三运放

三运放
三运放

? 为什么仪表放大器常常被人们误解呢?图 1 所示的三运放仪表放大器看似为一种简单的结构,因为它使用已经存在了几十年的基本运算放大器(op amp)来获得差动输入信号。运算放大器的输入失调电压误差不难理解。运算放大器开环增益的定义没有改变。运算放大器共模抑制(CMR)的简单方法自运算放大器时代之初就已经有了。那么,问题出在哪里呢?图.1 三运放仪表放大器,其VCM 为共模电压,而VDIFF 为相同仪表放大器的差动输入单运算放大器和仪表放大器的共用CMR 方程式如下:方程式 1 本方程式中,G 相当于系统增益,VCM 为相对于接地电压同样施加于系统输入端的变化电压,而VOUT 为相对于变化VCM 值的系统输出电压变化。在CMR 方面,运算放大器的内部活动很简单,其失调电压变化是唯一的问题。就仪表放大器而言,有两个影响器件CMR 的因素。第一个也是最重要的因素是,涉及第三个放大器(图1,A3)电阻比率的平衡问题。例如,如果R1 等于R3,R2 等于R4,则理想状况下的三运放仪表放大器CMR 为无穷大。然而,我们还是要回到现实世界中来,研究R1、R2、R3 和R4 与仪表放大器CMR 的关系。具体而言,将R1:R2 同R3:R4 匹配至关重要。结合A3,这 4 个电阻从A1 和A2 的输出减去并增益信号。电阻比之间的错配会在A3 输出端形成误差。方程式 2 在这些电阻关系方面会形成CMR 误差:方程式2 例如,如果R1、R2、R3 和R4 接近相同值,且R3:R4 等于R1/R2 的 1.001,则该0.1%错配会带来仪表放大器CMR 的降低,从理想水平降至66dB 级别。根据方程式1,仪表放大器CMR 随系统增益的增加而增加。这是一个非常好的特性。方程式1 可能会激发仪表放大器设计人员确保有许多可用增益,但是这种方法存在一定的局限性。A1 和A2 开环增益误差和噪声。放大器的开环增益等于20log(?VOUT/?VOS)。随着A1 和A2 增益的增加,放大器开环增益失调误差也随之增加。A1 和A2 的输出振幅变化一般涵盖电源轨。仪表放大器增益更高的情况下,运算放大器的开环增益误差和噪声占主导。通过RSS 公式,这些误差降低了更高增益下的仪表CMR。因此,您会看到仪表放大器的CMR 性能值往往会在更高增益时达到最大值。因此,从CMR 角度来看,仪表放大器就像是一个在不同系统增益下器件各部分都诱发CMR 误差的系统。当您对器件的内部原理进行研究时,它便不再如此神秘。您把各个部分都分开来,就会一目了然。

三运放差分放大电路放大器的第I 级主要用来提高整个放大电路的输入阻抗,第II 级采用差动电路用以提高共模抑制比。三运放差分放大电路电路中输入级由A3、A4 两个同相输入运算放大器电路并联,再与A5 差分输入串联的三运放差动放大电路构成,其中A1、A2 是增加电路的输入阻抗。电路优点:差模信号按差模增益放大,远高于共模成分(噪声);决定增益的电阻(R1、Rp、R3)理论上对共模抑制比Kcmr 没有影响,因此电阻的误差不重要。三运放差分放大电路特点:1)高输入阻抗。被提取的信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,必须提高放大器输入阻抗。一般情况下,信号源的内阻为100kΩ,则放大器的输入阻抗应大于1MΩ。2)高共模抑制比CMRR。信号工频干扰以及所测量的参数以外的作用的干扰,一般为共模干扰,前置级须采用CMRR 高的差动放大形式,能减少共模干扰向差模干扰转化。3)低噪声、低漂移。主要作用是对信号源的影响小,拾取信号的能力强,以及能够使输出稳定。电路对共模输入信号没有放大作用,共模电压增益接近于零。这不仅与实际的共模输入有关,而且也与A3 和A4 的失调电压和漂移有关。如果A3 和A4 有相等的漂移速率,且向同一方向漂移,那么漂移就作为共模信号出现,没有被放大,还能被第二级抑制。这样对于A3 和A4 的漂移要求就会降低。A3 和A4 前置放大级的差模增益要做得尽可能高,相比之下,第二级(A5)的漂移和共模误差就可以忽略,对放大器的要求就可以大大降低。当R3=R4,R5=R6 时,两级的总增益为两个差模增益的乘积,Avd=( Rp+2R1)即:(/Rp)(R6/R4) 由此可知,上述电路具有输入阻抗高,共模抑制比高等优点,可作为通用仪用放大器使用。

