人工神经网络在图像处理与识别中的应用(翻译的IEEE英文原版论文)

人工神经网络在图像处理与识别中的应用(翻译的IEEE英文原版论文)
人工神经网络在图像处理与识别中的应用(翻译的IEEE英文原版论文)

人工神经网络应用于图像识别与处理

摘要

有几种方法可用于图像识别。在这些方法中,软计算模型在数字图像中应用已被认为是一种获得更好结果的方法。本工作的主要目的是为图像识别提供一种新方法——人工神经网络。最初的原始灰度图像已经被转型。将输入图像加进椒盐噪声,然后将带有噪声的图像经过一个自适应中值滤波器,滤除噪声,输出图像就可以视为过滤图像。参考存储在原始数据矩阵中的值,计算出估计误差和平均误差的值存储在过滤图像矩阵中,以便检查进行适当噪声滤除的效果。现在将每个像素数据从十进制数转化成八位二进制数,四个一组的像素已经在一起形成一个新的32位二进制数并转换成一个十进制数,这个过程将用新的不同组值持续产生新的数据矩阵。这个数据矩阵将被作为原始数据矩阵存储在数据银行。现在用来识别,一个新的测试图像已采取和插入椒盐噪声相同的步骤,正如前面提到的,采用自适应中值滤波去除噪声,从而得到一个新的测试矩阵。现在,相对于原始图像,第二个图像的平均误差是基于这两个生成矩阵计算出来的。如果这个平均误差大于45%,我们就可以得出结论,图像是不同的,无法匹配。但如果平均误差值已发现是小于或等于45%,我们做出尝试,相对于原始数据矩阵,将人工神经网络应用于测试数据矩阵,从而产生第二个图像(测试图像)的一个新矩阵。对测试数据矩阵应用人工神经网络之后产生生成数据矩阵,通过这个生成数据矩阵,可以计算出总的平均误差,从而检查是否可以作出正确的识别。已观察得到,平均误差的值小于没有应用人工神经网络的测试图像的值。此外,还观察到,测试图像相对于原始图像是可以被识别和匹配的。

关键词:数字图像处理人工神经网络前馈BP神经网络灰度图像椒盐噪声自适应中值滤波器

第一章引言

图像处理的主要目的是改变视觉的影响,这样信息量大大提高,使得所述图像比原始图像更清晰。这种技术有助于我们获得图像中我们感兴趣的部分或特征的更好的清晰度,并且抑制图像中其他部分或特征的信息。图像识别一直致力于,从一组身份已知的标签中寻找图像中被观察目标的身份。可用的识别技术有许多种,但是对于选择何种技术最合适主要取决于给定的手头任务和一些其它的相关参数。软计算是建立在模糊逻辑,人工神经网络,进化计算,机器学习等一些最新技术之上的一种新兴领域。每种软计算技术都可以应用于,产生因太复杂或嘈杂而无法用常规方法处理的任何问题的解决方法。本文将利于人工神经网络,提供一种图像处理与识别的新方法。人工神经网络已成为灵感来自于生物神经网络的一个最新发展工具。这个新的强大工具的主要优势是,它具有靠传统计算方法不太容易解决问题的能力。

传统的计算机采用逐步解决问题的方法,且每一步都需要很好定义并且必须保证是可计算的。如果其中计算机需要遵循的任何一步是未知的,计算机将无法解决问题。所以利用计算机解决问题需要事先掌握如何解决这个问题的所有知识。而人工神经网络是一种新技术,它采用的是一种与传统计算方法不同的解决问题的方式。或许人工神经网络之所以被认为更强大,是因为它可以解决一些还不能准确知道如何去解决的问题。人工神经网络的应用已经扩展到广泛的领域,如图像识别,指纹识别等。人工神经网络有能力适应,学习,推广和组织数据。一些已知的人工神经网络结构有感知器网络,线性神经网络,Madaline网络, Kohonen网络,反向传播网络。

