双流体喷嘴雾化特性实验

双流体喷嘴雾化特性实验
双流体喷嘴雾化特性实验

双流体喷嘴雾化特性实验

摘要:双流体雾化降温冷却技术是将气体和液体在喷嘴内部直接混合,在高压射流作用下直接雾化,雾化的小液滴气化时带走热量,从而降低工作区域温度。喷雾冷却降温系统广泛应用于养殖、高精度建筑及机械切削加工中刀具的冷却等。影响喷雾降温冷却的关键因素是雾滴粒径和雾滴运动速度。雾滴粒径越小,其总表面积越大,易于蒸发、气化,从而产生良好的降温效果;而雾滴运动速度加快则可以进一步加快工作区域的换热过程。文章利用相位多普勒粒子动态分析仪(FDA)对4种不同喷孔直径的喷嘴进行了较为详细的实验研究,获得了影响雾滴粒径和雾滴运动速度的重要因素,得到了双流体雾化喷嘴工作的最佳压力与孔径组合,为喷雾冷却降温的研究奠定了琴础

在不同的工程应用领域,对雾滴的大小和速度有不同的要求,因此探索雾滴尺寸、滴速、压力、流量、喷嘴直径、流体的物性参数等的关系刁仁进而实现雾滴大小和速度的控制尤为重要。双流体式雾化喷嘴结构简单,对于高勃度和低勃度的液体都有良好的雾化性能,并且容易通过调节气液比来控制喷雾参数,能满足不同场合的使用要求,但同时也存在动力消耗大、效率低、雾谱宽、雾化机理复杂等因素。

喷雾冷却降温系统通过喷嘴将液体直接雾化,雾化的小水滴气化时会带走热量,从而降低工作区的温度。喷雾冷却降温广泛应用于养殖、高精度建筑及机械加工中各种刀具的冷却等。其中雾滴速度和雾化粒径直接影响雾滴的气化,从而影响降温效果

本文以双流体喷嘴为研究对象,采用相位多普勒粒子动态分析仪(FDA)对雾化冷却过程中双流体喷嘴雾化进行了实验研究,着重探讨了双流体雾化喷嘴喷孔直径、工作压力与滴速和粒径的关系,得出了影响双流体喷嘴雾化效果的主要因素。

1实验装置

实验采用的喷嘴为内混式双流体雾化喷嘴,喷头采用收缩式圆锥形雾化喷头,目的是通过对喷嘴在不同运行参数条件下进行雾化性能参数的测量,获得更好的雾化效果,以便实现对喷嘴的雾化性能参数进行有效控制。

实验装置由雾化装置、气路系统、水路系统和测量系统等构成。气路系统包括空气压缩机、稳压阀、流量计和压力表;水路系统包括空气压缩机、密封罐、稳压阀、流量计和压力表;测量系统主要包括FDA、三维位移机构和数据处理系统等。实验装置如图1所示。

实验中选用4种不同孔径的雾化喷嘴,为DKW -Z-DB圆形喷嘴,喷孔直径D分别为1.0,1.2,1.5,20mm。采用相同的水压和气压作为喷嘴的工作压力,工作压力P为0.2-0.5MPa。通过改变工作压力的大小对不同工况条件下喷嘴在射流方向不同位置(V流靶距)的雾化状况进行测量。在测量过程,!,,设定喷嘴沿垂直方向喷射,测量以喷嘴口起,在10-40 mm内以5 mm为步长,选取7个点来进行测量。并在射流靶距L为40 mm处水平截-IN进行了测量,PDA测点布置如图2所示,图中单位为:mm

2雾化特性实验

喷嘴射流喷出的水雾大致呈锥状,可以认为射流是轴对称的,忽略重力、实验风力等外力作用,雾滴的运动速度v和雾滴粒径d也具有轴对称性,因此,只测量沿射流喷射方向和射流靶距L为40 mm处截面上的喷雾参数。

2.1喷嘴在不同工作压力下轴向平均滴速

图3 (a)一(d)为4种喷嘴在不同工作压力下的轴向平均滴速分布图

从图中可以看出,在射流靶距为10 mm处的喷雾射流速度均可达到200m/s以上,这是由于喷嘴喷孔直径较小,喷孔处的压降较大,高压气体经过喷嘴后,推动液滴从喷孔喷出达到较高的速度。对于不同喷嘴,无论在何种压力作川下,随着射靶距离的增加,射流雾滴速度都将减小,这是由于雾滴在运动过程中受到空气阻力的影响,雾滴速度必然下降,但其速度值仍在100 m/s以上,这对于工作区内的换热有着良好的作用。对于每一种喷嘴,随工作压力的增大,雾滴运动速度也在增人,雾滴速度的增人有利于传热,因此应当选择在较高的压力下进行工作。但过高的压力会造成喷雾流场的不稳定,雾滴运动速度均匀性变差。综合考虑,选用0.3MPa或0.4MPa的工作压力较为合适。

2.2喷嘴在不同工作压力下的雾滴粒径

图4 (a)一(d)为4种喷嘴在不同工作压力下的雾滴粒径分布图。从图中可以看出,在射流靶距L为40 mm的范田内,雾滴粒径始终控制在35μm以内。射流破碎理论表明淹没射流时,高压气体是促使射流破碎的主要因素,破碎后的液滴尺寸取决于气动力与表面张力的比值。因此在这种较高的气动力条件下可以获得较小的雾滴粒径。对于不同喷嘴,随着射靶距离的增大,雾滴粒径不断增大。而雾滴粒径变人可能是由于雾滴速度下降后雾滴产生碰撞聚并的结果。对于每·喷嘴,随着工作压力的增加,雾滴粒径都在不同程度地减小。因此,同射流雾滴速度一样,必须选取较高的压力。

对雾滴轴向平均滴速和雾滴粒径的测址结果分析可知,当工作压力较小时,雾滴速度和雾滴粒径不能满足工作需要,而对于较大工作压力时容易造成喷雾的不稳定,综合考虑,选用0.4MPa的工作压力较为合适。

2.3不同喷孔直径在工作压力为0.4MPa下射流靶距为

40mm处喷雾场粒度分布

图5 (a)一(d)为不同喷嘴在压力为0.4MPa的条件下射流靶距为40mm处喷雾射流轴线上喷雾

场粒度分布比例,雾滴是在射流靶距为40mm处采集10s获得的,雾滴粒径基本上旱高

斯分布。对于4种喷孔直径下雾滴粒度的对比可知,喷孔直径为1.2 mm喷嘴具有更好的雾化效果,雾滴粒径谱较窄,雾滴粒径均小于40μm。而采用其他孔径的喷嘴时,可能是由于雾滴粒子形状不规则,雾滴速度过快或不稳定,造成雾化效果不好