仪表放大器百度百科仪表放大器百度百科2010-09-17 1512目录一、概述随着电子技术的飞速发展运算放大电路也得到广泛的应用。仪表放大器专门精密差分电压放大器它源于运

算放大器且优于运算放大器。仪表放大器把关键元件集成在放大器内部其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件具有差分输出和相对参考端的单端输出。与运算放大器不同之处是运算放大器的闭环增益是由反相输出端与输出端之间连接的外部电阻决定而仪表放大器则使用与输入端隔离的内部反馈电阻网络。仪表放大器的2个差分输入端施加输入信号其增益即可由内部预置也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻置。二、仪表放大器电路的构成及原理仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中运放A1A2为同相差分输入方式同相输入可以大幅度提高电路的输入阻抗减小电路对微弱输入信号的衰减差分输入可以使电路只对差模信号放大而对共模输入信号只起跟随作用使得送到后级的差模信号与共模信号的幅值之比即共模抑制比CMRR得到提高。这样在以运放A3为核心部件组成的差分放大电路中在CMRR要求不变情况下可明显降低对电阻R3和R4Rf 和R5的精度匹配要求从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1R2R3R4RfR5的条件下图1电路的增益为G12R1/RgRf/R3。由公式可见电路增益的调节可以通过改变Rg阻值实现。三、仪表放大器电路设计及应用目前仪表放大器电路的实现方法主要分为两大类第一类由分立元件组合而成另一类由单片集成芯片直接实现。根据现有元器件分别以单运放LM741和OP07集成四运放LM324和单片集成芯片AD620为核心设计出四种仪表放大器电路方案。方案1由3个通用型运放LM741组成三运放仪表放大器电路形式辅以相关的电阻外围电路加上A1A2同相输入端的桥式信号输入电路如图2所示。图2中的A1A3分别用LM741替换即可。电路的工作原理与典型仪表放大器电路完全相同。方案2由3个精密运放OP07组成电路结构与原理和图2相同用3个OP07分别代替图2中的A1A3。方案3以一个四运放集成电路LM324为核心实现如图3所示。它的特点是将4个功能独立的运放集成在同一个集成芯片里这样可以大大减少各运放由于制造工艺不同带来的器件性能差异采用统一的电源有利于电源噪声的降低和电路性能指标的提高且电路的基本工作原理不变。方案4由一个单片集成芯片AD620实现如图4所示。它的特点是电路结构简单一个AD620一个增益设置电阻Rg外加工作电源就可以使电路工作因此设计效率最高。图4中电路增益计算公式为G49.4K/Rg1。实现仪表放大器电路的四种方案中都采用4个电阻组成电桥电路的形式将双端差分输入变为单端的信号源输入。性能测试主要是从信号源Vs的最大输入和Vs最小输入、电路的最大增益及共模抑制比几方面进行仿真和实际电路性能测试。测试数据分别见表1和表2。其中Vs最大小输入是指在给定测试条件下使电路输出不失真时的信号源最大小输入最大增益是指在给定测试条件下使输出不失真时可以实现的电路最大增益值。共模抑制比由公式KCMRR20gAVd/A VCdB计算得出。说明1f为Vs输入信号的频率2表格中的电压测量数据全部以峰峰值表示3由于仿真器件原因实验中用Multisim对方案3的仿真失效表1中用-表示失效数据4表格中的方案14依次分别表示以LM741OP07LM324和AD620为核心组成的仪表放大器电路。由表1和表2可见仿真性能明显优于实际测试性能。这是因为仿真电路的性能基本上是由仿真器件的性能和电路的结构形式确定的没有外界干扰因素为理想条件下的测试而实际测试电路由于受环境干扰因素如环境温度、空间电磁干扰等、人为操作因素、实际测试仪器精确度、准确度和量程范围等的限制使测试条件不够理想测量结果具有一定的误差。在实际电路设计过程中仿真与实际测试各有所长。一般先通过仿真测试初步确定电路的结构及器件参数再通过实际电路测试改进其具体性能指标及参数设置。这样在保证电路功能、性能的前提下大大提高电路设计的效率。由表2的实测数据可以看出方案2在信号输入范围即Vs的最大、最小输入、电路增益、共模抑制比等方面的性能表现为最优。在价格方面它比方案1和方案3的成