第二章相关工作

数字计算机[ 1 ]的出现和现代学习与神经处理理论的发展都发生在大约同一时期,即二十世纪40年代后期。在计算机上进行人工神经系统[ 2 ]的研究(ANS)仍然是生物医学研究的一个活跃领域。自那时以来,数字计算机已作为一种工具被用来建立单个神经元以及神经元簇的模型,这就是所谓的神经网络。源自统计模式识别的传统技术一直很流行,直到20世纪90年代初期。在新的时代,2000,Robert P.W.Duin 和毛建昌[ 3 ]给了我们作了一个全面的总结并对模式识别中一些众所周知的方法进行了比较。给出的评论主要针对统计方法。人工神经网络(ANN)在这只作为一部分被讨论。由于发现,对于进行特征识别,统计方法或多或少存在着一般数学方法的不可用性。一个新的基于轮廓特征值计算的特征提取方法被提出,并发现利用前馈神经网络可以得到令人满意的结果[4]。人工神经网络已经越来越多地被用来作为一种传统模式分类器及聚类技术的替代。在医学图像处理领域,Kenji Suzuki[ 5 ]比较了基于像素和非基于像素的人工神经网络方法,结果证明,当涉及到分割和特征计算,前者效果更好。本文还认为,进行大量的人工神经网络训练可用于图像增强。1993,在一个关于图像分割的评论文章中,Pal就预言,神经网络将被广泛的应用于图像处理中。基于神经网络的分割技术,被发现显示出了强大功能。在医学图像处理领域的另一个相关工作证实了这种基于神经网络的分割技术。该方法结合了实时应用的方法。从而一种混合神经网络被提了出来[ 8 ]。与特征脸方法相比,这种混合神经网络的方法显示发现的错误率产生了令人满意的结果。在人工神经网络前进方向上,一个更为实时的方法已经显示出,如何完成对一个处在杂乱海滩场景[9]里的人的检测和量化,这显示出了基于神经的分类系统。一种用平行的Hopfield神经网络[ 10 ]完成对暗淡面部图像识别的方法,在识别率上显示出了令人鼓舞的结果。2007年,一项基于Hopfield神经网络的研究发表,在这项研究中,关于这个概念宽泛的理论综述被提了出来。目标识别包括在一副图像中定位目标实例的相应位置及可能的方向和尺度,这样做的目的大概也是为了给检测到的目标指定一个分类标签。一些其他类型的人工神经网络,如前馈人工神经网络方法也可以被用于目标识别。前馈网络通常由三到四层按逻辑排列的神经元组成。第一层和最后一层分别是输入层和输出层,在其它层之间

通常有一个或多个隐藏层。在这里信息只允许单向传输,这就这意味着,一个层的输出成了下一层的输入,如此类推。这种传输有序发生,每层都完全连接到下一层并且每个神经元通过加权后连接到下一层的神经元。

本文的目的是利用人工神经网络为目标识别提供一个替代解决方案。最初的原始灰度图像已经被作为了一个参考,并被存储为原始数据银行。对转化方法的处理已经应用与原始图像,最初的一副原始灰度图像已经采取转换,输入图像已加入盐和辣椒噪声,自适应中值滤波器已被应用在处理嘈杂了噪声的图像,因此噪声可以被滤除,输出图像可视为过滤图像。参考存储在原始数据矩阵中的值将计算出估计误差和平局误差的值并存储在过滤图像矩阵中,目的是检查适当滤波的效果。现在每个像素数据的值已经从十进制数被转换到8位二进制数。那四个像素合在一起组成一组形成一个新的32位二进制数。此后,这些二进制数再被转换成一个十进制数,这个过程像这样一直持续到完成图像所有行,最终产生了由一系列不同值组成的新数据矩阵。。这个数据矩阵被作为原始数据矩阵,并保存在数据银行以供参考。现在用来识别,一个新的测试图像已经采取了和前面所提到的相同的步骤,插入椒盐噪声,采用中值滤波器滤除噪声,从而得到一个新的测试矩阵。现在基于两个生成矩阵,相对于原始图像,第二张图像的平均误差被计算出来。如果误差的百分比大于45%,我们可以得出结论:图像是不同的,是不可匹配和识别。相反,如果得出的误差百分比小于或等于45%,我们将尝试相比与原始数据矩阵,将人工神经网络应用到测试数据矩阵,从而产生第二个图像的新矩阵。对测试数据矩阵应用人工神经网络后产生对应生成数据矩阵,我们便可以通过生成数据矩阵计算出平均误差。已观察到,如果平均误差小于之前得到的值,那么我们就可以得出结论:图像是匹配的,从而也是可以被识别的。

利用人工神经网络进行图像处理和识别的流程图如图1:

开始

输入原始图像

输入图像加入椒盐噪声

采用AMF滤除原始图像的椒盐噪声

基于原始输入图像计算出过滤图像

的平均误差

原始无噪声图像转换成二进制数据

矩阵

测试图像加入椒盐噪声

采用AMF滤除测试图像椒盐噪声

测试图像转换为测试数据矩阵

基于原始数据矩阵计算出测试矩阵

的平均误差

采用ANN对测试数据矩阵进行训练产

生新数据矩阵

基于原始数据矩阵计算新数据矩阵

的平均误差

A.原始图像的处理

步骤一:

我们选取最初的最佳的图像如图2,我们把它作为原始图像。为简单起见,取原始图像的第一个10x10矩阵元素如下:

表1 输入数据矩阵

步骤二:

输入图像加入椒盐噪声,计算出加入椒盐噪声后的平均误差是25.67%。为简单起见,加入噪声的原始图像的第一个10x10矩阵元素如下:

表2 带有噪声的输入数据矩阵

B.含噪声图像的处理

步骤三:

将自适应中值滤波器应用于含噪声的图像,从而将噪声滤除,输出的图像将被视为过滤图像。

步骤四:

参考原始数据矩阵的值,估计误差和平均误差的值被计算出来存储在过滤图像矩阵中。平均误差的值为5.397%。这显示出了噪声滤除的结果。

步骤五:

去除噪声得到原始图像被转化成包含像素值的数据矩阵,如表3所示。为简单起见,取第一个10x10矩阵元素值如下:

表3 噪声滤除后的输入数据矩阵

步骤六:

为简化计算,四个像素被合在一起,并明智的逐行取出,并转化成单个二进制数。

步骤七:

四个像素的二进制值并排在一起,已经结合形成32位二进制数。

步骤八:

现在将这32位二进制数转换成一个十进制数。

步骤九:

在步骤五中生成的十进制数,被放进了原始数据矩阵,把这个矩阵命名为ORMAT[][],如表4所示:

表4 原始数据矩阵ORMAT[][]

步骤十:

本说明书所提供的步骤六到步骤九,重复操作直到完成滤除噪声后的原始图像的如表3所示的全部像素值,因此,产生了一个矩阵,数据存储在命名的ORMAT[][]数据矩阵中,如表4所示。需要注意的是,取第一个10x10矩阵元素显示在表4中更容易介绍。

C.测试图像的处理

一张新的图像被取出,作为测试图像,现在最重要的是检查所取的图像是否可以被识别出来。测试图像如图5所示,为简单起见,测试图像的第一个10x10矩阵元素(测试数据矩阵)的值如下表5所示:

表5 测试数据矩阵

步骤十一:

正如上述步骤二的说明,现将其在测试图像上执行,产生一个含噪声的测试数据矩阵,如表6所示:

表6 含噪声的测试数据矩阵

步骤十二:

如上述在步骤三和步骤四中的说明,先将其在含噪声的测试图像上执行,将生成一个滤除噪声的测试数据矩阵,如表7所示:

表7 滤除噪声的测试数据矩阵

步骤十三:

如上述步骤五到步骤九的程序,将其在滤去噪声的测试图像上执行,将产生的十进制数放置在测试数据矩阵TESTMAT[][]中,如表8所示:

表8 矩阵TESTMAT[][]

D.基于原始数据矩阵计算测试数据矩阵平均误差

步骤十四:

基于表4存储的原始数据矩阵,我们可以计算出存储在二进制矩阵中的估计误差和平均误差,如表9所示。其中平均误差为31%。估计误差如下所示:

表9 估计误差数据

步骤十五:

由于平均误差小于45%,为了进行识别,我们采取必要的步骤,利用人工神经网络的技术对测试图像进行处理。

E.利用人工神经网络对识别的图像进行处理

步骤十六:

相对于原始图像的数据矩阵,前馈反向传播神经网络被用在测试图像的测试数据矩阵进行训练与测试。结果就产生了一个新的数据矩阵,我们把它命名为NEWMAT[][],如表10所示。需要注意的是,矩阵ORMAT[][],TESTMAT[][],NEWMAT[][]的列的数目只占了原始图像或测试图像数据总列数的四分之一,因此利用人工神经网络完成训练和测试所需的时间大大减少。

表10 应用ANN后的数据矩阵NEWMAT[][]

步骤十七:

数据矩NEWMAT[ ] [ ]的每个值被转换成32为二进制数。

步骤十八:

现在32位二进制数被分为四组8位二进制数。

步骤十九:

每组8位二进制数被转化为十进制数,每个十进制数被作为每行连续四个像素的像素值。

步骤二十:

重复上述步骤十七到步骤十九的说明,直到完成数据矩阵MEWMAT[][]中所有的值。结果产生了一个新的被修改了的数据矩阵,我们把它命名为MODMAT[][],如表11所示。需要注意的是,为了便于陈述,我们取第一个10x10像素存储在表11。

表11 修改后的数据矩阵MODMAT[][]

F.估计误差和平均误差的计算

步骤二十一:

参考存储在表3中的值,我们可以计算出估计误差和平均误差的值,并存储在表11。且计算出的平均误差为14.39%。基于存储在表11中的值,可以形成图像,如图8所示。

步骤二十二:

其它的测试图像如图9,被用来进行处理和识别。

第四章结果

一些原始图像和测试图像被取出来进行处理,结果显示如表12所示。

表12 结果

图6 含噪声的测试图像图7噪声滤除后的测试图像

图8 利用ANN训练后的图像图9 测试图像

图10 含噪声的测试图像图11噪声滤除后的测试图像

第五章总结

已经观察到,如果平均误差小于45%,人工神经网络可以用于训练检测从而进行识别。因此,测试图像和原始图像是可识别和成功匹配的。同时也被察到,如果平均误差大于45%,那么图像被识别为不同的图像。在本文中,插入椒盐噪声主要是因为所有用来识别的图像都可能含有某

