ΨY (7)

式中,d Y 为对应于化学损伤变量ch d 的热力学伴随量,p Y 为对应于塑性应变p ε的热力学伴随量。

广义塑性剪应变p γ可作为反映材料塑性硬化的内变量(p k V γ=),损伤材料的有效弹性刚度张量)(ch d C 可表示为

kK J d C ch 22+=μ)( (8)

式中,

ijkl

ijkl ijkl jk il jl ik ijkl kl ij ijkl K I J I K ?=+==),

(21

,31δδδδδδ (9) 在压应力状态下,混凝土微裂纹闭合,微裂纹产生的孔隙率变化忽略不计。因此,可以认为混凝土中钙的化学溶解使孔隙率增加,从而建立弹性模量降

低与孔隙率的关系。根据混凝土中固体钙CaO/( )SiO 2与孔隙溶液中钙离子浓度++Ca 的平衡,得到

弹性模量与孔隙溶液中钙离子浓度++Ca 之间的关系

)Ca (++=?=cm ch f d 10

μμ

(10) 式中,函数)Ca (++cm f 根据试验确定。

混凝土中钙的溶解现象可用非线性扩散方程描述[3]

])grad(Ca )Ca ([div )Ca

(+++++++

+=??D t

Ca f ch (11) 式中,)Ca (++D 为孔隙溶液中钙离子的扩散系数;

)Ca (++ch f 为混凝土中固体钙随孔隙溶液中钙离子

浓度的变化率,+

+++??=

Ca

Ca )(solid Ca f ch 。

扩散系数可根据试验确定,水灰比分别为0.25和0.4时的混凝土扩散系数如图1所示,从图中可以看出水灰比对扩散系数的影响。

图1 混凝土孔隙溶液中钙离子扩散系数 Fig.1 Diffusion coefficient of calcium ion in concrete pore

solution

混凝土中固体钙(CaO/SiO 2)与孔隙溶液中钙离子的关系曲线如图2所示[3]。该曲线有两个台阶,一个台阶与氢氧化钙Ca(OH)2的溶解有关(钙离子浓度++Ca 为20mM/l ),另一个台阶与水化硅酸钙C-S-H 的溶解有关(钙离子浓度++Ca 为mM/l 2)[4~6]。在侵析初期,依靠溶解固相游离的氢氧化钙

Ca(OH)2恢复被破坏的浓度平衡,当所有的氢氧化钙Ca(OH)2都被侵析后,则混凝土中的主要胶凝物质-水化硅酸钙C-S-H 将发生溶解[7~9]。这样,当淡水长期侵析时,混凝土中胶凝物质逐步溶解,强度

逐渐降低,结构逐渐破坏[10~12]。

根据混凝土中固体钙与孔隙溶液中钙离子浓

工 程 力 学 155

/

/

f / C a ++)

度的数学模型,可以确定函数)(C f ,如图3所示,因此可以用数值方法求解非线性扩散方程(11),得到结构各时刻不同位置混凝土孔隙溶液中钙离子的浓度,从而确定混凝土的化学损伤。由于化学反应速度比流体扩散速度快得多,所以,当流体扩散到达时,化学反应和化学损伤已处于稳定状态。

图2 固体钙(CaO/SiO 2)为孔隙溶液中钙离子浓度的函数 Fig.2 Solid calcium (CaO/SiO 2 )as a function of calciumion

concentration in pore solution

图3 固体钙随孔隙溶液中钙离子浓度的变化率f (C ) Fig.3 Solid calcium changing rate f (C ) versus calciumion

concentration in pore solution

1.2 混凝土的塑性本构关系

混凝土在受压时具有的塑性性质表现为材料强度、塑性流动和损伤发展取决于平均应力(静水压力)。摩尔-库伦准则在π平面上的屈服轨迹为六角形,在主应力空间的屈服面有一个奇异的顶点,难以反映混凝土的屈服状态和破坏状态。采用二次函数能够较好地描述混凝土塑性屈服面和破坏面

02=?+=r m p p C p h A q f ))((θα (12)

ij

kk

ij ij ij ij kk

S S S J J q p δσσσ3,21,3,322?====

(13) 式中,p 为平均应力;q 为偏应力;θ为洛德角;函数)(θh 根据屈服应力的试验值确定,可取

1=)(θh ;m C 反映材料强度特性;A 为破坏面摩擦

角;参考压力r p 取为1 MPa ,以保证A 为无量纲参数;函数p α反映材料的塑性硬化,根据试验数据分析,可用下式表示

???

?????+?+?=p p p

p ch p B γγααχα)()(0

011 (14) ij p p

ij p ij p ij p ij p tr e e e δεεγ)(3

1,d d 32?==∫ (15)

屈服函数初值0p α为材料初始塑性屈服阈值,

p α对应于破坏面,参数B 反映塑性破坏率。实验表明,混凝土、岩石一类材料的塑性流动不满足一般的关联流动法则。在加载过程中塑性体积应变从压缩过渡到膨胀。因此,需要建立混凝土材料的非关联流动法则。根据试验数据,塑性势函数可取为

????

