傅里叶变换+频率响应+抽样定理仿真

傅里叶变换+频率响应+抽样定理仿真
傅里叶变换+频率响应+抽样定理仿真

MATLAB实现抽样定理探讨及仿真

应用 MATLAB 实现抽样定理探讨及仿真 一. 课程设计的目的 利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。 二. 课程设计的原理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号恢复原信号 必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求,即只有带限信号 才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2)。(对取样频率的要求,即取样频率要 足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率大于或等于 , 即 ( 为连续信号 的有限频谱),则采样离散信号 能无失真地恢复到原 来的连续信号 。一个频谱在区间(- , )以外为零的频带有限信号 ,可唯一地由 其在均匀间隔 ( < )上的样点值 所确定。根据时域与频域的对称性,可以由时 域采样定理直接推出频域采样定理。 (a) ) (t f ) ()(t t s S T =) (t f s 连续信号 取样脉冲信号 抽样信号 ) (ωj H ) (0t f 理想低通滤波器 恢复信号

(b) (c) 图2.1抽样定理 a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠) 2.1信号采样 如图1所示,给出了信号采样原理图 信号采样原理图(a ) 由图1可见,)()()(t t f t f s T s δ?=,其中,冲激采样信号)(t s T δ的表达式为: ∑∞ -∞ =-= n s T nT t t s )()(δδ 其傅立叶变换为∑∞ -∞ =-n s s n )(ωωδω,其中s s T π ω2= 。设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得 ∑∑∞ -∞ =∞ -∞ =-= -=n s s n s s s n j F T n j F j F )]([1 )(*)(21)(ω ωωωδωωπω 若设)(t f 是带限信号,带宽为m ω, )(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍)。因此,当m s ωω2≥时,频谱不发生

MAtlab傅里叶变换实验报告

班级信工142 学号 22 姓名何岩实验组别实验日期室温报告日期成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。 (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2;n2=8;n0=0;n=n1:0.01:n2; x5=[n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*min(x2) 1.1*max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*min(x2) 1.1*max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 1.1*min(x5) 1.1*max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*min(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果: 2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性; (n) x1(n)=[1 2 3 4 5 6 7 8 9 10 11 12];x2(n)=R 10 (1)线性:(a)代码: w=linspace(-8,8,10000); nx1=[0:11]; nx2=[0:9]; x1=[1 2 3 4 5 6 7 8 9 10 11 12];

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

实验六抽样定理的MATLAB仿真

综合性、设计性实验报告 姓名贺鹤学号2 专业通信工程班级2013级1班 实验课程名称抽样定理的MATLAB仿真 指导教师及职称李玲香讲师 开课学期2014 至2015 学年第二学期 上课时间2015年6 月17、27日 湖南科技学院教务处编印

(2) 编程步骤(仿真实验) ①确定f(t)的最高频率fm。对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。 ②确定Nyquist抽样间隔T N。选定两个抽样时间:T ST N。 ③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。 ④采样信号f(nTs )根据MATLAB计算表达式的向量表示。 ⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。 根据原理和公式,MATLAB计算为: ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); (3)电路连接原理(硬件实验) 5.实验数据处理方法 ①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3) ②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析: (1)频率sf

傅立叶变换的原理、意义和应用

傅立叶变换的原理、意义和应用 1概念:编辑 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。 参考《数字信号处理》杨毅明著,机械工业出版社2012年发行。 定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换 中文译名 Fourier transform或Transformée de Fourier有多个中文译

名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).[1] 2性质编辑 线性性质 傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于

带通抽样定理

《信号与系统A(2)》课程自学报告 实施报告 题目:带通采样定理与软件无线电

带通抽样定理 实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。 [定理] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。如果抽样频率f ,10-≤≤N m (3.1-9) )(t x 。 对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。 由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。 在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。为了避免混叠,延 ) 3.1-11) 综合式( 3.1-12) 这里m m 取零,则上述条件化为 H s f f 2≥(3.1-13) 这时实际上是把带通信号看作低通信号进行采样。 m 取得越大,则符合式(3.1-12)的采样频率会越低。但是m 有一个上限,因为m f f L s 2≤ ,而为了避免混叠,延拓周期要大于两倍的信号带宽,即B f s 2≥。 因此

systemview抽样定理PCM实验报告

信息学院 现代交换实验报告 姓名:刘璐 学号: 2011080331229 专业:通信工程 2014年6月10日 实验一:抽样定理仿真

一、实验目的 1、掌握Systemview 软件的使用 2、熟练使用软件的图符库,能够构建简单系统 二、实验内容 1、熟悉软件的工作界面; 2、用Systemview 软件建立仿真电路 3、进行参数设置 4、观测过程中各关键点波形 5、对仿真结果进行分析 三、实验原理 所谓抽样。就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。 在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h 时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。 四、实验结果