种噪声,这就需要去滤除噪声,从而进行正确的识别。本文还观察到,由于用来训练的矩阵行数只有原始图像列数的四分之一,用人工神经网络进行训练和测试需要更少的时间。

参考文献

[1] M. Egmont-Petersena, D. de Ridderb, Handelsc,L.Beaurepaire, K.Chehdi; B.V ozel ―Image processing with neural networks—a review", Pattern Recognition 35 (2002), 2002, PP-2280–2288 [2] Berend Jan van der Zwaag , Kees Slump , and Lambert Spaanenburg" Extracting Knowledge from Neural Networks in Image Processing"PP-143-145

[3] Anil K. Jain, Fellow, IEEE, Robert P.W. Duin, and Jianchang Mao,Senior Member, IEEE ―Statistical Pattern Recognition: A Review‖,IEEE TRANSACTIONS ON PATTERN ANALYSIS ANDMACHINE INTELLIGENCE VOL. 22, NO. 1, JANUARY 2000

[4] Andrzej Dziech, Ali Amuri, ―CONTOUR RECOGNITION USING NEURAL NETWORKAPPLICATION‖, Communications Dept.,AGH Cracow University, Cracow, POLAND, Electronics and Communication Dept., Kielce University of Technology, Kielce,POLAND.

[5] Kenji Suzuki, ―Pixel-Based Artificial Neural Networks in Computer-Aided Diagnosis‖, Department of Radiology, Division of Biological Sciences, the University of Chicago USA

[6] N.R. Pal, S.K. Pal, "A review on image segmentation techniques",Pattern Recognition 26 (9) (1993) 1277– 1284.

[7] S.K. Pal, A. Ghosh, "Neuro-fuzzy computing for image processing and pattern recognition", Int. J. Systems Sci. 27 (12) (1996) 1182–1193

[8] Mostafa Jabarouti Moghaddam, Hamid Soltanian-Zadeh,

―Medical Image Segmentation Using Artificial Neural Networks ―.

[9] Adilson Gonzaga, Armando Marin, Evandro A. Silva, Fabiana

C.Bertoni Kelton A.P. Costa, Luciana A.L. Albuquerque ―Neut ral Facial Image Recognition Using Parallel Hopfield Neural Networks‖,Universidade de S?o Paulo

[10] Y.J. Zhang, "A survey on evaluation methods for image

segmentation", Pattern Recognition 29 (8) (1996) 1335– 1340 [11] Humayun Karim Sulehria, Ye Zhang, ―Hopfield Neural Networks—A Survey‖, Proceedings of the 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island,Greece, February 16-19, 2007.

[12] Rafael C. Gonzalez, Richard E. Woods, " Digital Image Processing", Second Edition, Prentice Hall Upper Saddle River, New Jersey 07458, TA1632.G66 2001, 698-740

原理

一.提出问题

数字计算机的出现和现代学习与神经处理理论的发展都发生在大约同一时期,即二十世纪40年代后期。在计算机上进行人工神经系统的研究(ANS)仍然是生物医学研究的一个活跃领域。自那时以来,数字计算机已作为一种工具被用来建立单个神经元以及神经元簇的模型,这就是所谓的神经网络。源自统计模式识别的传统技术一直很流行,直到20世纪90年代初期。在新的时代,2000,Robert P.W.Duin和毛建昌给了我们作了一个全面的总结并对模式识别中一些众所周知的方法进行了比较。给出的评论主要针对统计方法。人工神经网络(ANN)在这只作为一部分被讨论。由于发现,对于进行特征识别,统计方法或多或少存在着一般数学方法的不可用性。一个新的基于轮廓特征值计算的特征提取方法被提出,并发现利用前馈神经网络可以得到令人满意的结果。图像处理的主要目的是改变视觉的影响,这样信息量大大提高,使得所述图像比原始图像更清晰。这种技术有助于我们获得图像中我们感兴趣的部分或特征的更好的清晰度,并且抑制图像中其他部分或特征的信息。图像识别一直致力于,从一组身份已知的标签中寻找图像中被观察目标的身份。可用的识别技术有许多种,但是对于选择何种技术最合适主要取决于给定的手头任务和一些其它的相关参数。软计算是建立在模糊逻辑,人工神经网络,进化计算,机器学习等一些最新技术之上的一种新兴领域。每种软计算技术都可以应用于,产生因太复杂或嘈杂而无法用常规方法处理的任何问题的解决方法。传统的计算机采用逐步解决问题的方法,且每一步都需要很好定义并且必须保证是可计算的。如果其中计算机需要遵循的任何一步是未知的,计算机将无法解决问题。所以利用计算机解决问题需要事先掌握如何解决这个问题的所有知识。而人工神经网络是一种新技术,它采用的是一种与传统计算方法不