???????+=01I C p C p h d A q g m m ch ch ln ))(()(θηχ (16) 式中,参数η为压缩-膨胀区边界的斜率。

混凝土的塑性本构关系可采用增量型塑性势理论

σ

λ

ε??=g

p d d (17) 式中,λd 为比例系数,0d ≥λ。

应用塑性势函数式(16),应力空间可以划分为

塑性收缩和塑性膨胀两个区域。将式(16)对p 求偏

导数,并且令0=??p g

,得到这两个区域的边界,可

近似用线性函数表示为

0))(()1(=???=m ch ch b C p h d A q f θηχ (18)

试验结果表明,混凝土抗拉强度m C 随着化学损伤的增加而减小,ch χ和m C 可以根据试验确定。

2 试验研究和数值模拟

应用本文提出的本构模型模拟两组试验,即非耦合试验和耦合试验。在非耦合试验中,混凝土试件放入硝酸盐溶液至胶凝物质溶解后,用三轴试验确定材料参数,以便与无化学损伤材料试验的力学性能比较。在耦合试验中,混凝土试件在三轴试验时,注入硝酸盐溶液,并测量试件的轴向应变、径向应变和渗透参数。这些试验被用来验证提出的化学-力学耦合本构模型。 2.1 非耦合试验

试验值 计算值

156 工 程 力 学

σ1?σ3 /M P a

轴向应变ε(10-6)

时间/d

混凝土在无化学侵蚀条件下的试验拟合结果如下:MPa 12500=E 、120.=ν、80=A 、01.)(=θh 、MPa .516=m C 、030.?=η、41091?×=.B 、1800.=p α。

在化学损伤的情况下,根据试验结果取MPa .01=m C ,其它参数不变。非耦合情况下两种化学损伤的应力-应变曲线,如图4所示,试件侧压力为3MPa 。

图4 无损和化学损伤试件的三轴试验与数值模拟 Fig.4 Triaxial tests and numerical simulations on intact and

chemically damaged sample

2.2 耦合试验

试验装置如图5所示,在试件上端注入浓度为mM/l 4的硝酸盐溶液,1号泵施加MPa 10压应力,2

号泵施加10 MPa 压应力。

图5 三轴试验装置 Fig.5 Triaxial test device

本次试验中的混凝土材料参数如前所述。由于在不同时间,试件的浓度不同,试件的应变特性也随时间变化。用有限单元法求解浓度场和位移场,位移试验和模拟计算结果见图6。从图中可以看出,

本文提出的化学-力学损伤本构模型能较好地反映混凝土的实际工作状态。

图6 硝酸盐溶液中混凝土试样的轴向应变 Fig.6 Axial strain of concrete sample in nitrate solution

3 结论

水使混凝土孔隙溶液中钙离子流失是混凝土

力学性能劣化的重要原因。提出的混凝土化学-力学损伤耦合本构模型,可用来研究混凝土结构使用期内产生不同损伤的机理,预测混凝土的耐久性。有限元数值计算结果表明,弹塑性化学损伤耦合模型能够较好地模拟受化学侵蚀混凝土的实际工作状态。

水使混凝土产生化学损伤可分为两个阶段:在侵析初期,依靠溶解混凝土固相游离的氢氧化钙恢复被破坏的浓度平衡;当所有的氢氧化钙都被侵析后,混凝土中的主要胶凝物质-水化硅酸钙C-S-H 被侵析,使混凝土胶凝物质逐步溶解、孔隙增大、

强度降低、结构逐渐破坏。

参考文献:

[1] Shao J F, Zhu Q Z, Su K. Modeling of creep in rock

materials in terms of material degradation [J]. Computers and Geotechnics, 2003, 30: 549~555.

[2] Bourgeois F, Shao J F, Ozanam O. An lastoplastic model

for unsaturated rocks and concrete [J]. Mechanics Reasearch Communications, 2002, 29: 383~390.

[3] Gerard B, Pijaudier-Cabot G , Laborderie C. Coupled

diffusion-damage modeling and the implications on failure due to stain localization [J]. International Journal of Solids and Structures, 1998, 35: 4107~4120.

[4] Zhu Qizhi, Zhang Yan, Zhang Ziming. Modeling of

time-independent and time-dependant degradation in rock materials [C]. In: Computational Mechanics, WCCM VI in Conjunction with APCOM’04, Beijing, China , Tsinghua University Press & Springer-Verlag, 2004.

(参考文献[5]~[12]转第183页)

压力泵1

流体进口

压力泵2

试件

活塞

工 程 力 学 183

4 结论

(1) 所研究的镁铝合金是一种对于应变率不敏感的材料,按准静态试验及SHPB 试验结果的拟合得到的本构关系为

1.5

50.0.080.08 6.50.08

εσσε

σ

(2) 对于拟合实验结果的本构关系进行了直接考察,把上述本构关系代入镁铝合金的SHPB 试验的全过程数值模拟,考察数值模拟与实验结果的符合程度,调整本构方程,再现实验测得的反射波波

形)(t r ε及透射波波形)(t t ε。

(3) 对于镁铝合金SHPB 经典分析进行了讨论,指出由经典分析确定的试件应力、应变、应变率与数值模拟计算的试件典型微元所经受的应力、应变、应变率基本一致。然而,试件微元在试验过程中所经受的应变率并非为常值,甚至有量级之差。因此,“平均应变率”是应该探讨的,特别是对于应变率敏感的材料而言,给出某“平均应变率”下的应力~应变曲线就成问题。 参考文献:

[1] Nemes J A, Eftis J, Randles P W. Viscoplastic

Constitutive modeling of high strain-rate deformation, material damage and spall fracture [J]. J. Appl. Mech., 1990, 57: 282~299.

[2] Johnson G R, Cook W H. A constitutive model and data

for metals subjected to large strains, high strain-rates and high temperatures [C]. In: Proceedings of the 7th Int. Nat. Symposium on Ballistics, April 1983.

[3] Zerilli F J, Armstong R W. Dislocation-mechanics -based

constitutive relations for material dynamics calculations [J]. J. Appl. Phys., 1987, 61: 1816~1825.

[4] Kanel G I, Razorenov S V , Bogatech A, Utkin A V , Grady

D E. Simulation of spall fracture of Aluminum and Magnesium over a wide range of load duration and temperature [J]. Int. J. Impact Eng., 1997, 20: 467~478. [5] Wilkins M L. Calculation of elastic-plastic flow, in

“Methods in computational physics V . 3 [C]. Edited by B Alder, S Fernbach, M Rotenberg. New York and London: Academic Press, 1964. 211~262.