超声波雾化器

超声波雾化器 摘要 在日常生活中雾化器得到了广泛的应用,但是现有的雾化器都需要手工控制开启和关闭并且不具备对室内空气温湿度的监测,人们在使用过程中存在过度加湿和干烧的问题,不仅给室内空气舒适度造成负面影响并且还存在安全隐患。因此开发设计一种价格低廉、功耗低、具有自动控制功能的雾化器显得尤为必要。本设计采用智能控制,以AT80S51单片机为核心,外接辅助电路,通过实现加湿器的防干烧、声光报警、智能开启和关闭以及室内温湿度的显示功 能基本实现雾化器的智能化。 关键词:单片机;智能;雾化器;相对湿度;传感器;

目录 第1章绪论 (5) 1.1概况 (5) 1.2本文研究内容 (5) 第2章 CPU最小系统设计 (5) 2.1总体设计方案 (6) 2.2CPU的选择 (7) 2.3数据存储器扩展 (8) 2.4复位电路设计 (9) 2.5时钟电路设计 (10) 2.6CPU最小系统图 (11) 第3章输入输出接口电路设计 (11) 3.1传感器的选择 (11) 3.2检测接口电路设计 (12) 3.2.1 A/D转换器选择 (12) 3.2.2 模拟量检测接口电路图 (12) 3.3输出接口电路设计 (13) 3.4人机对话接口电路设计 (13) 第4章系统设计与分析 (15) 4.1系统原理图 (15)

4.2系统原理综述 (15) 文献 (17)

第1章绪论 1.1概况 用途功能:超声波加湿器是采用超声波高频振荡的原理,将水雾化为一至五微米的超微粒子,通过风动装置,将水雾扩散到空气中,从而达到均匀加湿空气的目的。 现状:现有生产五个系列的产品,其基本单元均为组合或者说集成式超声波雾化器,其整体还有电源系统、供水系统、水雾输送系统等,另根据不同的使用场所、不同形式、不同要求设计的不锈钢机体,组装为不同的超声波工业加湿设备。现有生产五个系列的产品,所具有的差别主要是在应用领域不同、控制方式不同、雾化量不同等几个方面。首先,应用领域五个系列多种领域;其次;每个领域有侧重不同的控制方式;第三,每个场所有不同的加湿量。 1.2本文研究内容 根据任务书内容进行描述(要完成的功能以及设计的内容)系统软件实现的功能: 1)通过LED显示温湿度值及水位; 2)比较监测到的水位,发现低水位时自动掉电并声光报警; 3)根据相对湿度值控制加湿器的开关。 本课题研究主要涉及以下方面: 1)通过对控制系统的功能及要求确定总体设计方案 2)系统硬件电路的设计与开发 3)系统软件程序的设计与调试 4)系统性能测试 本设计将采用智能控制,以AT80S51单片机为核心,外接辅助电路,通过实现加湿器的防干烧、声光报警、智能开启和关闭以及室内温湿度的显示功能基本实现加湿器的智能化。 第2章cpu最小系统设计 2.1 总体设计方案 根据任务书中的设计要求以及设计内容,画出总体方案框图,并简要说明各模块功能。

电厂双流体喷枪SNCR

电厂双流体喷枪SNCR-EE-2.2使用说明 1.喷枪安装时注意末端进口是进水口,剩余的一个为进气口,如果有护管, 护管上的进口为护管进气口,护管进气阀门始终保持一个小的开度,吹入微量压缩空气即可。主气路连接方式如下图所示,可以实现远程控制,也可以只接一个手动阀们现场手动控制,不使用时留一个小的开度,使微量压缩空气通过。喷枪不使用时水管不需要接气。 图一.气路连接方式 2.实际安装图如图纸所示,上边的原喷枪孔装两只喷枪,喷头弯度在同一 竖直面内,下边的原喷枪孔装一只喷枪,弯头朝下,该喷枪有护管保护。 3.喷枪所有进气、进水口为G1/2”钢管外螺纹,安装时可以使用软管连 接,每条软管接一个阀门,软管长度应该保证足够的喷枪完全抽出和完

全伸入的余量,与喷枪连接使用快接接头,也可使用其他固定方式。安装时,千万注意进气、进水口的位置,不能装反。 4.在喷枪固定时,先测量原套管到法兰外壁的总长度,然后喷枪法兰的固 定位置与之相配合,保证喷枪固定好以后喷头与套管的前端齐平或者稍稍伸出一点(最好不要超过20mm,带护管的可以稍长一些)。 5.使用时,为了保证喷雾效果,应该先开气再开水,每只喷枪的流量可调 范围为20-180l/h,当气压固定时,喷枪的准确流量可以依据流量计来调节,如果没有流量计,可以根据水气压值得出大致流量,理论上在水压比气压低0.1-0.2mpa时,喷枪的流量在50l/h左右,实际流量依据现场使用情况确定。 6.该型号喷枪压缩空气的压力范围为0.2-0.5mpa,水压范围为 0.1-0.6mpa,最佳的雾化效果时,水压应该比气压略低。 7.本型号喷枪的最终解释权归我公司所有。

雾化喷嘴分类及设计浅析

煤矿开采中产生的大量粉尘,不仅严重影响矿工的身体健康,而且煤尘还具有爆炸性,威胁煤矿安全生产。近年来,随着煤矿开采强度的增加,粉尘防治问题日渐突出。目前,我国煤矿主要防尘措施是喷雾降尘,使用雾化喷嘴来进行空气清洁,而作为喷雾降尘最基本的元件,其雾化能力(雾流形状和雾粒大小)直接决定了喷雾降尘的效果。 一、喷嘴分类及其特性 1、按雾流形状分类 根据喷嘴形成的雾流形状,可将喷嘴分成锥形实心喷嘴和锥形空心喷嘴两大类。 实心喷嘴以降尘为主,空心喷嘴以阻尘为主。实心喷嘴喷出的锥形实心雾柱的雾流速度较大,被雾粒碰撞的粉尘一般都能降下来。但因为雾流速度大,其周围引射的空气很容易将粒径较小的呼吸性粉尘吹跑,客观上影响了降尘效果。空心喷嘴喷出的锥形雾幕以阻尘为主,为使雾幕覆盖的面积加大,一般都有很大的雾幕锥角,喷嘴离尘源也相对较远。这样也造成在雾幕直径大的一端,雾粒速度已降到很小,除不能捕捉尘粒外,还失去了阻尘作用。 从雾体形状分析,在它的全长区域内,实心喷雾雾体的密度比空心喷雾雾体的密度大,在实心喷雾的有效射程内,一般情况下煤粉尘很难穿过雾幕,所以,实心圆锥形雾体较空心圆锥形雾体效果为佳。 2、按雾化方法分类 (1)机械雾化 机械雾化主要是靠液体在压差作用下产生的高速射流使自身雾化,因此可分为直射式喷嘴、离心式喷嘴和旋转式喷嘴。 直射式雾化和离心式雾化可统称为压力雾化。直射式喷嘴主要依靠水的喷射达到雾化的目的,水压要求比较高,而且喷孔直径越大雾化越粗,故喷孔直径不能太大,流量调节范围比较小。离心式喷嘴是利用高压水经旋流装置产生的离心力产生液膜,被空气破碎而雾化。离心式雾化的效果优于直射式雾化,但是它同样需要较高的供水压力,因此应用条件有所限制。 旋转式喷嘴大体上分为旋转体型和旋转喷口型两大类。旋转体型又分为转杯式和旋盘式。转杯式雾化是将水喷入圆锥形转杯的前端,借助高速旋转的转杯将水展成薄膜,由“离心力喷雾”和“速度喷雾”的综合作用而雾化液体。同理,旋盘式雾化是依靠高速旋转的圆盘来雾化液体。 (2)介质雾化 根据雾化方式的不同又分为气动雾化和气泡雾化,气动雾化喷嘴应用广泛。 气动雾化喷嘴依靠一定压力的气体(压缩空气或蒸汽)形成高速气流,使空气与水之间形成很高的相对速度以达到雾化的目的。其优点是可以在较低的水压下获得良好的雾化效果,并且工作状况可以在较大的范围内调节。但动力源不单一,系统构成复杂。 (3)特殊喷嘴雾化 特殊喷嘴一般采用超声波、电磁场、静电作用等原理进行雾化。这类喷嘴虽然在其他一些工业应用中效果良好,但因煤矿井下环境恶劣所致,应用较少。