本高一点但比方案4便宜很多。因此在四种方案中方案2的性价比最高。方案4除最大增益相对小点其他性能仅次于方案2具有电路简单性能优越节省设计空间等优点。成本高是方案4的最大缺点。方案1和方案3在性能上的差异不大方案3略优于方案1且它们同时具有绝对的价格优势但性能上不如方案2和方案4好。综合以上分析方案2和方案4适用于对仪表放大器电路有较高性能要求的场合方案2性价比最高方案4简单、高效但成本高。方案1和方案3适用于性能要求不高且需要节约成本的场合。针对具体的电路设计要求选取不同的方案以达到最优的资源利用。电路的设计方案确定以后在具体的电路设计过程中要注意以下几个方面1注意关键元器件的选取比如对图2所示电路要注意使运放A1A2的特性尽可能一致选用电阻时应该使用低温度系数的电阻以获得尽可能低的漂移对R3R4R5和R6的选择应尽可能匹配。2要注意在电路中增加各种抗干扰措施比如在电源的引入端增加电源退耦电容在信号输入端增加RC低通滤波或在运放A1A2的反馈回路增加高频消噪电容在PCB 设计中精心布局合理布线正确处理地线等以提高电路的抗干扰能力最大限度地发挥电路的性能。四、仪表放大器的特点●高共模抑制比共模抑制比CMRR则是差模增益A d与共模增益Ac之比即CMRR20lgAd/AcdB仪表放大器具有很高的共模抑制比CMRR典型值为70100 dB以上。●高输入阻抗要求仪表放大器必须具有极高的输入阻抗仪表放大器的同相和反相输入端的阻抗都很高而且相互十分平衡其典型值为1091012Ω. ●低噪声由于仪表放大器必须能够处理非常低的输入电压因此仪表放大器不能把自身的噪声加到信号上在1 kHz 条件下折合到输入端的输入噪声要求小于10 nV/Hz. ●低线性误差输入失调和比例系数误差能通过外部的调整来修正但是线性误差是器件固有缺陷它不能由外部调整来消除。一个高质量的仪表放大器典型的线性误差为0.01有的甚至低于0.0001. ●低失调电压和失调电压漂移仪表放大器的失调漂移也由输入和输出两部分组成输入和输出失调电压典型值分别为100μV和2 mV. ●低输入偏置电流和失调电流误差双极型输入运算放大器的基极电流FET 型输入运算放大器的栅极电流这个偏置电流流过不平衡的信号源电阻将产生一个失调误差。双极型输入仪表放大器的偏置电流典型值为1 nA50 pA而FET输入的仪表放大器在常温下的偏置电流典型值为50 pA. ●充裕的带宽仪表放大器为特定的应用提供了足够的带宽典型的单位增益小信号带宽在500 kHz4 MHz之间。●具有检测端和参考端仪表放大器的独特之处还在于带有检测端和参考端允许远距离检测输出电压而内部电阻压降和地线压降IR的影响可减至最小。

运放差分放大电路

差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点: (1)A1和A2提高了差模信号与共模信号之比,即提高了信噪比; (2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比K CMRR 没有影响; (3)电路对共模信号几乎没有放大作用,共模电压增益接近零。 因为电路中R1=R2、 R3=R4、 R5=R6 ,故可导出两级差模总增益为: 3 5P 1p i2i1o vd R R R 2R R u u u A ???? ??+-=-= 通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10K Ω,要求匹配性好,一般用金属膜精密电阻,阻值可在10K Ω~几百K Ω间选择。则 A vd =(R P +2R 1)/R P 先定R P ,通常在1K Ω~10K Ω内,这里取R P =1K Ω,则可由上式求得R 1=99R P /2=49.5K Ω 取标称值51K Ω。通常R S1和R S2不要超过R P /2,这里选R S1= R S2=510,用于保护运放输入级。 A1和A2应选用低温飘、高K CMRR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试

差分放大电路仿真02605

苏州市职业大学实验报告姓名:学号:班级:

二、选好元器后,将所有元器件连接绘制成仿真电路(见图 1) R3 6.8k Q 三、仿真分析 1.静态工作点分析 1)调零。信号源先不接入回路中,将输入端对地短接,用万用表测量两个输出 节点,调节三极管的射极电位,使万用表的示数相同,即调整电路使左右完 全对称。测量电路及结果如图2所示 2)静态工作点调试。零点调好以后,可以用万用表测量 Q1、Q2管各电极电位, 结果如图 3 所示,测得 I B 1 15 A , I C 1 1.089mA , U CE 5.303V 。 2.测量差模放大倍数 将函数信号发生器XFG1的“ +”端接放大电路的R1输入端,“一”端接R2输入 端,COM 端接地。调节信号频率为1kHz ,输入电压10mV 调入双踪示波器,分别 接输入输出,如图4所示,观祭波形变化,示波器观祭到的差分放大电路输入、 输出波形如图5所示 R4 6.8k Q R1 ■ 酉 2 ?R6 >510 Q <3 ------- Q1 R8 12k Q 12 V 双端输入、 100Q Key=A 丄V2 -— 12 V 11 R5 5.1k 10 双端输出的长尾式差分放大电路 8 Q ■ 4 Q2 2N3903 R2 AAAr-| 2k Q 7 50% Rp1