[6] Little G H, Heywood M D. Axial stress waves in an

elastic-perfectly-plastic bar [J]. Int. J. Mech. Sci., 2001, 43: 2791~2813.

[7] Zhao H, Gary G . On the use of SHPB techniques to

determine the dynamic behavior of materials in the range of small strains [J]. Int. J. Solids and Struct., 1996, 33(23): 3363~3375.

[8] Wu X J, Gorhan D A. Stress equilibrium in the split

hopkinson pressure bar test [J]. Supplement au Journal de Physique ш d`aout, 1997, C 3-91~C 3-96.

[9] Meng H, Li Q M. Correlation between the accuracy of a

SHPB test and the stress uniformity based on numerical experiments [J]. Int. J Impact Eng. 2003, 28: 537~555. [10] Meng H, Li Q M. An SHPB set-up with reduced

time-shift and pressure bar length [J]. Int. J Impact Eng. 2003, 28: 667~696.

(上接第156页)

[5] Zhang Yan, Zhang Ziming. Temperature caused by

hydration heat in massive concrete structures [C]. In: Computational Mechanics,WCCM VI in Conjunction with APCOM’04, Beijing, China, Tsinghua University Press & Springer-Verlag, 2004.

[6] 张子明, 宋智通, 黄海燕. 混凝土绝热温升和热传导

方程的新理论[J]. 河海大学报, 2002, 30(3): 1~6.

Zhang Ziming, Song Zhitong, Huang Haiyan. New theory of adiabatic temperature rise and heat conduction equation of concrete [J]. Journal of Hohai University, 2002, 30(3): 1~6. (in Chinese)

[7] 张子明, 张研, 宋智通. 水化热引起的大体积混凝土

墙温度分析[J]. 河海大学报, 2002, 30(4): 22~27.

Zhang Ziming, Zhang Yan, Song Zhitong. Analysis of temperature caused by hydration heat in massive concrete wall [J]. Journal of Hohai University, 2002, 30(4): 22~27. (in Chinese)

[8] 张子明, 郭兴文, 杜荣强. 水化热引起的大体积混凝

土墙应力与开裂分析[J]. 河海大学学报, 2002, 30(5): 12~16.

Zhang Ziming, Guo Xingwen, Du Rongqiang. Analysis of stresses and cracking caused by hydration heat in massive concrete wall [J]. Journal of Hohai University, 2002, 30(5): 12~16. (in Chinese)

[9]

张子明, 赵吉坤, 倪志强. 混凝土拉伸断裂的细观力学模拟[J]. 河海大学学报, 2005, 33(3): 287~290.

Zhang Ziming, Zhao Jikun, Ni Zhiqiang. Mesomechanics simulation of concrete tension cracking [J]. Journal of Hohai University, 2005, 33(3): 287~290. (in Chinese) [10]

张子明, 赵吉坤, 吴昊. 混凝土细观损伤的数值模拟[J]. 河海大学学报, 2005, 33(4): 422~425.

Zhang Ziming, Zhao Jikun, Wu Hao. Numerical simulation of mesoscopic damage for concrete [J]. Journal of Hohai University, 2005, 33(4): 422~425. (in Chinese)

[11]

Neville A M, Dilger W H, Brooks J J. Creep of Plain and Structural Concrete [M]. London and New York: Construction Press, 1983. 151.

[12]

Wittmann F H. Surface tension, shrinkage and strength of hardened cement paste [J]. Mater. Struct., 1968, 1(6): 547~552.

混凝土塑性损伤模型1

混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

ANSYS中混凝土的本构关系

一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。 就ANSYS而言,其问题比较复杂些。 1 ANSYS混凝土的破坏准则与屈服准则是如何定义的? 采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。 定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是Von Mises,流动法则、硬化法则也就确定了)。 2 定义tb,concr后可否定义其它的应力应变关系 当然是可以的,并且只有在定义tb,concr后,有些问题才好解决。例如可以定义tb,miso,输入混凝土的应力应变关系曲线(多折线实现),这样也就将屈服准则、流动法则、硬化法则等确定了。 这里可能存在一点疑问,即ANSYS中的应力应变关系是拉压相等的,而混凝土材料显然不是这样的。是的,因为混凝土受拉段非常短,认为拉压相同影响很小,且由于定义的tb,concr 中确定了开裂强度,所以尽管定义的是一条大曲线,但应用于受拉部分的很小。 三、具体的系数及公式 1 定义tb,concr时候的两个系数如何确定? 一般的参考书中,其值建议先取为0.3~0.5(江见鲸),原话是“在没有更仔细的数据时,不妨先取0.3~0.5进行计算”,足见此0.3~0.5值的可用程度。根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取0.5,(定要>0.2)闭合的剪力传递系数取1.0。支持此说法的还有 现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。

(仅供参考)Abaqus混凝土损伤塑性模型的参数标定

Abaqus 混凝土损伤塑性模型的参数标定 1. 塑性参数(Plasticity ) 1) 剪胀角(Dilation Angle ) = 30° 2) 流动势偏移量(Eccentricity ) 3) 双轴受压与单轴受压极限强度比 = 1.16 4) 不变量应力比 = 0.667 5) 粘滞系数(Visosity Parameter ) = 0.0005 2. 受压本构关系 应力-Yield Stress :第一行应输入本构模型刚进入非弹性段非弹性应变为0时所对应的应力。 非弹性应变-Inelastic Strain (受拉时为开裂应变-Cracking Strain ):根据应力按混凝土本构模型得出对应的应变值,并通过 , 和 ,得出非弹性应变。 3. 受压损伤因子(Damage Parameter )计算 根据《Abaqus Analysis User's Manual (6.10)》 - 20.6.3 “Concrete damaged plasticity ”中公式: 假设非弹性应变 in c ε中塑性应变 pl c ε所占的比例为c β,通过转换可得损伤因子c d 的计算公式: () () 0 011in c c in c c c c E E d βεσβε-=+- 根据《ABAQUS 混凝土损伤塑性模型参数验证》规定,混凝土受压时c β的取值范围为0.35 ~ 0.7。