超细雾化喷嘴影响雾化效果的原因

超细雾化喷嘴影响雾化效果的原因 1 前言(来源:https://www.360docs.net/doc/9114249445.html,/ ) 在航空航天领域、燃烧工程领域及化学工业中广泛应用着各种结构形式的喷璃,特别是在化学工业中应用更为广泛。比如常用的喷雾干燥器中就应用了直射式喷嘴、离心机械雾化喷嘴及空气雾化喷嘴,但以空气雾化喷嘴应用最多。就目前国内所应用的空气雾化喷嘴而言.不论是燃烧工程还是化学工业,所应用的喷嘴基本上是在大流量,粗的雾化粒度条件下工作而对于目前正在研制的新型表面改性设备而言,却需要雾化牲度小于10um,印以超细状态喷出。虽然运用高速(音速或超音速)气流雾化是实现超细雾 化的有效可行的手段之一.但迄今为止,这类喷嘴尚无一套理论计算方法.对空气雾化喷嘴的设计,还以经验、试验为主。本实验用两种喷嘴。一为内混式空气雾化喷嘴,其内流路为液路,外流路为音速雾化气路。二为三流路气一液一气临界空气雾化喷嘴,其中间流路为液陆,内流路为一次亚音速气路,外流路为超音速二次雾化气路。 2 实验装置和实验系统 实验装置和实验系统如图1所示。系统分为水路、气路、喷嘴实验枪体、液雾测试系统4部分。雾化的粒度分布用2200型马尔文激光粒度仪测定。对粒度分布采用R一尺分布。 当采用尺一只分布时,计算机可以将原始数据拟台,直接给出分布方程中的X和N两个参数。由下到方程可得到颗粒的平均直径. 其中:Q——累积分布,即足寸小于D 的液滴体积占总液雾的体积百分数; X ——液滴尺寸分布中的某个特征尺寸; Ⅳ——尺寸分布指数,表征液滴尺寸分布的埘匀性。 实验系统在进行内混式空气雾化喷嘴实验时,只开外气路和液路在进行三流路临界空气雾化喷嘴实验时,内外气路及液路同时参与工作。

超声喷嘴概述

超声喷嘴概述 超声波喷嘴系统取代压力喷嘴,在广泛的工业和研发应用。废物对环境的关注和不可接受的数量已引起科学家,工程师和设计师采用超声喷雾喷嘴系统作为一种技术,更精确,可控性更强,更环保的涂料中的应用。 索诺- Tek的超声波喷嘴,用他们特有的细水雾喷,极大地减少过喷,节省金钱和减少大气污染。他们还广泛开辟一个新的应用可能性。他们是理想的,例如,当需要极低的流速。本公司的超声波无堵塞喷嘴不会穿出来,他们帮助减少在关键制造工艺的停机时间。 对于基材涂料,保湿,喷雾干燥,卷绕镀膜,精细喷涂线,和其他许多工业和研发应用,索诺- Tek的超声波喷嘴产量结果远远优于其他技术。 索诺- Tek的超声波喷嘴减少: ?材料消耗高达80% ?浪费的过度喷涂,大气污染 ?废物处置 ?维修和停机 多功能,可靠,一致的 ?喷雾模式容易形成精确的涂层应用 ?高度可控喷涂生产可靠的,一致的结果 ?无堵塞 ?没有运动部件的磨损

?耐腐蚀的钛金属和不锈钢结构 ?超低流量的能力,间歇性或持续 超声波喷嘴技术 区分压,超声雾化喷嘴从大多数其他喷嘴的一个特点是其软,低速精雾状喷洒,通常在每秒3-5英寸的顺序。液体雾化成细水雾喷,使用高频率的声波振动。压电换能器转换成机械能电力输入的振动,在液体中创建的毛细波,当进入喷嘴的形式。其他常见的雾化技术,使用压力以产生喷雾,一般超过100生产速度下降超声雾化产生的时代。这个速度差意味着压力喷雾剂产生尽可能多的动能,做超声雾化喷洒10000次的顺序。这鲜明的对比喷雾能源具有重要的实际影响。 ?在涂料的应用,加压,低速喷雾显著减少过喷量以来的下降往往在基板上,而不是关闭它反弹,解决。这意味着进入实质性的节省材料和减少排放到环境。 ?喷雾,可精确控制和形引气辅助气流滞销喷雾。小到0.070英寸的喷雾模式广泛高达1-2英尺宽,可以用喷涂成型设备的专业类型。 超低流量 由于超声雾化过程中的功能不依赖于压力,主要是由一个单位时间内的喷嘴雾化液量控制喷嘴一起使用的液体输送系统。 索诺- Tek的超声波喷嘴的整个家庭的流速范围是从低到每秒高达约6加仑每小时几微升。 根据特定的喷嘴和聘用(齿轮泵,注射泵,加压水库,蠕动泵,重力饲料,等)液体输送系统的类型,该技术能够提供非凡的各种流/喷的可能性。 跌落尺寸范围选择性 ,一般情况下,超声雾化生产的下降有一个相对狭窄的的粒度分布。中位数下降的尺寸范围为18-68微米,取决于特定类型的喷嘴的工作频率。作为一个例子,一个喷嘴直径约为40微米大小的中位数下降,99.9%的下降将下降在5-200微米直径的范围。