4.607 V H-、4 -Q *: LR3 S : : ?6+BkQ : a ): >R4 :>G.?kn ............ R& '''' ---------- VA ---------- it::12W5::: 1 F ■! ■ I R1 .,,斗,- VA- :7W. . \ ■1 2M39G 3 :R2 : : 2K1: 2N39G3 -” R6 5100 : ::5C% :10QQ ::Key=A 丄V2「::二12W TV '' 图2差分放大器电路调零

仪表放大器与运算放大器的区别

仪表放大器与运算放大器的区别 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。其输入偏置电流也应很低,典型值为 1 nA至50 nA。与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。 运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 使用三个普通运放就可以组成一个仪用放大器。电路如下图所 示: 输出电压表达式如图中所示。

看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。在此之前,我们先来看如下我们很熟悉的差分电路: 如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R 2/R1) 这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。首先,同相输入端和反相输入端阻抗相当低而且不相等。在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。(这种源阻抗的不平衡会降低电路的CMRR。) 另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。例如,当增益等于 1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB(2000:1)。同样,如果源阻抗有100 Ω的不平衡将使CMR下降 6 dB。 为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。如下图所示: 以上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示:

差分运放

差分接法:差分放大电路(图3.8a.4)的输入信号是从集成运放的反相和同相输入端引入,如果反馈电阻RF等于输入端电阻R1 ,输出电压为同相输入电压减反相输入电压,这种电路也称作减法电路。 图3.8a.4 差分放大电路 差分放大器 如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数

运算放大器的单电源供电方法 梦兰 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。 图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。

运放差分放大电路原理

Differens Amplifier 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都 能见到其踪迹。 nz R4 R2 R T V I R1//R2 = R3//R4 For mini mum offset error due to input bias current TL/H/7057-3

从图中可以看到 A1、A2两个同相运放电路构成输入级, 在与差分放大器 A3串联组成三运放差分 防大电路。电路中有关电阻保持严格对称 ,具有以下几个优点: (1) A1和A2提高了差模信号与共模信号之比 ,即提高了信噪 比; (2) 在保证有关电阻严格对称的条件下 ,各电阻阻 值的误差对该电路的共模抑制比 K CMRR 没有 影响; (3) 电路对共模信号几乎没有放大作用 ,共模电压增益接近零。 因为电路中 R1=R2、R3=R4、R5=R6,故可导岀两级差模总增益为: 通常,第一级增益要尽量高,第二级增益一般为 1~2倍,这里第一级选择 100倍,第二级为1 倍。则取 R3=R4=R5=R6=10Q ,要求匹配性好,一般用金属膜精密电阻,阻值可在 10KQ ?几百K Q 间选择。贝9 Ad =(R p +2Ri)/R P 先定 通常在1KQ ?10KQ 内,这里取 R== 1KQ ,则可由上式求得 R 1=99R/2=49.5K Q 取标称值51KQ 。通常R S 1和R S 2不要超过F P /2,这里选Rs 1= R S 2= 510,用于保护运放输入级。 A1和A2应选用低温飘、高 K CMR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试 vd U o U il U i2 R p 2R I R 5 R P R 3 A1