4. 受拉损伤因子(Damage Parameter )计算 受拉损伤因子的计算与受压损伤因子的计算方法基本相同,只需将对应受压变量更换为受拉即可: () () 0011in t t in t t t t E E d βεσβε-=+- 而根据参考文献混凝土受拉时t β的取值范围为0.5 ~ 0.95。 5. 损伤恢复因子 受拉损伤恢复因子(Tension Recovery ):缺省值0t w =。 受压损伤恢复因子(Compression Recovery ):缺省值1c w =。

混凝土本构数据

附录一 动力弹塑性分析的材料非线性参数取值 一 混凝土材料: 混凝土材料采用塑性损伤模型(Plastic-Damaged Model)(1). 根据GB 50010-2002 混凝土强度分类 如下: C25, C30, C35, C40, C45, C50, C55, C60, C65, C70, C75, C80 (1) 弹性模量: 按(2)表4.1.5, 单位kN/m 2 (2) 泊松比, 统一取 0.2 (参阅(2)的4.1.8) (3) 剪切模量: 按(2)表4.1.5中的0.4 倍采用(参阅(2)的4.1.8). (4) 密度(2): 2.5 T/m 3 (5) 单轴应力-应变关系 混凝土材料轴心抗压和轴心抗拉强度标准值按(2)表4.1.3采用. A: 单轴受压, 其应力-应变关系方程如下(参阅(2)C.2.1, P206): 当1≤x 时 32)2()23(x αx ααy a a a -+-+= 当1≥x 时 x x αx y d +-=2)1( c εεx = *= c f σy

在 0 – 0.7f c 的应力范围为线弹性, 其弹性模量按表1. 大于0.7f c 为塑性范围, 应力-塑性应变关系如下: E σεεc c in c -= B: 单轴受拉, 其应力-应变关系方程如下(参阅(2)C.2.2, P208): 当1≤x 时 62.02.1x x y -= 当1≥x 时 x x αx y t +-=7.1)1( t εεx = * = t f σy 在 0 – f t 的应力范围为线弹性, 其弹性模量按表1. 大于f t 为塑性 范围, 应力-塑性应变关系如下: 0 E σεεt t ck t -= 据此得到下列各等级混凝土材料在拉和压屈服后的应力(kN/m 2)-塑性应变关系: *Material, Name=C25 *Concrete compression hardening 应力(kN/m 2) 塑性应变 11690., 0 16700., 0.000808693 13239.8, 0.00233739 9841.27, 0.00386389 7674.36, 0.0053464 6248.49, 0.00680245 5255.01, 0.00824305 4527.98, 0.00967414 3974.73, 0.011099 3540.4, 0.0125197 *Concrete tension stiffening 1797.8, 0 1780., 0.000025515 1191.06, 0.000135635

ABAQUS中的三种混凝土本构模型(20200706140516)

ABAQUS用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。 低压力混凝土的本构关系包括: Con crete Smeared cracki ng model (ABAQUS/Sta ndard) Concrete Brittle cracki ng model (ABAQUS/Explicit) Con crete Damage plasticity model 高压力混凝土的本构关系: Cap model 1、ABAQUS/Standard 中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard): 只能用于ABAQUS/Standard 中 裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性 用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为 在进行参数定义式的Keywords: *CONCRETE *TENSION STIFFENING *SHEAR RETENTION *FAILURE RATIOS 2、ABAQUS/Explicit 中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit): 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料 各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大 时失效。 在进行参数定义式的Keywords *BRITTLE CRACKING, *BRITTLE FAILURE, *BRITTLE SHEAR 3、塑性损伤模型Concrete Damage plasticity model : 适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性 在进行参数定义式的Keywords: *CONCRETE DAMAGED PLASTICITY *CONCRETE TENSION STIFFENING *CONCRETE COMPRESSION HARDENING *CONCRETE TENSION DAMAGE

[博士]岩石力学参数的时效性及非定常流变本构模型研究_pdf

筑龙网 W W W .Z H U L O N G .C O M ^ ●中文摘要中文摘要摘要:本文在已有研究成果的基础上,研制开发了一套新型的流变仪器,以泥岩为研究对象,对该岩石的瞬时强度特性、单轴和三轴流变特性进行了系统、全面的研究,得到了泥岩的基本力学参数包括弹性模量E、内聚力C、内摩擦角妒随应力和时间的弱化规律,并将其引入Bingham一维流变模型和P.Pcrzyna三维流变模型中,建立了非定常的流变模型,最后成功的在ABAQUS软件中对其实现了二次开发,并通过试验数据验证了模型的正确性。本文完成的主要工作有:1.在分析现行流变仪器的优缺点的基础上,研制开发了一台新型的流变仪器一五联单轴流变仪,该仪器主要用于岩石的流变试验,能同时控制五个不同条件下的流变试验,实现了计算机自动控制、自动采集数据。2.进行了泥岩在0MPa、5MPa、10MPa和15MPa四个围压级别下的瞬时强度试验,得到了泥岩的变形和破坏规律,探讨了由瞬时强度试验确定岩石长期强度的方法。论述了单试件法测岩石力学参数的原理,并对其数据处理方法进行了修正。3.分析了岩石的蠕变损伤阀值,从细观力学和宏观力学两方面解释了岩石的蠕变过程曲线。进行了泥岩八个应力水平的单轴压缩蠕变试验,分析了其蠕变特性,采用单试件法对其蠕变过程中的三个时间点的力学参数进行了测定,得到了该泥岩力学参数随应力和时间的弱化规律。4.进行了5MPa、10MPa和15MPa三个不同围压下的蠕变试验,将单轴条件下泥岩力学的弱化规律扩展到了三轴状态,通过蠕变破坏时的强度进行了验证。5.将泥岩的力学参数弱化规律引入到了Bingham模型中,建立了泥岩的一维非定常流变模型,并通过试验数据验证了模型的合理性。采用Drucker-Prager准则将一维的Bingham模型扩展到T--维的P.Perzyna模型,通过引入非定常的力学参数建立了三维的非定常流变模型。6.在ABAQUS软件中对三维的P.Perzyna模型实现了二次开发,通过试验数据验证了模型的正确性。关键词:力学参数;时效性;非定常;流变模型;流变仪器;泥岩;单试件法;ABAQUS二次开发 分类号:

混凝土塑性损伤模型

4.5.2 混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

混凝土本构关系模型

一、混凝土本构关系模型 1.混凝土单轴受压应力-应变关系 (1)Saenz 等人的表达式 Saenz 等人(1964年)所提出的应力-应变关系为: ])()()( /[30 200εεεεεεεσd c b a E +++= (2)Hognestad 的表达式 Hognestad 建议模型,其上升段为二次抛物线,下降段为斜直线。所提出的应力-应变关系为: cu cu εεεσσεεσσεεεεεεεε≤≤-=≤-=--000 02,)]( 15.01[,])(2[0 00 (3)我国《混凝土结构设计规范》(GB50010-2010)中的混凝土受压应力-应变曲线,其表达式为: 1,)1(1 ,)1(2>+-=≤+-= x x x x y x x n nx y c n α r c x ,εε= ,r c f y ,σ= ,r c r c c r c c f E E n ,,,-=εε c α是混凝土单轴受压时的应力应变曲线在下降段的参数值,r c f ,是混凝土单轴抗压的 强度代表值,r c ,ε是与单轴抗压强度r c f ,相对应的混凝土峰值压应变。 2.混凝土单轴受拉应力-应变关系 清华大学过镇海等根据实验结果得出混凝土轴心受拉应力-应变曲线: 1 ],)1(/[)/(1 ,])(2.0)(2.1[7 .16≥+-?=≤-=t t t t t t t t t t εε εεεεεεεεεεασεεσσσ 3.混凝土线弹性应力-应变关系 张量表达式,对于未开裂混凝土,其线弹性应力应变关系可用不同材料常数表达,其中用材料弹性模量E 和泊松比v 表达的应力应变关系为: ij kk E ij E ij ij kk E ij E ij δσσεδεεσν ν νννν-=+=+-++1)21)(1(1

ABAQUS_混凝土损伤塑性模型_损伤因子

混凝土损伤因子的定义 BY lizhenxian27 1 损伤因子的定义 损伤理论最早是1958年Kachanov提出来用于研究金属徐变的。所谓损伤,是指在各种加载条件下,材料内凝聚力的进展性减弱,并导致体积单元破坏的现象,是受载材料由于微缺陷(微裂纹和微孔洞)的产生和发展而引起的逐步劣化。损伤一般被作为一种“劣化因素”而结合到弹性、塑性和粘塑性介质中去。 由于损伤的发展和材料结构的某种不可逆变化,因而不同的学者采用了不同的损伤定义。一般来说,按使用的基准可将损伤分为: (1) 微观基准量 1,空隙的数目、长度、面积、体积; 2空隙的形状、排列、由取向所决定的有效面积。 (2) 宏观基准量 1、弹性常数、屈服应力、拉伸强度、延伸率。 2、密度、电阻、超声波波速、声发射。 对于第一类基准量,不能直接与宏观力学量建立物性关系,所以用它来定义损伤变量的时候,需要对它做出一定的宏观尺度下的统计处理(如平均、求和等)。 对于第二类基准量,一般总是采用那些对损伤过程比较敏感,在实验室里易于测量的量,作为损伤变量的依据。 由于微裂纹和微孔洞的存在,微缺陷所导致的微应力集中以及缺陷的相互作用,有效承

载面积由

A 减小为A ’。如假定这些微裂纹和微孔洞在空间各个方向均匀分布,A ’与法向无关,这时可定义各向同性损伤变量D 为 D= ( A- A ’ )/ A 事实上,微缺陷的取向、分布及演化与受载方向密切相关,因此材料损伤实际上是各向异性的。为描述损伤的各向异性,可采用张量形式来定义。损伤表征了材损伤是一个非负的因子,同时由于这一力学性能的不可逆性,必然有 0dD dt ≥ 2有效应力 定义Cauchy 有效应力张量'σ ''//(1)A A D σσσ==- 一般情况下,存在于物体内的损伤(微裂纹、空洞)是有方向性的。当损伤变量与受力面法向相关时,是为各向异性损伤;当损伤变量与法向无关时,为各向异性损伤。这时的损伤变量是一标量。 3等效性假设 损伤演化方程推导一般使用两种等效性假设,一种是应变等效性假设,另一种是能量等效性假设。采用能量等效性假设可以避免采用应变等效假设而使得各向异性损伤模型中的有效弹性矩阵不对称的问题.以下对两种假设进行简要的介绍。 (1) 应变等效性假设 1971年 Lematire 提出,损伤单元在应力σ作用下的应变响应与无损单元在定义的有效应力'σ作用下的应变响应相同。在外力作用下受损材料的本构关系可采用无损时的形式,只要