同的解决问题的方式。或许人工神经网络之所以被认为更强大,是因为它可以解决一些还不能准确知道如何去解决的问题。

本文将利于人工神经网络,提供一种图像处理与识别的新方法。人工神经网络已成为灵感来自于生物神经网络的一个最新发展工具。这个新的强大工具的主要优势是,它具有靠传统计算方法不太容易解决问题的能力。

二.分析问题

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

机械设计设计外文文献翻译、中英文翻译、外文翻译

机械设计 摘要:机器是由机械装置和其它组件组成的。它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。术语中的“机械装置设计”的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。 一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。 也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。 最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要

外文翻译 (2)

外文翻译: 会计081班顾洁芳0804002244 Stock:Expected and unexpected return To begin, for concreteness, we consider the return on the stock of a company called Flyers. What will determine this stock’s return in, say, the coming year? The return on any stock traded in a financial market is composed of two parts. First, the normal, or expected, return from the stock is the part of the return that shareholders in the market predict or expect. This return depends on the information shareholders have that bears on the stock, and it is based on the market’s understanding today of the important factors that will influence the stock in the coming year. The second part of the return on the stock is the uncertain, or risky, part. This is the portion that comes from unexpected information revealed within the year. A list of all possible sources of such information would be endless, bet here are a few examples: News about Flyers research Government figures released on gross domestic product (GDP) The results from the latest arms control talks The news that Flyers’s sales figures are higher tan expected A sudden, unexpected drop in interest rates Based on this discussion, one way to express the return on Flyers stock in the coming year would be: Total return = expected return + unexpected return R = E (R) + U Where R stands for the actual total return in the year, E(R) stands for the expected part of the return, and U stands for the unexpected part of the return. What this says is that the actual return, R, differs from the expected return, E(R), because of surprises that occur during the year. In any given year, the unexpected return will be positive or negative, but, through time, the average value of U will be zero. This simply means that on average, the actual return equals the expected return. Risk: systematic and unsystematic The unanticipated part of the return, that portion resulting from surprises, is the true risk of any investment. After all, if we always receive exactly what we expect, then the investment is perfectly predictable and by definition, risk-free. In other words, the risk of owning an asset comes from surprises-unanticipated events. There are important differences, though, among various sources of risk. Look back at our previous list of news stories. Some of these stories are directed specifically at Flyers, and some are more general. Which of the news items are of specific importance to Flyers? Announcements about interest rates or GDP are clearly important for nearly all companies, whereas the news about Flyers’s president, its research, or its sales is of specific interest to Flyers. We will distinguish between these

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

外文翻译中文

运作整合 供应链协作的首要问题是提高运作整合的程度。供应链协作课达到的好处,直接关系到捕捉效率之间的职能的企业,以及全国的企业,构成了国内或国际供应链。本章重点阐述的挑战,一体化管理,由研究为什么一体化创造价值,并通过详列的挑战,双方的企业集成和供应链整合。必不可少的供应链流程是确定的。注意的是,然后向信息技术提供,以方便集成化供应链规划。本章最后审查了定价。在最后的分析,定价的做法和政府是至关重要的供应链的连续性。 为什么整合创造价值 基本的优点与挑战的综合管理介绍了在第1章。进一步解释整合管理的重要性,有用的指出客户都至少有三个角度的价值。 传统的角度来看,价值是经济价值。第二个价值的角度来看,是市场价值。 实现双方经济和市场价值是很重要的客户。然而,越来越多的企业认识到商业上的成功也取决于第三个角度来看,价值,被称为关联性。 物流一体化目标 为实现物流一体化的供应链背景下,6个业务目标必须同时取得:( 1 )响应,( 2 )差额减少,( 3 )库存减少,( 4 )托运巩固,( 5 )质量,( 6 )生命周期支持。的相对重要性,每个直接关系到公司的物流战略。 响应 一公司的工作能力,以满足客户的要求,及时被称为反应。作为一再指出,信息技术是促进反应为基础的战略,允许业务的承诺被推迟到最后可能时间,其次是加速投放。实施对应策略服务,以减少库存承诺或部署在预期客户的需求。响应服务转向业务重点从预测未来的需求,以容纳顾客对快速订单到出货的基础上。理想的情况是,在一个负责任的系统中,库存是没有部署,直到客户承诺。支持这样的承诺,公司必须有物流的属性,库存的可用性和及时交付,一旦客户订单收到。 差异减少 所有经营领域的物流系统很容易受到差额。方差结果从未能履行任何预期的层面后勤业务不如预期。举例来说,毫不拖延地在客户订单处理,意想不到的干扰,以便选择,抵港货物损坏,在客户的位置,和/或未能提供在适当的位置上的时间,所有创造无计划的差异,在订单到交货周期。一个共同的解决办法,以保障对不利的差异是使用库存安全库存,以缓冲行动。这亦是共同使用的首选运输,以克服意想不到的差异延误交货计划。这种做法,鉴于其相关的成本高,可以尽量减少使用资讯科技,以维持积极的物流控制。向程度的差异是最小化,物流的生产力将提高。因此,差异减少,消除系统中断,是一个基本的目标,综合物流管理。 库存减少 要达到的目标,库存减少,一个综合物流系统必须控制资产的承诺,并把速度。资产的承诺,是财政的价值部署清单。把速度,反映了利率,这是充实库存随着时间的推移。高转率,再加上预期的库存供货,平均资产用于库存正在迅速而有效利用,这就是整体资产承诺支持一个综合运作减至最低。 库存能够而且确实方便可取的好处这是很重要的要请记住。库存是至关重要的实现规模经济,在制造业和采购。目的是要减少和管理存货,以尽可能最低的水平,同时实现整体供应链绩效的目标。