双流体喷嘴雾化过程的模拟分析

本科毕业设计(论文)任务书 毕业设计(论文)题目:双流体喷嘴雾化过程的模拟分析 适用专业:热能工程 下达任务日期:2014. 2.24 关键词:喷雾,流动,速度场,模拟 内容要求:(阐明与毕业设计(论文)题目相关、需要通过毕业设计解决、或通过毕业论文研究的主要问题。后面应列出建议学生在毕业设计(论文)前期研读的重要参考资料(书目、论文、手册、标准等) 本毕业设计课题利用Fluent 6.3对双流体喷雾过程进行数值模拟,探讨不同的工况下的喷雾流场包括压力场、浓度场、速度场的分布规律。毕业设计旨在提高学生综合运用基础理论知识的能力,培养其独立分析实际问题、解决实际工程问题的能力。本课题可以促进学生掌握流动、传热与传质的基本理论,熟悉液体雾化设备的基本结构与原理,培养其工程设计、科学实验与理论分析的基本技能,锻炼其计算、数据处理、数据分析等基本能力。 参考文献: 1陶文铨编著. 数值传热学. 西安交通大学出版社, 2001. 2曹建明编著. 喷雾学. 机械工业出版社, 2005.05. 3王福军编著. 计算流体动力学分析CFD软件原理与应用. 清华大学出版社, 2004.09. 4王瑞金,张凯,王刚编著. Fluent技术基础与应用实例. 清华大学出版社, 2007. 5侯凌云,侯晓春编著. 喷嘴技术手册. 中国石化出版社, 2002. 6《工业锅炉设计计算方法》编委会,工业锅炉设计计算方法,中国标准出版社,2005 7范维澄等.计算燃烧学.合肥市:安徽科学技术出版社, 1987. 8Lefebvre, A. H.. Atomization and sprays [M]. New York:Hemisphere, 1989. 9程勇,汪军,蔡小舒. 旋流燃烧室中NO 排放的数值计算. 上海理工大学学报.2004,V ol.26 10周力行. 湍流气粒两相流动和燃烧的理论与数值模拟.[M].北京:科学出版社,1994 11 A Datta,S K Som. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Applied Thermal Engineering 19 (1999) 949-967 12舒宝万,毛羽. 雾化效果对液雾燃烧过程影响的数值模拟.工业炉.2004,26(4) 13张波,尧命发,郑尊清,陈征. 正庚烷均质压燃燃烧特性和排放特性的实验研究. 天津大学学报.2006,39(6):663-669 14刘霞,葛新锋.FLUENT软件及其在我国的应用.能源研究与利用,2003.2,pp36-38

水泥窑炉SNCR脱硝技术

水泥窑炉SNCR脱硝技术 作者:徐忠俊 单位:江苏紫光吉地达环境科技股份有限公司 来源:发布日期:2012/11/7 1. 国内水泥厂脱硝的基本状况 “十二五”期间我国氮氧化物排放总量要求达到减排10%的目标,这就需要加大对电力、水泥、冶金等行业产生的氮氧化物进行控制。水泥行业氮氧化物的排放量占全国工业排放总量的15%左右,已是居火力发电、汽车尾气之后的第三大氮氧化物排放大户。工信部582号文件关于水泥工业节能减排的指导意见,提出了具体的量化目标:到“十二五”末,氮氧化物在2009年的基础上降低25%。同时指出,新建或改扩建水泥(熟料)生产线项目必须配置脱硝装置,且脱硝效率不低于60%。因此,探讨水泥行业最佳可行的脱硝技术显得尤为迫切。 目前,新型干法水泥回转窑上常用的NOx控制技术主要有以下几种:一是优化窑和分解炉的燃烧制度;二是改变配料方案,掺用矿化剂以求降低熟料烧成温度和时间,改进熟料易烧性;三是采用低NOx的燃烧器;四是在窑尾分解炉和管道中的阶段燃烧技术。然而,即使把上述四种措施全部采用起来,事实上水泥窑的NOx排放也很难达到400mg/Nm3 以下。采用选择性非催化还原(SNCR)脱硝法或选择性催化还原(SCR)脱硝法进一步降低NOx排放的措施是一个非常有效的降低NOx排放的途径。本文主要讨论关于SNCR选择非催化还原脱硝技术在水泥厂的运用。各控制技术的脱硝效率如下表所示: 由于SCR操作温度窗口和含尘量的特殊要求,在国内外水泥生产线上极少使用,主要原因为:(1)出C1的烟气通常用于余热发电,出余热发电系统的烟气温度无法满足SCR 的温度要求;(2)窑尾框架周边基本上没有布置SCR催化剂框架的空间;(3)出C1的烟气中高浓度粉尘及其有害元素易造成催化剂破损和失效;(4)一次性投资大;烟气通过催化剂的阻力增大了窑系统的阻力;(5)催化剂每三年需要更换,运行成本高。 2. SNCR(选择性非催化还原法)脱硝技术 2.1 SNCR脱硝原理

雾化喷嘴的工作原理

雾化喷嘴的工作原理 对液态工作介质的雾化原理研究往往滞后于喷嘴雾化技术应用它是为了改进和完善雾化技术而慢慢开展起来的20世纪30年代才开始对液体雾化机理进行研究目前还在研究之中至今对有些雾化方式的机理也还研究的不够透彻下面介绍目前人们对几种主要雾化方式的一般工作原理说明: 一、压力雾化喷嘴 当液体在高压的作用下,以很高的速度喷射出喷嘴进入到静止或低速气流中,由于喷嘴内部流道结构不同,其雾化过程也不同下面介绍不同结构作用下的压力雾化喷嘴。 1直射喷头雾化过程 液体经过加压后获得较大的动能,经过小孔后液体将以很大的速度喷射出去,在液体表面张力、粘性及空气阻力相互作用下,液体由滴落、平滑流、波状流向喷雾流逐渐转变。 2离心喷头液膜射流雾化过程 在液体压力较低的情况下,液体所获得的速度很小,这时主要是液体表面张力和惯性力起作用,虽然液体的表面张力比惯性力大,使液膜收缩成液泡,但在气动力作用下仍破碎成大液,滴随着压力增大,喷射速度增加,液膜在惯性力作用下而变得很不稳定,破碎成丝或带状,与空气相对运动产生强烈的振动,液体自身的表面张力及粘性力的作用逐渐减弱,液膜长度变短、形状发生扭曲,在气动力的作用下破碎为小液滴,在更高的压力作用下液体射流速度更大,液膜离开喷口即被雾化。 在研究离心式喷嘴雾化过程中,发现液体的表面张力越小,则液膜越容易发生破碎形成小丝、带,最后形成更细小的液滴,液体的粘性对液滴破碎起到阻碍的作用,液体的粘稠度越高液体,越不容易雾化成小液滴,只能形成丝甚至是片状或块状,同时我们发现液体的粘性对液体在旋流室的旋流张度也会产生一定的影响,当粘度低时,旋流室的内部结构在切向和径向两个方向上给液体的作用力增大,使液滴的雾化质量变好,在雾化中期表面张力起主要作用,即影响液膜分裂而在雾化后期粘性力、表面张力、油滴惯性力和空气阻力相互作用,是液滴进一步分裂。