三运放仪表放大器

三运放仪表放大器 摘要 本系统采用三个OP07双电源单集成运放芯片构成仪表放大器,此放大器能调节将输入差模信号放大100至200倍,同时具有高输入电阻和高共模抑制比,对不同幅值信号具有稳定的放大倍数;电源部分由变压器、整流桥、7812、7912、7805等线性电源芯片组成,可输出+5V、+12V、-12V三路电压。 一、方案论证与比较 1.放大器电源的制作方法 方案一:本三运放仪表放大器系统采用集成运放OP07,由于OP07是双电源放大器,典型电源电压为,可方便采用市售开关电源或者开关电源芯片制作电源作为OP07的电 源输入,开关电源具有的效率高,体积小,散热小,可靠性高等特点,但是因为其内部构造特性,使输出电压带有一定的噪声干扰,不能输出纯净稳定的电压。 方案二:采用线性电源稳压芯片78系列和79系列制作线性电源,使用多输出抽头变压器接入整流桥再接入稳压芯片,输出纯净的线性电源。 2.电源方案论证 本系统是一个测量放大系统,其信号要求纯净无噪声干扰,在系统中加入滤波器消除干扰的同时,我们应该考虑系统本身的干扰源并尽量降低干扰。考虑到开关电源的输出电压不是十分纯净的,带有许多噪声干扰,而线性电源可以稳定输出电压值,虽然线性电源体积较大,效率较低,但是作为测量系统中,我们采用方案二来提高测量的精准度。 3.放大器制作方法 方案一:题目要求使输入信号放大100至200倍,可使用单运放构成比例运算放大电路, 按负反馈电阻比例运算进行放大,输出电压,此放大电路可以达到预定的放大倍数,但是其对共模信号抑制较差,容易出现波形失真等问题。 方案二:采用三运放构成仪表放大器,这是一种对弱信号放大的一种常用放大器,输出 电压。 4.放大器方案论证 在测量系统中,通常被测物理量均通过传感器转换为电信号,然后进行放大,因此,传感器的输出是放大器的信号源。然而,多数传感器的等效电阻均不是常量,他们随所测物理量的变化而变。这样,对于放大器而言信号源内阻是变量,放大器的放大能力将随信号的大小而变。为了保证放大器对不同幅值信号具有稳定的放大倍数,就必须使得放大器输入电阻加大,因信号源内阻变化而引起的放大误差就越小。 此外,传感器所获得的信号常为差模小信号,并含有较大的共模部分,期数值有时远大于差模信号。因此,要求放大器具有较强的共模信号抑制能力。 综上所述,采用方案二仪表放大器方案,仪表放大器除了具有足够的放大倍数外,还具有高输入电阻和高共模抑制比。 二、系统设计

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

运放差分放大电路原理知识介绍

运放差分放大电路原理 知识介绍 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量 0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 o v ??I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。

缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b)所示。在两管发射极接入稳流电阻 R。使其即有高的 e 差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c)所示。 差分放大电路 一. 实验目的: 1.掌握差分放大电路的基本概念; 2.了解零漂差生的原理与抑制零漂的方法; 3.掌握差分放大电路的基本测试方法。 二. 实验原理: 1.由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点:

实验八 差分放大器

实验八 差分放大电路 一、实验目的 1. 加深对差动放大器性能及特点的理解。 2. 学习差动放大器主要性能指标的测试方法。 二、实验原理 差分放大电路是模拟电路基本单元电路之一,是直接耦合放大电路的最佳电路形式,具有放大差模信号、抑制共模干扰信号和零点漂移的功能。图8-1是差分放大电路的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向C 时(K 接R E ),构成典型的差分放大器。调零电位器R W 用来调节T 1、T 2管的静态工作点,使得输入信号u i =0时,双端输出电压u O =0。R E 为两管共用的发射极电阻,它对差模信号无反馈作用,因此不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 12V EE A B 图8-1 差分放大电路 当开关拨向D 时(K 接T 3),构成具有恒流源的差分放大器。它用晶体管恒流源T 3代替发射极电阻R E ,T 3的交流等效电阻r CE3远远大于R E ,可以进一步提高差分放大器对共模信号的抑制能力。 当差分放大器的电路结构对称,元件参数和特性相同时,两个三极管集电极的直流电位相同。但在实验过程中,由于三极管特性和电路参数不可能完全对称,导致差分放大电路在输入信号为零时双端输出却不为零。故需要对差分放大电路进行零点调节。 当T 1、T 2的基极分别接入幅度相等、极性相反的差模信号时,使两管发射极产生大小相等、方向相反的变化电流。当两个电流同时流过发射极电阻R E (K 拨向C )时,其作用互相抵消,即R E 中没有差模信号电流流过。但对T 1、T 2而言,一个管子集电极电流增大,另一个管子集电极电流减小,于是两管集电极之间的输出电压就得到了被放大了的差模输出电压。 当共模信号作用于电路时,T 1、T 2的发射极电流的变化量相等,显然R E 上电流的变化量为2△I E ,由此而引起的R E 上的电压变化量△u E 的变化方向与输入共模信号的变化方向相同,使B -E 间的电压变化方向与之相反,导致基极电流变化,从而抑制了集电极电流的变化。 集成运算放大器几乎都采用差分放大器作为输入级。这种对称的电压放大器有两个输入端和两个输出端,根据电路的结构可分为,双端输入双端输出、双端输入单端输出、单端输入双端输出及单端输入单端输出。若电路参数完全对称,则双端输出时的共模电压放大倍数A C =0,共模抑制比K CMR 越大,说明电路抑制共模信号的能力越强。 1. 静态工作点的估算 典型电路(K 接R E ): E BE EE E R U V I -= (认为U B1=U B2≈0) E 2C 1C I 2 1 I I = = 恒流源电路(K 接T 3):