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

图像处理外文翻译 (2)

附录一英文原文 Illustrator software and Photoshop software difference Photoshop and Illustrator is by Adobe product of our company, but as everyone more familiar Photoshop software, set scanning images, editing modification, image production, advertising creative, image input and output in one of the image processing software, favored by the vast number of graphic design personnel and computer art lovers alike. Photoshop expertise in image processing, and not graphics creation. Its application field, also very extensive, images, graphics, text, video, publishing various aspects have involved. Look from the function, Photoshop can be divided into image editing, image synthesis, school tonal color and special effects production parts. Image editing is image processing based on the image, can do all kinds of transform such as amplifier, reducing, rotation, lean, mirror, clairvoyant, etc. Also can copy, remove stain, repair damaged image, to modify etc. This in wedding photography, portrait processing production is very useful, and remove the part of the portrait, not satisfied with beautification processing, get let a person very satisfactory results. Image synthesis is will a few image through layer operation, tools application of intact, transmit definite synthesis of meaning images, which is a sure way of fine arts design. Photoshop provide drawing tools let foreign image and creative good fusion, the synthesis of possible make the image is perfect. School colour in photoshop with power is one of the functions of deep, the image can be quickly on the color rendition, color slants adjustment and correction, also can be in different colors to switch to meet in different areas such as web image design, printing and multimedia application. Special effects production in photoshop mainly by filter, passage of comprehensive application tools and finish. Including image effects of creative and special effects words such as paintings, making relief, gypsum paintings, drawings, etc commonly used traditional arts skills can be completed by photoshop effects. And all sorts of effects of production are

外文翻译中文版(完整版)

毕业论文外文文献翻译 毕业设计(论文)题目关于企业内部环境绩效审计的研究翻译题目最高审计机关的环境审计活动 学院会计学院 专业会计学 姓名张军芳 班级09020615 学号09027927 指导教师何瑞雄

最高审计机关的环境审计活动 1最高审计机关越来越多的活跃在环境审计领域。特别是1993-1996年期间,工作组已检测到环境审计活动坚定的数量增长。首先,越来越多的最高审计机关已经活跃在这个领域。其次是积极的最高审计机关,甚至变得更加活跃:他们分配较大部分的审计资源给这类工作,同时出版更多环保审计报告。表1显示了平均数字。然而,这里是机构间差异较大。例如,环境报告的数量变化,每个审计机关从1到36份报告不等。 1996-1999年期间,结果是不那么容易诠释。第一,活跃在环境审计领域的最高审计机关数量并没有太大变化。“活性基团”的组成没有保持相同的:一些最高审计机关进入,而其他最高审计机关离开了团队。环境审计花费的时间量略有增加。二,但是,审计报告数量略有下降,1996年和1999年之间。这些数字可能反映了从量到质的转变。这个信号解释了在过去三年从规律性审计到绩效审计的转变(1994-1996年,20%的规律性审计和44%绩效审计;1997-1999:16%规律性审计和绩效审计54%)。在一般情况下,绩效审计需要更多的资源。我们必须认识到审计的范围可能急剧变化。在将来,再将来开发一些其他方式去测算人们工作量而不是计算通过花费的时间和发表的报告会是很有趣的。 在2000年,有62个响应了最高审计机关并向工作组提供了更详细的关于他们自1997年以来公布的工作信息。在1997-1999年,这62个最高审计机关公布的560个环境审计报告。当然,这些报告反映了一个庞大的身躯,可用于其他机构的经验。环境审计报告的参考书目可在网站上的最高审计机关国际组织的工作组看到。这里这个信息是用来给最高审计机关的审计工作的内容更多一些洞察。 自1997年以来,少数环境审计是规律性审计(560篇报告中有87篇,占16%)。大多数审计绩效审计(560篇报告中有304篇,占54%),或组合的规律性和绩效审计(560篇报告中有169篇,占30%)。如前文所述,绩效审计是一个广泛的概念。在实践中,绩效审计往往集中于环保计划的实施(560篇报告中有264篇,占47%),符合国家环保法律,法规的,由政府部门,部委和/或其他机构的任务给访问(560篇报告中有212篇,占38%)。此外,审计经常被列入政府的环境管理系统(560篇报告中有156篇,占28%)。下面的元素得到了关注审计报告:影响或影响现有的国家环境计划非环保项目对环境的影响;环境政策;由政府遵守国际义务和承诺的10%至20%。许多绩效审计包括以上提到的要素之一。 1本文译自:S. Van Leeuwen.(2004).’’Developments in Environmental Auditing by Supreme Audit Institutions’’ Environmental Management Vol. 33, No. 2, pp. 163–1721