超声波雾化器电路

多用途超声波雾化器 时间:2006-08-15 来源: 作者: 点击:3178 字体大小:【大中小】这里介绍一种多用途的超声波雾化器。该雾化器具有以下特点:分体式,即超声雾化头与电源和电路部分完全分离;便携式,体积小、即插即用、设有自保功能;高可靠,可全天候工作;雾化量大,与别墅的山水盆景配套可发生云雾缭绕的动感;特别适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒,以预防疾病(如把生活用醋定时雾化,可预防流感);雾化器(成品)售价低、性价比高,欲自制雾化器,仅器材和工时费也难敌上述的性价比。 一、电路工作原理 该雾化器电路如图1所示,电源经变压器B(AC220V/30W)降压(36V)送D1-D4整流和C5、C6滤波后给电路提供工作电压。雾化器工作电路由振荡器、换能器和水位控制电路等组成。 1.振荡器和换能器,电路中的振荡器是一种由高频压电陶瓷片TD(超声换能器)组成的工作振荡器,其振荡频率为1.65MHz(决定于选定的TD)。晶体三极管BG1和电容器C1、C2等构成电容三点式振荡器电路。C1和电感L1等效并联的谐振频率比工作频率低,其作用是决定工作振荡器的振荡幅度;C2 和电感L2等效串联的谐振频率比工作频率高,其作用是决定工作振荡器的反馈量,以保证振荡器起振和维持电路的可靠振荡。压电陶瓷片TD 具有很大的等效电感,它除决定电路的工作频率外,同时又是雾化器的工作负载。若更换压电陶瓷片TD,无需调整电路其他参数,其振荡器频率也能自动跟踪新的压电陶瓷片的频率

而工作。 2.水位控制和偏置电路电路中的超声换能器TD(又称雾化头)和其上安装的两根水位控制触针,他们是浸没在浅水水溶液中工作的。若长期雾化,一旦液面降低而使雾化头的水位控制触针露出水面时,振荡器会自动停止工作,这也避免了雾化头因发热而损坏。 图1电路中的BG2、BG3管、触针A、B以及相关的电阻,共同组成水位控制电路。电路工作时,电源通过触针A、B和水溶液给BG3的射极提供电源。BG3管导通工作。BG2管起开关作用。当BG3工作时,BG2管也导通,电源通过BG3、BG2、R3、L3向BG1管提供偏置电流,使BG1管振荡工作。一旦液面降低、控制触针露出水面,电源到BG3管的通路被切断,BG3管截止,BG2开关也断开,此时BG1因无偏置电流而迅速停止振荡。调整电阻R3的阻值,可以直接改变BG1管的偏置电流,所以振荡器的调试十分简单和方便。电路中的D7是BG1管be结的保护二极管。 二、超声雾化器结构和使用方法 1.雾化器结构,该雾化器外形如图2所示。雾化头外壳是铜质材料的铸件,铜壳表面镀铬抛光,其外形尺寸为442mm×l5mm,铜壳内封装有换能器(镍或钛高频压电片)和功率管BG1,换能器紧贴BG1管以利工作时在溶液中散热。铸件铜壳是可拆卸的,只需旋转壳面上的定位口,即可更换压电片。此外两根水位控制触针紧固在铜壳内,并按一定距离排列再垂直伸出壳外一定高度,以便控制被雾化溶液的最低水位。 雾化器电源和工作电路都单独装在一个工程塑料壳内,当该装置的输入插入电源后,输出会通过导线给雾化头供电工作。据称该雾化器厂家,不仅提供雾化器成品,也提供全套散件出售。 2,使用方法,若将该雾化器用于室内加湿或消毒,可准备一个小塑料盆,盆内盛一定量的溶液,溶液量不宜太多(浅水为准),仅比水位触针高出一定距离即可(溶液太深其雾化量相对减小)。再把雾化头平放、两根触针向上浸在溶液中,这时只需插上电源,溶液立刻开始雾化。若该雾化器用于盆景,可参照上述方法进行

双流体的原理说明介绍简要说明

双流体特点说明 1设备工作原理 本系统的基本功能是根据烟气温度的变化自动调节喷枪的喷水量,保证烟道出口温度维持在适当的温度范围内。工作时,冷却水自水源水箱经过过滤器过滤后由变频水泵升压并调节到一定的压力和流量,经出口管路送到喷枪,在压缩空气的作用下雾化,产生非常细小的雾化颗粒,水雾在高温烟气中迅速蒸发,吸收烟气的大量热量,使烟气温度迅速降低并维持在一定温度范围内。当出口测温组件检测烟气温度超过温度设定值范围时,在控制器的控制下,变频水泵自动调节转速,增大供水压力和流量,使喷水量增大,从而使烟气温度降低到指定范围内;当出口温度降低超过温度设计值范围时,在控制器的控制下,变频水泵自动调节转速,减小供水压力和流量,使喷水量减小,从而使烟气温度回升到指定范围内。 2设备主要工作模式 A:自动模式(对应正常使用) B:安全模式(对应某些允许喷雾但有一部分非常情况) C:停机模式(有危险或不需要喷雾而不允许喷雾状态) 3:为什么使用数量很少的喷枪就可以? 烟气冷却的趋势是在保证水量,保证完全蒸发的前提下,尽可能使用少的喷枪来达到目的,降低设备投资及安装费用,简化控制系统,提高设备稳定性。 我们每支喷枪实际的喷水量约为5吨左右/小时,平均雾粒为130um, 最

大雾粒为280um。在烟道内,可以在5.2秒之内完全蒸发,而烟气在烟道内实际的滞留时间为13秒左右,允许的最大雾粒约为530 um。 我们也经常使用喷水量为3.2吨左右/小时,平均雾粒为60um, 最大雾粒为180um。在烟道内,可以在2秒之内完全蒸发,而烟气在烟道内实际的滞留时间为3秒左右,允许的最大雾粒约为530 um。 从以上可以知道:我们不但使用较少数量喷枪可以,而且我们的喷雾技术在烟气冷却中有足够的余量,可以大大降低烟道湿底的可能性,很大的安全余量消除生产线因湿底而停产的可能,其它的技术经常产生湿底而导致生产停线。 4:对水质有什么要求? 整套系统对水质没有什么特别的要求,河水及湖水进行粗过滤即可; 在水箱与水泵之间,安装并联管路过滤器,在过滤器的两端分别装有球阀, 检修人员可以通过过滤器后面的球阀门开关,在线清洗和更换滤芯而不影响系统的正常运行。如没有特别的要求,一般过滤器滤精度为为30目,过滤器主要目的是保护水泵及后面的控制元器件,喷枪对水质没有特殊要求。 节省成本: A水费:城市自来水越来越贵,以每小时喷水10吨,工业用水每吨1.2元/吨计算,每年300天计算,每天24小时计算,每年费用为7.2万元;如直接用河水则节省这部分费用; B高压过滤器:节省其它高压系统所要求的高压水系列。

空气雾化油喷嘴设计计算.