仪表放大器:三运放INA的基础操作简介

仪表放大器:三运放INA的基础操作简介许多工业和医疗应用在存在大共模电压和DC电位的情况下,都使用仪表放大器(INA)来调理小信号。三运算放大器(三运放)INA架构可执行该功能,其中输入级提供高输入阻抗,输出级过滤共模电压并提供差分电压。高阻抗与高共模抑制比的结合是流量传感器、温度传感器、称重装置、心电图(ECG)和血糖仪等众多传感器和生物计量应用的关键。 本文介绍了三运放INA的基础操作,分析了零漂移放大器的优点、RFI 输入滤波器、监测传感器健康和可编程增益放大器,并列举了传感器健康监测器和有源屏蔽驱动(acTIve shield guard drive)电路的应用范例。 三运放INA基础操作 INA本身的性质使其适用于调理小信号。其高阻抗与高共模抑制比的结合非常适合传感器应用。通过使用输入级的同相输入可实现高输入阻抗,无需靠任何反馈技巧(见图1)。三运放电路可消除共模电压,并以非常小的误差放大传感器信号,但必须考虑输入共模电压(VCM)和差分电压(VD),以免使INA的输入级达到饱和。

饱和的输入级可能看似对处理电路是正常的,但实际上却具有灾难性后果。通过使用具有轨到轨输入和输出(RRIO)配置的放大器来提供最大设计余量,有助于避免出现输入级饱和。以下讨论介绍了三运放INA的基本操作,并举例说明了放大器如何处理共模和差分信号。 图1是三运放INA的框图。按照设计,输入被分为共模电压VCM和差分电压VD。其中,VCM定义为两个输入的共用电压,是INA+与INA-之和的平均值,VD定义为INA+与INA-的净差。 式1: 式2给出了由于施加共模电压和差分电压而在INA输入引脚上产生的节点电压(INA+、INA-)。 式2: 在非饱和模式下,A1和A2的运放在增益设置电阻RG上施加差分电压,产生电流ID: 式3: 因此A1和A2的输出电压为:

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

三、仪用放大器

第三节仪器放大器(三运放) 在工业测量,医疗仪器以及各种传感器探测等应用中,信号是由传感器对各种物理量(如:温度、压力、流量、血流等)进行相应的变换而来的。这些换能器产生的信号往往很微弱,而且其中其中包含有很高的共模电压信号及各种共模干扰。被测对象有一定的(甚至很高)的内阻。如:人体的心电信号为1mv左右,而共模电压可能达到10V左右,(共模/差模=10000倍),人体的阻抗几千欧到几百千欧。 基本作用:仪用放大器常用来精确放大载于高共模电压上的微弱差动信号。 主要特点: ①差动输入,具有很高的共模抑制比; ②有很高的电压增益; ③低噪声; ④高输入阻抗。 应用领域: ①信号放大。如:扩散硅压力传感器,应变计、热电偶和电阻式 热探测器; ②医用仪器仪表:心电、脑电等人体生物信号的放大。

3.1基本仪用放大器的工作原理 ⑴电路结构: 仪用放大器是在差动放大器基础上发展起来的一种比较完善的放大器。它由三个运放(A1、A2、A3)和一些精密电阻(R1--R7)构成。 A1、A2为高输入阻抗的同相放大器。A3为差动放大器。 注意:两个同相放大器不是通过R1直接接地而是相连。这是很有必要的,下面加以说明。 ⑵电路分析: ①A3为差动放大器,取匹配电阻R5=R4,R7=R6,采用电路理论 中的迭加原理及运放的虚短虚断的概念可以求出放大器的输 出为: ②仪用放大器的差模放大信号为:

可见,放大器只要求R5=R4,R7=R6两个电阻匹配。若将A1、 A2接成两个独立的同相放大器,另外需要保证A1、A2的放大 器数相等,两个R1相等,否则会带来较大误差。这在制造时 有很大的困难。 ③通常选取R2--R6为同一电阻R,则: 差模放大倍数: 由上式可见,只要改变R1,即可改变增益,很方便。 ④讨论:制造时,应尽量将A1,A2特性相等,R2和R3,R4 和R2,R1和R7要尽量配成对,才能减少电路的误差。 由于A1和A2为近似相同的同相放大器,由共模电压引起的输出也近似相等,位差动放大器A3相差后可以补偿掉A1和 A2共模放大倍数引起的误差。这时放大器的共模误差主要取决 于A3的共模抑制比。由于A1A2具有相同的温度漂移特性,通 过差动放大器A3的相减作用而达到补偿,改善了其温度特性。 ⑤仪用放大器已被制造成一块集成的放大器。其内部各电阻对运 放较好地保证匹配关系。器件中温度特性也比较一致。可以在 很宽的温度范围内保证放大器数的精度和稳定性。 3.2应用举例 (1)压力测量