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

外文翻译

Journal of Industrial Textiles https://www.360docs.net/doc/9115137756.html,/ Optimization of Parameters for the Production of Needlepunched Nonwoven Geotextiles Amit Rawal, Subhash Anand and Tahir Shah 2008 37: 341Journal of Industrial Textiles DOI: 10.1177/1528083707081594 The online version of this article can be found at: https://www.360docs.net/doc/9115137756.html,/content/37/4/341 Published by: https://www.360docs.net/doc/9115137756.html, can be found at:Journal of Industrial TextilesAdditional services and information for https://www.360docs.net/doc/9115137756.html,/cgi/alertsEmail Alerts: https://www.360docs.net/doc/9115137756.html,/subscriptionsSubscriptions: https://www.360docs.net/doc/9115137756.html,/journalsReprints.navReprints: https://www.360docs.net/doc/9115137756.html,/journalsPermissions.navPermissions: https://www.360docs.net/doc/9115137756.html,/content/37/4/341.refs.htmlCitations: - Mar 28, 2008Version of Record >>

外文翻译(带图)

外文翻译 通常,应变计应用在两个方面:在机械和结构的实验力分析中和应用力,扭矩,压力,流量以及加速度传感器结构中。非粘贴丝式应变计通常是当作专门的转换器来使用,其结构是使用一些有预载荷的电阻丝连接成惠斯登电桥,如图4.11: 在最初的预载荷中,四根金属丝的应变和电阻在理论上是相等的,它们组成一个平衡电桥,并且e0 = 0 (参考第10章电桥电路特性)。输入端一个小的位移(满量程≈0.04 mm)将会使两根金属丝的拉力增大而使另外两根的拉力减小(假设金属丝不会变松弛),引起电阻阻值的变化,电桥失衡,输出电压与输入位移成比例。金属丝可以由砷镍、镍铬和铁镍等多种合金制造,直径约为0.03 mm,可以承受的最大应力仅为0.002 N,灵敏系数为2到4,每个桥臂的电阻为120Ω到1000Ω, 最大激励电压5到10V,满量程输出典型值为20到50mV。 粘结丝式应变计(现在主要被粘贴箔式结构的应变计取代)应用于应力分析和作为转换器。具有很细丝式敏感栅粘贴在待测试件表面,来感受应变。金属丝被埋入矩形的粘合剂中,不能弯曲从而如实地反映待测试件的压缩和拉伸应力。因为金属丝的材料和尺寸与那些非粘贴应变计相似,所以灵敏度和电阻具有了可比性。 粘贴箔式应变计采用与丝式应变计相同或类似的材料,现在主要用于多用途力分析任务及多种传感器中。 其感应元件是利用光腐蚀工艺加工成厚度小于0.0002的薄片,当其形状改变时,它具有很大的灵活性。如图4.12: 例如,这三个线形敏感栅应变计被设计成端部宽大的形状。这种局部的增大将会减小横向灵敏度,以及在测量应变沿敏感栅单元的长度方向的分量时产生的干扰输入信号。在丝式应变计中,这种端部形状也应用在纵向单元的连接处,以便增加横向抗干扰能力。并且在制造过程中也非常方便在图4.12上的全部四个应变计上焊接焊盘。

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

外文翻译2

本科生毕业设计(论文) 外文翻译 园林艺术系 题目:钢筋混凝土板的拉伸硬化过程分析 学生姓名:胡斌 学号:200708350209 专业班级:土木工程072班 指导教师:党改红职称:讲师 2011年 3 月 1 日