序号项目 1原始条件序号项目 1炉子压力2空气压力3空气温度 空气理论比容4空气比容 5空气与燃油之比6燃料油流量7燃料油压力8燃料油温度 9燃料油20℃时重度10空气流量2设计计算序号项目 11混合室压力 12空气进入混合室压力比13空气进入混合室流量系数14空气绝热指数15161718192021222324252627282930 空气流量计算系数空气流通强度空气孔口总截面积空气孔数目空气孔口直径燃料油温度系数热燃料油重度 油压与混合室压力差燃料油孔口流通强度燃料油入混合室流量系数燃料油孔口截面积 燃料油孔口数目燃料油孔口直径 喷头孔口与蒸汽孔口面积之比喷头孔口截面积喷头孔口数目 空气雾化油喷嘴设计计符号单位234 符号PP1t1 υ1υ1 单位kg/cm2 kg/cm2 ℃ m3/kgm3/kgkg/hkg/cm2 ℃g/cm3 mG2P2t2r20G1符号Pmβ1u1kψb1F1n1 d1ξr110 ΔP kg/h单位kg/cm2 kg/mm2·hmm2个mm g/cm3/℃ g/cm3 b2u2F2n2d2F3/F1F3n3 kg/cm2 kg/mm2·hmm个mmmm2个 31喷头孔口直径d3mm 油喷嘴设计计算 计算公式或参数范围 5给定值或计算值6说明7计算公式或参数范围给定值或计算值0.3~0.5说明1绝压5.5绝压28.80.7733952050.1554516640.63

80 5绝压 110 0.85 50.4G1=m*G2 计算公式或参数范围 Pm=0.61*P1-0.43 β1=Pm/P1 0.75~0.8 b1=1.595*(P2/υ1)^0.5给定值或计算值说明2.315表压0.514444444β1>ψkp0.71.49.487337386 15.6806889 8取值 1.580166125取值d1=1.6 -0.00072 0.7852 1.685 58.01640117 0.7 1.969886308 1 1.58411152取值d2=1.6 2 31.36137779 16u2=0.7~0.9 1.580166125取值d3=1.6

超声波雾化器de原理及型号.

超声波雾化器原理简介 A.超声波雾化器原理简介 超声波雾化器利用电子高频震荡(振荡频率为1.7MHz或2.4MHz,超过人的听觉范围,该电子振荡对人体及动物绝无伤害),通过陶瓷雾化片的高频谐振,将液态水分子结构打散而产生自然飘逸的水雾,不需加热或添加任何化学试剂。与加热雾化方式比较,能源节省了90%另外 在雾化过程中将释放大量的负离子,其与空气中漂浮的烟雾、粉尘等产生静电式反应,使其沉淀,同时还能有效去除甲醛、一氧化碳、细菌等有害物质,使空气得到淨化,减少疾病的发生。 B.超声波雾化器分类和用途 本公司的系列雾化器采用高效集成电路,超小型一体化的独特结构 设计,重要部件采用进口元件,并选用高品质的雾化片。凭借产品多方面的优越性能、多年的生产经验和优质的个性化服务,我们生产的雾化 器已为许多日本、美国和国内企业的加湿器、熏香器、美容机、消毒机、浴缸造雾机、盆景、工艺品等提供优质的配套服务,并赢得客户的广泛赞誉。 本公司雾化器系列产品品种齐全,从单喷头到多喷头、从简单投入式到多种法兰安装结构式、从水的雾化器到耐二氧化氯等强氧化剂的雾化器,从锌合金外壳到黄铜和不锈钢外壳,同时我们的专业技术人员会 根据您的各种不同要求和使用条件,协助您选择雾化器产品型号,合理 调整雾化器的参数和工艺,或设计新型雾化器,若有需要,我们还可为您完成

整机的结构设计和控制部分研制。 C.使用说明和注意事项 在正确的使用情况下,雾化片的使用寿命约3000小时,且极易更换。 频震荡,手会有刺痛的感觉,但这不是电的冲击或漏电。 雾化器的正确使用步骤为:将雾化器放入装了水的容器内-雾化器的 电源连接线接入变压器-再将变压器的插头接入电源即可。 特别提醒:不要在雾化片表面没水时,将雾化器接入电源,因为电路 启动的脉冲电流在雾化片没有水的状态下会少坏雾化片。

喷嘴知识汇总

如何检测喷嘴问题 喷嘴问题的作用初期是轻微的,因而常被忽略。而随着喉口的改变,喷雾特性的改变就逐步明显,并且是可以监测的。 流量:用离心泵时,当喉口不断磨损时,喷嘴在一定压力下,流量通常都会增加。由于这种流量增加不容易观查到,因此建议定期进行流量检测。流量检测可以通过检测流量计读数,或在给定压力下,用收集法收集一定时间内的喷水量进行测量。把这些读数与样本上的读数比较,或者与新的,没用过的喷嘴读数进行比较。当使用往复泵时,喉口磨损时水流量不变,而液体管路中的压力下降。 喷雾形状:扇形喷嘴在喉口损坏,堵塞或粘结时,喷雾形状的不均匀变化很容易观查到。而喉口逐渐磨损时,喷雾形状的改变就不容易观查到,直到流量大幅增加时才能观查到。对于要求喷雾覆盖面非常均匀的应用中,要求采用特殊设备或测试来检测喷雾形状的均匀性。 带椭圆形喉口的扇形喷嘴的喷雾形状为厚扇形或锥形边缘的叶片形,因而相邻喷嘴的重叠分布很理想。随着喉口磨损,就能观查到喷雾形状所包含角度在减少。这时会发现较多的水在中心流动,使水分布增加。还可以发现喷雾形状中有条形,空心。