岩石力学损伤和流变本构模型研究

岩石力学损伤和流变本构模型研究 本文采用几何损伤理论和能量损伤理论对岩石的力学特性进行了研究和建模探索,并探讨了瞬时损伤对流变的影响。主要工作内容如下: (1) 在假设无损岩石的应变和岩石总应变相等的基础上完善了岩石的统计损伤本构模型推导,实现了损伤演化方程中全部采用有效应力假设和探讨了损伤和塑性变形耦合问题。 (2) 探讨了用损伤统计本构模型模拟应力应变曲线第一阶段稍向上弯曲特征建模问题,采用混合物理论探讨了非损伤岩石、损伤和液相的耦合问题和模拟应力应变曲线第一阶段稍向上弯曲特征建模问题。 (3) 探讨了采用各向同性介质中的Eshelby等效夹杂理论建立岩石的弹塑性损伤统计本构模型的建模问题。 (4) 探讨了采用各向同性介质中的Eshelby等效夹杂理论和连续介质损伤力学方法建立考虑损伤、损伤塑性变形和非损伤岩石塑性变形耦合的岩石损伤本构模型的建模问题。考虑损伤、损伤塑性变形和非损伤岩石塑性变形耦合的岩石损伤本构模型的建模问题还处于探索阶段,本文探讨了用细观力学理论实现了损伤、损伤塑性变形和非损伤岩石塑性变形耦合的岩石损伤本构模型的建模问题。 (5) 在探导岩石颗粒间粘聚力和颗粒间摩擦力在岩石发生流变过程中的作用基础上假设粘性失效按流变应变统计概率分布,建立了岩石粘弹塑性本构关系,能够描述岩石蠕变加速阶段特征;讨论了瞬时损伤对岩石流变的影响和相应的损伤蠕变模型建模问题。 (6) 在采用各向同性介质中的Eshelby等效夹杂理论和连续介质损伤力学(CDM)方法建立的岩石损伤本构模型基础上利用对

应性原理建立了岩石材料的损伤粘弹性本构关系。 (7) 在用岩石中大小、方位和位置均为随机分布的裂纹定义损伤变量基础上,利用线粘弹性断裂力学原理对考虑裂纹内水压的岩石的损伤蠕变问题进行了建模和分析。

mander约束混凝土本构模型

1 横向配筋的作用 混凝土结构中的配筋有两种:直接钢筋和间接钢筋。直接配筋即沿构件轴力或主应力方向设置的纵向钢筋,直接承担拉力或者压力,钢筋的应力与轴力方向一致;间接配筋又称横向配筋,沿与压应力与最大主压应力垂直的方向设置,通过约束混凝土的横向变形,提高轴向抗压承载力。 横向配筋有多种,比如螺旋(圆形)箍筋、矩形箍筋、钢管、焊接网片等。其主要作用是约束其内部混凝土的横向变形,使之处于三轴受压应力状态,从而提高了其强度和变形能力。 下面就箍筋对混凝土的约束作用做以简单分析。 箍筋的作用有许多种, ?抗剪。除了直接承受剪力外,还间接限制了斜裂缝的开展宽度,增强了腹部混凝土的骨料咬合力;还约束了纵筋对混凝土保护层的撕脱,增大了 钢筋的销栓力;同时,纵筋与腹筋形成的骨架使内部混凝土受到约束, 这也有利于抗剪; ?通过减小纵筋的自由长度,防止纵筋受力后压屈,充分发挥其抗压强度,同时也起到固定纵筋位置的作用; ?对于密排箍筋,通过约束核心区混凝土,提高了混凝土的抗压强度及延性(极限变形能力); ?长期荷载作用下,可以承受因混凝土收缩和环境湿度变化等产生的横向应力,以防止或减少纵向裂缝; 其中,通过约束核心区混凝土,提高受压混凝土的抗压强度及延性,对于地震区的混凝土结构尤为重要。适当地增加箍筋和改进构造形式成为提高结构抗震性能的最简单、经济和有效的措施之一。 2 影响箍筋约束作用的因素 箍筋对约束混凝土的增强作用,除了受被约束混凝土自身强度的影响外,主要取决于它能够施加在核心区混凝土表面的约束力的大小。约束力越大,对混凝土的增强就越多。约束力主要受以下几个因素影响: ?体积配箍率。体积配箍率隐含反应了四个因素:箍筋强度、直径、间距及(计算配箍方向的)核心区宽度(对于螺旋或圆形配箍的圆形截面,指 核心区直径)。箍筋的强度和直径直接决定了箍筋所能提供的约束力的 大小,箍筋间距及核心区宽度则影响约束力在相邻箍筋间的分布。对于 矩形截面,通常两个方向上的尺寸和配箍形式不一样,因此提供的约束 力也不一样,所以应分别计算两个方向的配箍率。