差分运放运算放大器

图3.8a.4 差分放大电路 差分放大器 如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数 运算放大器的单电源供电方法 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。 图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。 思考题(1)图3是一种增益为10、输入阻抗为10kΩ、低频响应近似为30Hz、驱动负载为1kΩ的单电源反相放大器电路。该电路的不失真输入电压的峰—峰值是多少呢?(提示:一般运算放大器的典型输入、输

三运放仪表放大器工作原理分析

三运放仪表放大器工作原理分析 图1 所示的三运放仪表放大器看似为一种简单的结构,因为它使用已经存在了几十年的基本运算放大器(op amp)来获得差动输入信号。运算放大器的输入失调电压误差不难理解。运算放大器开环增益的定义没有改变。运算放大器共模抑制(CMR)的简单方法自运算放大器时代之初就已经有了。那么,问题出在哪里呢? 图1:三运放仪表放大器,其VCM 为共模电压,而VDIFF 为相同仪表放大器的差动输入。 单运算放大器和仪表放大器的共享CMR 方程式如下:本方程式中,G 相当于系统增益,VCM 为相对于接地电压同样施加于系统输入端的变化电压,而VOUT 为相对于变化VCM 值的系统输出电压变化。 在CMR 方面,运算放大器的内部活动很简单,其失调电压变化是唯一的问题。就仪表放大器而言,有两个影响器件CMR 的因素。第一个也是最重要的 因素是,涉及第三个放大器(图1,A3)电阻比率的平衡问题。例如,如果R1 等于R3,R2 等于R4,则理想状况下的三运放仪表放大器CMR 为无穷大。然而,我们还是要回到现实世界中来,研究R1、R2、R3 和R4 与仪表放大器CMR 的关系。 具体而言,将R1:R2 同R3:R4 匹配至关重要。结合A3,这4 个电阻从 A1 和A2 的输出减去并增益信号。电阻比之间的错配会在A3 输出端形成误差。方程式2 在这些电阻关系方面会形成CMR 误差:例如,如果R1、R2、R3 和R4 接近相同值,且R3:R4 等于R1/R2 的1.001,则该0.1%错配会带来仪表放大器CMR 的降低,从理想水平降至66dB 级别。 根据方程式1,仪表放大器CMR 随系统增益的增加而增加。这是一个非常

差分放大电路解读

实验三差分放大电路 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -==

三运放差分放大电路

三运放仪表放大线路设计(2010-5-12更新) 最近看到许多朋友在做一些小信号的放大,例如感应器的信号采集 这里仅仅提供一个设计方法和思路,在实际应用当考虑电源的杂讯以及一些Bypass的电容例如在LM324电源接一些100uF ,0.01uF 的电容,这些电容尽量靠近LM324 当然如果不是局限LM324的应用,市面上有许多这样兜售的零件例如TI的INA122,INA154 ADI的AD620,AD628等等,而且频带宽和噪声系数都很好 这些运放在放大的时候单级尽量不要超过40dB(100倍),避免噪声过大 这里设计的是理论值而已 举例设计: 设计一个仪表放大器其增益可以在1V/V1V/V ,为了允许A能一直降到1V/V要求A2<1V/V. 任意选定A2=R2/R1=0.5V/V 并设置R1=100K R2=49.9K精度1%,根据上面公式A1必须从2V/V到2000V/V内可以变动。在这个极值上有 2=1+2R3/(R4+100K) 和2000=1+2R3/(R4+0). 以上求得R4=50欧姆,R3=50K ,精度1% 2,CMRR将接地的49.9K电阻,裁成R6.R7(可变)R6=47.5K,R7=5K

LM324 采用双电源,单信号输入,放大100倍 采用OP07之双电源,单信号输入,100倍

采用Lm324之单电源,单输入信号设计参考(输入信号切不可为零) #运算放大器

运放差分放大电路原理知识介绍精编

运放差分放大电路原理 知识介绍精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即 C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=,

= -=C21C v v I 2 1 v A v 放大器双端输出电压 o v I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 be c I I I O v d r R A v v A v v A V v β-==== 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 c d CMR v v A A K = 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。