喷嘴损坏都有哪些常见原因 喷嘴性能通常是因为喉口的冲刷、损坏或堵塞而降低、以至完全丧失,损坏程度视喷嘴类型、型号和应用而不同。 当喷嘴选择、安装或组装、维修不当时,以下是一些常发生的基本问题。但要记住:所设计的喷嘴是有一定使用寿命的,因此定期进行喷嘴维护十分重要。 冲刷/磨损:喷嘴喉口上的金属逐步脱落,内部流动孔加大或形状改变。流量通常会增加,压力会降低,喷雾形状改变和喷雾颗粒变大。 腐蚀:喷嘴材料因与所喷材料或环境发生化学反应而引起的损坏。其作用与冲洗/磨损相类似,此外还会引起喷嘴表面的损坏。 高温:有些液体必须在较高温度或高温环境中喷射,这对不希望用于高温用途的喷嘴有一定负作用,喷嘴会软化或破裂。 粘结:液体蒸发产生的物质在喷嘴喉口或外边缘积累,形成一层固体膜,堵塞了喉口或内部通孔。 堵塞:固态颗粒堵在喉口内部,妨碍了流动或喷雾形状的均匀性。 组装不当:有些喷嘴在清洗后必须仔细进行组装,以使垫片、O形密封圈和内装阀等部件准确找正。组装不当会引起泄露或喷雾性能降低。螺帽过紧会使螺纹脱扣。 事故损坏:喉口或喷嘴因意外事故损坏或安装过程中脱落。而且喉口较小的喷嘴采用的清洗工具不当也会严重损坏,如用金属丝清理堵塞物。

循环流化床锅炉烟气SNCR脱硝工程(氨水)

循环流化床锅炉 烟气SNCR脱硝 设 计 方 案 设计单位:广州纳捷环保科技有限公司设计时间:2019年06月07日

目录 一、公司简介 (1) 二、项目简介 (2) 三、脱硝方案设计 (2) 3.1设计方案及设计原则 (2) 3.2 SNCR技术介绍 (4) 3.3工艺路线 (6) 3.4SNCR脱硝工艺简述 (6) 四、SNCR脱硝系统配置 (7) 4.1储存系统 (8) 4.2加压系统 (8) 4.3还原剂稀释计量分配系统 (8) 4.4 控制系统 (9) 4.5还原剂喷射系统 (10) 五、设备性能指标 (10) 六、运行成本分析 (11) 6.1 SNCR脱硝系统投资成本 (11) 6.2 SNCR脱硝设备运行成本(理论计算值) (11) 七、部分工程案例 (12) 7.1部分脱硝工程业绩汇总表 (12) 7.2脱硝设备现场 (13)

一、公司简介 广州纳捷环保科技有限公司位于广州市黄埔区,主要业务范围包括:节能环保与新能源领域的技术研究、开发、咨询及推广服务;工业脱硫、模块化脱硝等节能环保工程项目承接;并为企业及公共机构提供节能诊断、能源审计、节能规划、节能评估及合同能源管理技术咨询服务等。公司聘请科技人员10余人,包括教授、博士2人,本科、中高级以上技术人员5余人,并与各行各业的知名学者、专家及相关机构建立了密切的合作关系。 公司的创始专家团队有近二十年锅炉设计运行经验,先后主持或参与了一批国家、省部级重大科研课题项目,为一大批重点耗能企业开展了节能环保诊断、节能环保改造工程,公司创始人先后取得11项软件著作权,且已申请6项实用新型专利并获得国家知识产权局受理,自主研发的SNCR 模块化脱硝技术已列入广州市节能减排技术及成果推广目录。 公司紧紧跟随国家产业政策,立足“诚信、务实、专业、高效”的服务准则,积累了丰富的客户资源、人才资源、技术资源和社会服务资源,逐步发展形成为特色鲜明的,融节能环保技术开发推广、节能环保工程总承包于一体的现代环保科技公司。

斐卓Feizhuo水雾化喷头大全

水雾化喷头大全 水雾化喷头,用来喷水雾的喷头,几乎所有的喷嘴都能够满足这样的要求,那么根据不同的工况,如何在上万种喷嘴中选择适合自己工况的水雾喷嘴呢?我们先对水雾喷嘴做一分类解释: 用于降尘的雾化喷嘴:降尘分为室外降尘和室内降尘。 室外降尘喷嘴:室外降尘的工况主要为煤厂、焦化厂、化工厂等施工现场。在装卸料的时候会有很大的灰尘。这时候需要降尘,室外降尘量比较大,一般为这种工况推荐的是实心喷嘴、螺旋实心喷嘴;具体流量大小,参数等还需要因客户的工况详细确认。实心喷嘴角度可达120度。 室内降尘的水雾喷头:室内降尘有大量和微量降尘。大量降尘还是选择实心喷嘴,防止喷嘴堵塞。微量降尘主要为人工操作车间,或者要求湿度不能太高的场合。这样的工况一般选用的水雾化喷嘴为微细雾化喷嘴,精细雾化喷嘴,二流体雾化喷嘴(空气雾化喷嘴)。这几类喷嘴流量范围广,喷雾量均匀,喷雾颗粒小,在不同的压力下有不同的喷雾效果。 微细雾化喷嘴(水雾化喷嘴),依靠液体压力雾化,压力越高雾化效果越好。微细雾化喷嘴的喷雾角度较小,覆盖面积窄,适合小空间的喷雾加湿。水雾化喷嘴喷雾角度60度,有效喷射距离60,覆盖均匀。 二流体雾化喷嘴,雾化效果上乘的雾化喷嘴,喷雾距离可达3-4米,有效覆盖1米,喷雾粒径小到10微米,喷雾均匀,雾化喷嘴的主体分为多种规格。有流量可调的雾化喷嘴jn,自动控制雾化喷嘴JAU,防堵清楚针空气雾化喷嘴JCO,迷你型空气雾化喷嘴MK。 雾化喷嘴的喷雾形状有扇形喷雾、实心锥形喷雾、空心喷雾。 水雾化喷头,微细雾化喷嘴、精细雾化喷嘴、高压雾化喷嘴、空气雾化喷嘴、多头雾化喷嘴。 水雾化喷嘴的更多信息请您咨询上海斐卓喷雾系统公司。我司可按客户要求特殊定制。

一款简单的超声波雾化器电路

一款简单的超声波雾化器电路 本例介绍的超声波雾化器,与山水盆景配套使用时能产生云雾缭绕的动感效果。其用于较丁燥的环境对空气加湿时能淸新空气,有利于人的呼吸;在水中加人适量的消毒溶剂后,雾化后可对居住环境消毒,预防疾病的发生。 工作原理: 超声波雾化器由电源电路、振荡器电路与水位控制电路组成,如图所示 T ----------- 再宓牛0讯鋼 220V交流电压经T降压(降为36V)、桥式整流yDI — VD 4及Cl、C 2滤波后,为水位控制电路与振荡器提供工作电压。在水位检测电极检测到水槽内有水时,整流后的直流电压经两个水位电极之间的水电阻,为VT I的发射极提供工作电压,使VT1导通.VT1集电极输出髙电平,使VT 2也导通,为振荡器提供偏置电压。振荡器振荡工作后,晶体超声波换能器BC产生髙频振动(频率约为1?65MHz),将水雾化。 元器件选择 VT1选用S9015或C855 0型硅PNP晶体管;VT2选用2SC 1 8巧或C85 5 0型硅NPN晶体 管;VT 3选用BU406或MJE1 3 0 05型硅NPN高反压晶体管。 VD1 — VD4、VD5均选用1 N400 7型硅整流二极管;VS1与VS2均选用1W,4.7 V的硅稳压二极管。 R1-R7选用1 /4W碳膜电阻器或金属膜电阻器。 C1选用耐压值为50V似上的铝电解电容器;C2 — C4与C 6选用独石电容器或涤纶电容器;C5选用高频瓷介电容器。 L1 一 1 3选用TDK色码电感或用漆包线自制。 T选用30W、二次电压为36 V的电源变压器。