我国混凝土损伤本构关系的研究现状

我国混凝土损伤本构关系的研究现状 摘要:从弹性与塑性损伤、各向同性与各向异性损伤、静力与动力损伤、宏观唯象以及细观和微观损伤、局部化与非局部化损伤这5个不同侧重点考虑,归纳介绍了近几年来我国学者在混凝土损伤类本构关系领域研究的进展,并提出了自己的意见,对其发展方向进行了展望。 关键词:混凝土;损伤;本构关系;研究现状 引言 混凝土是现代建筑结构中运用最广泛的材料,它的破坏是由于材料内分布的微孔洞、微裂纹在荷载的作用下不断成核、扩展、贯通形成宏观裂纹,造成承载力下降导致的。要分析混凝土结构的受力特性,确保结构的可靠性,需要研究其微损伤的演化规律。 自1976年Dougill最早将损伤力学用于研究混凝土的受力性能以来,各种混凝土本构关系应运而生,不断发展。从最初的单轴受拉各向同性弹性损伤模型,到现在针对具体情况有侧重点的建立起得的各种不同的损伤模型。 本文从弹性与塑性损伤、各向同性与各向异性损伤、静力与动力损伤、宏观唯象以及细观和微观损伤、局部化与非局部化损伤这5个不同侧重点考虑,介绍了近几年来我国学者在混凝土损伤类本构关系领域研究的进展,并对其发展进行了展望。 1弹性与弹塑性损伤模型 混凝土是一种多相复杂的准脆性材料,在单轴或多轴压缩荷载作用下,混凝土表现出一定的塑性。混凝土损伤模型按照是否与塑性理论结合,可分为弹性损伤模型与弹塑性损伤模型。两者的区别主要在于,弹性损伤模型只考虑损伤对刚度的影响,弹塑性损伤模型考虑卸载时不可恢复的变形,卸载弹模不同,见图1。 图1循环加卸载实验的混凝土应力-应变曲线 相比而言,弹塑性模型能够更为准确的描述混凝土的损伤演化特性,因而更加受到学者们的关注,近年来有很大的发展。但由于弹塑性模型需要求解损伤与塑性耦合的复杂过程,计算复杂,参数众多,弹性损伤模型便于实际工程应用。 1.1弹性损伤模型 在损伤力学理论早期的发展过程中建立了一些经典的混凝土损伤模型,这些模型是在对金属损伤研究的基础上考虑混凝土类材料的特性发展而来的。Loland和Mazars的损伤模型都是参照实验得出的拉伸应力应变曲线,将曲线以应力峰值划为两端,分别用函数模拟。假设材料为各向同性弹性体,损伤也是各向同性,Loland假定应力峰值以前有效应力与应变关系,而峰值后有效应力为一常数。Mazars根据Terrien的混凝土单轴拉伸试验曲线,假定峰值应力前,应力应变曲线为直线,峰值应力后为下降段曲线。Sidoroff等人提出能量等价原理,并提出了损伤面的概念,损伤是在损伤阈值面上发生。Krajcinovic以Helmholtz自由能理论为基础,参照塑性力学方法引入了损伤面的概念,假设损伤演变速度的方向垂直于损伤面,导出了损伤本构方程及损伤演化方程[1]。 以上经典的弹性损伤模型均是在单调加载的情况下建立的,也未考虑混凝土的非线性。 李正在文献[2]中指出混凝土作为一种准脆性材料,混凝土的塑性变形主要发生在受压损伤较大情况下,而受拉损伤情况下,卸载后塑性应变很小,接近脆性。在地震作用下,混凝土结构主要发生受拉损伤,受压损伤程度较小。因此,弹性损伤模型对于一般精度要求的地震损伤分析也是具有适用性的。并对Faria和Oliver 等人所提出的混凝土损

混凝土塑性损伤模型 -ABAQUS

4.5.2 混凝土塑性损伤模型ABAQUS ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下: Cauchy应力通过标量退化变量(d)转化为有效应力

ABQUS中的三种混凝土本构模型

. ABQUS中的三种混凝土本构模型 ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。 低压力混凝土的本构关系包括: Concrete Smeared cracking model (ABAQUS/Standard) Concrete Brittle cracking model (ABAQUS/Explicit) Concrete Damage plasticity model 高压力混凝土的本构关系: Cap model 1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中 裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性 用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为 在进行参数定义式的Keywords: *CONCRETE *TENSION STIFFENING *SHEAR RETENTION *FAILURE RATIOS 2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) : 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。 在进行参数定义式的Keywords *BRITTLE CRACKING, *BRITTLE FAILURE, *BRITTLE SHEAR 3、塑性损伤模型Concrete Damage plasticity model: 适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性 在进行参数定义式的Keywords: *CONCRETE DAMAGED PLASTICITY *CONCRETE TENSION STIFFENING *CONCRETE COMPRESSION HARDENING *CONCRETE TENSION DAMAGE *CONCRETE COMPRESSION DAMAGE 1 / 1'.

常用岩土本构模型及其研究现状

常用岩土本构模型及其研究现状 学生:彭敏 班级:水工一班 学号:2014141482159 授课教师: 肖明砾 成绩 摘要: 在土木及水利工程中岩体分析成功性很大程度取决于采用的本构模型的正确性,常用的岩土本构模型:传统的弹性模型和弹塑性模型,新型的广义塑性力学理论、微观结构性模型、分级模型等。 关键词:本构模型 弹性 弹塑性 损伤力学 微观 1.传统岩土本构模型 现代岩石力学研究岩石全程应力应变曲线(如图1)可分为压密阶段、弹性工作阶段、塑性变形阶段和破坏阶段,采用经典连续介质力学理论计算的岩石力学模型有: 1.1 弹性模型 对于弹性材料, 应力和应变存在一一对应的关系, 当施加的外力全部卸除时 ,材料将恢复原来的形状和体积。弹性模型分为线弹性模型和非线性弹性模型两类。这类模型用于荷载单调加载时可以得到较为精确的结果,但用于解决复杂加载问题时, 精确性往往不能满足工程需要。 1.2弹塑性模型 弹塑性模型的特点是在应力作用下, 除了弹性应变外,还存在不可恢复的塑性应变。 应变增量分为弹性和塑性两部分, 弹性应变增量用广义虎克定律计算, 塑性应变增量根据塑性增量理论计算。 图1:应力应变曲线 图2 弹塑性模型 2. 新型岩土本构模型 2.1 广义塑性力学理论 广义塑性力学认为, 传统塑性理论的 3 个假设都不符合岩土材料的变形机制,广义塑性力学从寻找和消除这些假设入手, 提出了一些新的观点。 2.2 微观结构性模型 将土体的变形过程看作由原状土经损伤向扰动土逐渐转化的过程, 可以采用损伤力学理论建立弹塑性损伤模型。通过微观结构的研究, 使得众多结构研究成果与其力学性状发生定量意义上的联系, 对解释宏观力学现象具有重要意义。 2.3 分级模型 该方法以服从关联流动法则的简单各向异性强化模型开始, 模型级数逐渐递增, 较高等级的模型则是通过引入非关联流动法则、各向异性强化法则和应变强化或软化法则得到的。 3.结论 (1)传统岩土本构模型虽然简单,但是存在一些