三运放组成的仪表放大器电路分析

三运放组成的仪表放大器电路分析 仪表放大器与运算放大器的区别是什么? 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 ?。其输入偏置电流也应很低,典型值为 1 nA至 50 nA。与运算放大器一样,其输出阻抗很低, 在低频段通常仅有几毫欧(m?)。运算放大器的闭环增益是由其反向输入端和输 出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施 加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。 使用三个普通运放就可以组成一个仪用放大器。电路如下图所示: 输出电压表达式如图中所示。 看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。在此之前,我们先来看如下我们很熟悉的差分电路: 如果R1 = R3,R2 = R4,则VOUT = (VIN2—VIN1)(R2/R1) 这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。首先,同相输入端和反相输入端阻抗相当低而且不相等。在这一例子中VIN1反相输入阻抗等于 100 k?,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 k?。因此,当电压施加到一个输入端而另一端接

地时,差分电流将会根据输入端接收的施加电压而流入。(这种源阻抗的不平衡会降低电路的CMRR。)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。例如,当增益等于 1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有 0.1% 失配,其CMR便下降到 66 dB(2000:1)。同样,如果源阻抗有 100 ?的不平衡将使CMR下降 6 dB。 为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。如下图所示: 以上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示: 输出电压表达式如上图所示。上图所示的电路增加增益(A1 和 A2)时, 它对差分信号增加相同的增益,也对共模信号增加相同的增益。也就是说,上述电路相对于原电路共模抑制比并没有增加。 下面,要开始最巧妙的变化了!看电路先:

差分放大器的工作原理

差分放大器的工作原理 差分放大器也叫差动放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器,有时简称为“差放”。差分放大器通常被用作功率放大器(简称“功放”)和发射极耦合逻辑电路 (ECL, Emitter Coupled Logic) 的输入级。 如果Q1 Q2的特性很相似,则V a,V b将同样变化。例如,V a变化+1V,V b也变化+1V,因为输出电压VOUT=V a-V b=0V,即V a的 变化与V b的变化相互抵消。这就是差动放大器可以作直流信号放大的原因。若差放的两个输入为,则它的输出V out为: 其中Ad是差模增益 (differential-mode gain),Ac是共模增益 (common-mode gain)。 因此为了提高信/噪比,应提高差动放大倍数,降低共模放大倍数。二者之比称做共模仰制比(CMRR, common-mode rejection ratio)。共模放大倍数AC可用下式求出: A c=2R l/2R e 通常以差模增益和共模增益的比值共模抑制比 (CMRR, common-mode rejection ratio) 衡量差分放大器消除共模信号的能力: 由上式可知,当共模增益Ac→0时,CMRR→∞。Re越大,Ac就越低,因此共模抑制比也就越大。因此对于完全对称的差分放大器来说,其Ac = 0,故输出电压可以表示为: 所谓共模放大倍数,就是V a,V b输入相同信号时的放大倍数。如果共模放大倍数为0,则输入噪声对输出没有影响。 要减小共模放大倍数,加大R E就行通常使用内阻大的恒流电路来带替R E

差分放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。很多系统在差分放大器的一个输入端输入反馈信号,另一个输入端输入反馈信号,从而实现负反馈。常用于电机或者伺服电机控制,稳压电源,测量仪器以及信号放大。在离散电子学中,实现差分放大器的一个常用手段是差动放大,见于多数运算放大器集成电路中的差分电路。 单端输出的差动放大电路 (不平衡输出) 称为单端Single ended或不平衡输出Unbalance Output。 单端较差动输出之幅度小一倍,使用单端输出时,共模讯号不能被抑制,因Vi1与Vi2同时增加,VC1与VC2则减少,而且VC1=VC2,但Vo =VC2,并非于零(产生零点漂移)。 但是加大RE阻值可以增大负回输而抑制输出,并且抑制共模讯号,因Vi1=Vi2时, Ii1及Ii2也同时增加,IE亦上升而令VE升高,这对Q1和Q2产生负回输, 令Q1和Q2之增益减少,即Vo减少。 当差动讯号输入时,Vi1 = -Vi2,IC1增加而IC2减少,总电流IE = IC1 + IC2便不变, 因此VE也不变,加大RE电阻值之电路会将差动讯号放大,不会对Q1及Q2产生负回输 及抑制。 。 b)减低功率消耗(相对纯电阻来说)。 c)提高差动放大之输出电压。 d)提高共模抑制比CMRR。 即差动输入,则IC1升而IC2下降(并且,ΔIC1 = ΔIC2) 因电流镜像原理,IC4 = IC1 故此,Io = IC4 IC2 = IC1 IC2 (ΔIo = 2ΔIC1或2ΔIC2) 这说明了输出电流是IC1和IC2的相差,即将输出变为具有双端差动输出性能的单端输出 (故对共模讯号之抑制有改善因双端差动输出才能产生消除共模讯号作用)。

相关文档
最新文档