BC选用加温器专用压电式超声波雾化头。 水位电极可用不锈钢针制作。 本文介绍的装苣能使盆景的假山、树木周I期产生层层雾气,犹如山间飘着朵朵白云,极大地提髙了观赏价值。同时也适合过分干燥的环境对空气加湿,以利人的呼吸;在水中加入适量的某种溶剂,给被污染的居住环境消毒.以预防疾病(如把生活用醋左时雾化.可预防流感)等等。 主要由超声波发生器、水位控制器、电源电路等几部分组成。超声波发生器主要由三极管VT1构成.VT 1及英外国元件组成电容三点式LC振荡器.B就是超声波换能器,苴固有频率fc=K 65MHz,电容Cl、C2决定振荡幅度,其固有频率略低于f c ,L1、C2为正反馈元件, 其固有频率略高于f c ,V D5为VT 1的保护二极管。由于雾化时B浸在水中,水位控制器由VT2、VT3等元器件构成,作用就是: (1) 为振荡电路提供基极偏置电流; (2) 当盆景中水位低于设左值时,使振荡器停振,起保护作用。VT2、VT 3接成复合管,通过L3、R3向VT I提供基极偏置电流,L3为高频扼流线圈,阻I上超声波信号进入水位控制电路。调整R1的阻值,可改变VT1的基极电流,从而控制整机的工作电流。a、b为水位控制线,平时浸没在水中。雾化器正常工作时,若水位下降到一立限度,a、b脱离水而.VT2、VT3便截止,水位控制器停止向VT1提供基极电流,整机停止工作。 元器件选择 VT1的质量就是制作成功的关键,最好采用意大利SGS产BU406、BU407或BU408 等大功率髙频三极管,要求fT2100MHz:VT 2、VT3可用9014型等NPN型硅管,要求B 2100:VDl?VD4可用1N40 02硅整流二极管。 所有电阻最好全部采用RJ-0、25W金属膜电阻;电容采用CBB-100 V聚苯电容;电感L1 可用<1> 0 .51mm漆包线在e 1 0 X 1 0 mm磁芯上绕27匝,电感量约24 u H: L 2用"0.69mm 漆包线在“ 6 mm钻头绕2、5匝,然后脱胎取下,电感量约0、22 P H:L3可用27 0 uH色码电感器;换能器B就是关键元件,应采用<b20X 1.25mm/1 .6 5MHz或*20 X 1 .2mm/]、7 MHz高强度压电陶瓷片;变压器T要求次级电压为5 0V,功率4 0 W;S用小型船形开关:VT1 最好安装散热器;换能器B 不能离水通电,否则将烧坏。盆景中水深以4?6 cm为宜,应淸洁。装好后调整电阻R 1,使总

超声雾化器理论设计

超声雾化器设计及实验研究 3.1 引言 超声雾化器的主要作用是将供液装置提供的雾化液雾化,以满足各种不同的应用。常见的雾化方式有喷嘴机械雾化和压电超声雾化两种。传统的机械式雾化方法分为压力喷射式雾化和转杯高速旋转雾化。压力喷射式雾化是雾化液在雾化器压力作用下具备一定动能,在高速旋转中喷出喷孔,在离心力、喷孔反作用力等力作用下,克服雾化液的表面张力和粘性力,碎裂成雾粒;转杯高速旋转雾化是雾化液以细流经管道进入安装在空心轴上的雾化转杯内,在高速旋转雾化杯的离心力作用下,紧贴在雾化杯壁面,形成的液膜随着转杯高速旋转,并不断向杯口移动直至甩出裂解成细小的成曲线运动的雾粒。压电超声雾化有低频大功率超声雾化和高频微细雾化。解释超声雾化机理的理论主要有表面张力波理论和微激波理论。高频超声微细雾化在空气雾化加湿、超声雾化美容、药剂雾化吸入治疗等领域应用广泛。低频大功率超声雾化主要应用在生物与农业工程中、设施农业植物盆栽培养方面,应用范围仍在不断扩展。 低频大功率超声雾化不仅具有汽雾分布均匀,汽雾粒径小,雾化液速度低等高频超声雾化器的优点,而且雾化量较大,雾粒初速度高等机械压力喷嘴的优点,比较适合精密超精密磨削的冷却应用。低频超声雾化器的动力由夹心式大功率压电超声换能器提供,其设计基于声波在弹性介质中的一维传播理论及相关设计理论并结合有限元分析,确定超声雾化器的结构参数。根据纳米汽雾聚焦超声冷却系统的要求,超声雾化器采用了二次雾化技术,以进一步细化雾粒。 超声雾化器的雾化性能试验主要包括最大汽雾流量,汽雾粒径等。汽雾的雾粒粒径之间是不同的,一般用雾粒的平均粒径来表示,设想一个液滴尺寸完全均匀一致的喷雾场以代替实际不均匀的喷雾场,这个假想的均匀喷雾场的液滴直径称为平均直径[55]。几种不同的平均粒径表示方法应用领域如表3-1所示。 表3-1 平均粒径表示方法应用领域 平均粒 径类型 长度表面积体积索特粒径 公式 max min max min 10 D D D D DdN D dN = ? ? max min max min 1/2 2 20 D D D D D dN D dN ?? ? = ? ? ?? ? ? max min max min 1/3 3 30 D D D D D dN D dN ?? ? = ? ? ?? ? ? max min max min 3 32 2 D D D D D dN D D dN = ? ?

脱硝双流体喷枪使用说明

HECY-SE 系列高效脱硝喷枪 安装前请仔细阅读 河北诚誉喷雾技术有限公司安装使用说明书

目录 1喷枪简介 ........................................... - 0 -结构及特点....................................... - 0 -适用范围......................................... - 1 -2喷枪安装 ........................................... - 1 -套筒的加工........................................ - 1 -确定位置开孔...................................... - 1 -固定套筒.......................................... - 2 -安装喷枪......................................... - 2 -喷枪连接.......................................... - 5 -主气路连接........................................ - 6 -3注意事项 ........................................... - 6 -4常见问题及处理方法.................................. - 7 -5服务指南 ........................................... - 7 -

相关文档
最新文档