浅谈混凝土的本构关系

浅谈混凝土的本构关系 Y 摘要:混凝土是一种广泛应用的材料,其力学特性的研究对充分发挥材料强度、提高设计水平、降低工程造价具有十分重要的意义。本文简要回顾了混凝土本构关系的发展,系统的介绍了混凝土本构关系理论模型的研究现状,总结了在特定环境下混凝土本构关系的新成果,并对目前混凝土本构关系研究中存在的问题进行了阐述,最后对混凝土本构关系的发展进行了展望。 关键词:混凝土;本构关系;新成果;问题;展望 混凝土因其所具有的许多优点(如可根据不同要求配制各种不同性质的混凝土、可模性好、硬化后具有抗压强度高和耐久性良好等特性,与钢筋之间有比较牢固的粘结力、能制作钢筋混凝土结构和构件,其组成材料中砂、石等地方材料占80%以上,符合就地取材和经济的原则等)已成为现今土木工程中应用最广泛的建筑材料之一。混凝土是由胶凝材料(水泥等)、骨料(砂、石等)和水以及其它组分(外加剂、掺合料等)按适当的比例配合,拌制成混合物,经过一定时间硬化而成的,因此混凝土的综合力学和物理性质既取决于其各组分的性质、配合比以及各相之间力学、物理或化学的相互制约机理等要素又与制作工艺(搅拌、成型、养护等)和周围环境等均有关系。就力学特性而言混凝土材料与相对比较均匀的金属材料相比要复杂得多。在传统的混凝土结构分析中,由于受到计算能力的限制,以及对材料本身性能了解不足,对构件与结构分析一般在线弹性范围内进行,而早期的混凝土构件与结构相对比较简单,因此这种分析方法在当时起到了一定的作用。但是随着混凝土在复杂结构中的广泛应用,需要对结构进行比较精确的分析。这时简单但比较粗糙的线弹性本构模型的局限性显露了出来。电子计算机的飞速发展与计算理论的发展不仅使复杂的空间形式所带来的计算困难得到解决,也使得尽管复杂但精确的本构模型的应用成为可能。因此,本文对混凝土本构关系的发展进行了简要回顾,综述了本构关系研究现状以及新成果,提出了目前尚需解决的主要问题和今后发展方向。 1 混凝土本构研究的历史 真正现代意义上的混凝土本构关系研究可以说是1943年Whitney所进行的混凝土受压全过程的实验研究,他利用刚性实验机得到了混凝土极限强度后的软化阶段,从而认识到混凝土的软化后强度特性。20世纪50年代随着连续介质力学及不可逆热力学的发展,系统的材料本构理论研究兴起,由此产生了混凝土的经典塑性模型、非线性弹性模型、非经典塑性模型和损伤本构模型等众多研究成果。 至今,实际工程中应用最广泛的还是源自实验、计算精度有保证、形式简明和使用方便的非线弹

ABAQUS中的三种混凝土本构模型

ABQUS中的三種混凝土本構模型 ABAQUS?用連續介質的方法建立描述混凝土模型不采用宏觀離散裂紋的方法描述裂紋的水平的在每一個積分點上單獨計算其中。 低壓力混凝土的本構關系包括: Concrete Smeared cracking model (ABAQUS/Standard) Concrete Brittle cracking model (ABAQUS/Explicit) Concrete Damage plasticity model 高壓力混凝土的本構關系: Cap model 1、ABAQUS/Standard中的彌散裂縫模型Concrete Smeared cracking model (ABAQUS/Standard): ——只能用于ABAQUS/Standard中 裂紋是影響材料行為的最關鍵因素,它將導致開裂以及開裂后的材料的各向異性 GAGGAGAGGAFFFFAFAF

用于描述?:單調應變?、在材料中表現出拉伸裂紋或者壓縮時破碎的行為 在進行參數定義式的Keywords: *CONCRETE *TENSION STIFFENING *SHEAR RETENTION *FAILURE RATIOS 2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) : 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。 在进行参数定义式的Keywords *BRITTLE CRACKING, *BRITTLE FAILURE, *BRITTLE SHEAR GAGGAGAGGAFFFFAFAF

混凝土损伤模型

塑性应力-应变关系 Compress Stress Inelastic strain Damage Inelastic strain 24019000000 292080000.00040.12990.0004 317090000.00080.24290.0008 323580000.00120.34120.0012 317680000.00160.42670.0016 303790000.0020.50120.002 285070000.00240.5660.0024 219070000.00360.7140.0036 148970000.0050.82430.005 29530000.010.96910.01 Tension recovery factor = 0.0 Tension Stress Cracking strain Damage Cracking strain 1.78E+06000 1.46E+060.00010.30.0001 1.11E+060.00030.550.0003 9.60E+050.00040.70.0004

8.00E+050.00050.80.0005 5.36E+050.00080.90.0008 3.59E+050.0010.930.001 1.61E+050.0020.950.002 7.30E+040.0030.970.003 4.00E+040.0050.990.005 Compression recovery factor = 1.0 **************************************************************************************** ********************************************************* 全应力-应变关系 Compress Stress Strain Tension Stress Strain 0000 0.000126480000.00001264800 0.000252960000.00002529600 0.000379440000.00003794400 0.0004105920000.000041059200 0.0005132400000.000051324000 0.0006158880000.000061588800 0.0007185360000.0000671780000 0.0008211840000.0001550231457000 0.000907062240190000.0003420321113000 0.001503021292080000.000436254960000 0.00199747317090000.000530211800000 0.002421979323580000.000820242536000 0.002799698317680000.001013557359000 0.003147243303790000.00200608161000 0.003476548285070000.00300275773000 0.004427304219070000.00500151140000 0.00556257614897000 0.0101115182953000

相关文档
最新文档