钢筋混凝土板的拉伸硬化过程分析 R. Ian Gilbert 摘要:当计算一个钢筋混凝土梁或板的承载力时混凝土的抗拉能力通常被忽视,尽管具体的拉应力继续进行,由于拉钢筋到混凝土之间裂缝的转换力量。这一种混凝土的拉力被称为混凝土的张力硬化。在开裂后它会影响钢筋混凝土的刚度,因此它的挠度和裂缝宽度必须根据屈服强度负载。对轻混凝土,例如楼板,全部裂缝的弯曲刚度比没有裂缝部分的要小很多,张力加劲有助于刚度。在本文中,ACI方法必须考虑到紧张加劲,欧洲和英国的方法是严格评估和预测与实验结果进行比较。最后,建议书包括建模系统紧张挠度控制的钢筋混凝土楼板设计变硬。 分类号: 1061/ASCE0733-94452007133:6899 关键词:开裂;蠕变挠度,混凝土,钢筋,适用性,收缩,混凝土砖。 简介 拉伸能力在计算时通常忽略钢筋混凝土梁或板的强度,尽管具体的拉应力继续进行,由于拉钢筋到混凝土之间裂缝的转换力量。这一种混凝土的拉力被称为张力硬化,它会影响各部分的刚度,因此必须考虑其挠度和裂缝宽度。 随着高强度钢筋的到来,增强混凝土板通常包含相对少量的拉钢筋,经常接近相关建筑法规允许的最低含量。对于这样的构件,弯曲完全开裂的一个截面刚度比未开裂的截面小许多倍,张力加劲大大促进了开裂后刚度。在设计中,挠度和裂缝的控制通常是在屈服水平调整考虑的,并在开裂后建模精确的刚度是必需的。 挠度计算中最常用的方法包括确定为破解构件平均惯性(Ie)有效时刻。几种不同的经验公式可用于Ie,包括著名的方程开发Branson(1965)和ACI 318(ACI 2005)。其他的张力硬化模式包括在Eurocode 2(CEN1992)和(British Standard BS 8110 1985),最近,Bischoff(2005)表明,布兰森的方程极高估含有少量的钢筋混凝土构件钢筋平均刚度,他提出了一个对于Ie,替代方程,这基本上是与Eurocode 2方案兼容。 在本文中,包括张力加劲的各种方法在混凝土结构设计,包括在Eurocode 2,ACI 318,BS8110模式,批判性进行评估经验预测与实测挠度进行了比较。最后,在模拟张力加劲的建议结构设计均包括在内。 开裂后弯曲响应 考虑简支一个负载变形响应,钢筋混凝土板图1所示。在负载超过负荷少的开裂,Pcr,该构件未开裂和行为均匀和弹性,以及挠度斜率是成正比的未开裂的转动惯量的转化节,. Iuncr。该构件在第一裂缝在Pcr当极端纤维在混凝土拉应力的最大部分到达混凝土弯拉强度破裂或.fr 有一个刚度突变,并立即出现裂纹。在包含破碎部分,抗弯刚度显着下降,但大部分仍然未开裂的梁。随着负载的增加,出现更多的裂缝形式和平均抗弯刚度在整个构件中减少。

外文翻译中文版

铝、钙对熔融铁的复合脱氧平衡 天鸷田口,秀ONO-NAKAZATO,Tateo USUI,Katsukiyo MARUKAWA,肯KATOGI和Hiroaki KOSAKA。 研究生和JSPS研究员, 工程研究院,大阪大学,2-1山田丘, 吹田,大阪565 - 0871日本。 1)材料科学与工程课程,材料科学和制造分支,工程研究院,大阪大学, 2-1山田丘, 吹田, 大阪565 - 0871日本。 2)高端科技创新中心、大阪大学,2-1山田丘,吹田,大阪565 - 0871日本。 3)Electro-Nite贺利日本,有限公司,1-7-40三岛江,高槻,大阪569 - 0835日本。 4)TOYO工程研究中心有限公司,2-2-1春日,茨城,大阪567 - 0031日本。 (发表2005年6月17日,刊发于2005年7月20日) 氧夹杂对钢液的炼钢反应的影响是很显著的,例如脱硫。控制钢液氧含量是很重要的。使用良好的脱氧剂(如铝、钙),有效减少钢液的氧含量。研究者已经在复合脱氧方面做了一些探究。然而,实验数据不完全符合热力学数据计算值。因为没有具体可以利用的熔融铁钙脱氧的确切热力学数据。在本研究中,铝、钙对熔融铁的复合脱氧平衡控制在1873K。Al-Ca在熔铁脱氧中氧活度通过测量电动势(EMF)的方法求得。Al-Ca复合脱氧平衡实验的有效性由过去的和现在的研究结果共同综合判断的,本实验的Al-Ca脱氧平衡能够比过去的研究更好地反应Fe-Al-Ca-O系的关系。 关键词:复合脱氧,铝合金,钙,氧活度,电动势方法,炼钢,生石灰,氧化铝。 1前言 近年来,随着对超洁净钢的要求越来越高,需要更严格地控制钢中夹杂物。降低和控制钢中夹杂物含量在几个ppm以内。特别地,氧夹杂在钢液炼钢反应中的影响(例如脱硫)是非常大的,控制钢液中氧含量是非常重要的。使用强脱氧剂(如铝、钙)有效降低钢液的氧含量。Al-Ca复合脱氧是更有效的,已经做了一些关于复合脱氧的实验。然而,实验结果不完全符合热力学计算值,因为钙在熔铁脱氧平衡的热力学数据被认为由于测量困难是不可靠的。基于这个

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

相关文档
最新文档