参数设置:1V500HZ 1V8000HZ 16000HZ 正弦波Sinusoid 参数: 1.幅度 2.频率 3.相位 功能: 产生一个正弦波:y(t)=Asin(2PIfct+*) 脉冲串Pulse Train 参数: 1.幅度 2.频率(HZ) 3.脉冲宽度(秒) 4.偏置 5.相位 功能: 产生具有设定幅度和频率的周期性脉冲串,脉宽由设置决定。 y(t)=+-A*PT(t)+Bias 有方波选项。 实时显示 Real Time 功能: 能在系统仿真运行同时,实时地在系统窗口显示接收到的波形。 加法器 Adder 参数: 1.寄存器大小N 2.分数大小F 3.指数大小K 4.输出类型T 5.整型数转换选择 功能: 将输入的一个或多个值求和,并给出适当的标志。 线性系统滤波器 Linear Sys Filters 结论:由此证明了证明了抽样定理的正确性,抽样信号在fs>=fm时可以还原,抽样频率越高效果越好。

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

傅里叶变换和数据采集

如果一个快速傅里叶变换的采样频率是N f 赫兹,那么这个变换系统所能处理信号的上限频率是2 N f 赫兹。 如果又知道这个变换系统采样N 个数值,那么这个变换系统的频率分辨率就是N f N 赫兹,N 越大,变换系统的分辨率就越高。 对采样序列做FFT 变换之后,得到一个N 个元素的序列{}n X ,假 设是{0X …1N X -},那么0X 代表直流成分,实际直流成分的大小是 0X N 。对于其它元素,以n X 为例,它代表信号的频率是 N n f N ?,信号的实际幅值是2n X N 。这里所得到的序列只有前半部分对实际测试有用,即实际需要{0X …21N X -}。 做FFT 变换后得到的图形,即可以看出原始信号中的周期成分,也可看出原始信号中的非周期成分的频谱。下图是矩形脉冲叠加三个正弦信号的FFT 变换图形。

图片中,通过正弦谱线的高度可以计算正弦成分的幅值;但是非周期成分的谱线高度代表什么? “(1)对于时间有限连续信号进行傅里叶分析,将DFT 变换后的结果乘以系数s T ,即可得到其近似频谱。 (2)由频谱合成波形。如果已知某信号的频谱在正负频率范围内共占据频带s f ,利用IDFT 计算之结果乘以系数s f 即可获得其近似的 时间波形。”Page151《信号与系统》下册 同一信号在时域和频域上计算所得的能量相等,所以这个条件就是验证非周期信号FFT 变换后纵轴坐标的刻度。 数据采集系统的参数选取步骤 ① 首先选择采样频率。信号中的最高频率成分是max f ,那么采集系统 的最低采样频率必须满足max 2s f f >; ② 采样点数的确定。采样点数需要根据系统的频率分辨率指标f ?确定,s f N f =?; ③ 采样的周期就是s N f τ=。

应用MATLAB实现抽样定理探讨及仿真

上海大学2012~2013学年冬季学期本科生 课程研讨报告 课程名称:《通信原理B(1)》课程编号: 07275128 题目: 应用 MATLAB实现抽样定理探讨及仿真 学生姓名: 李秀凤(组长)学号: 10123889 学生姓名: 肖勖学号: 10120787 学生姓名: 洪文琍学号: 10123043 学生姓名: 周润萍学号: 学生姓名: 李航学号: 评语: 成绩: 任课教师: 评阅日期:

应用 MATLAB 实现抽样定理探讨及仿真 一. 课程设计的目的 利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。 二. 课程设计的原理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号恢复原信号 必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求,即只有带限信号 才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2)。(对取样频率的要求,即取样频率要 足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率大于或等于 , 即 ( 为连续信号 的有限频谱),则采样离散信号 能无失真地恢复到原 来的连续信号 。一个频谱在区间(- , )以外为零的频带有限信号 ,可唯一地由 其在均匀间隔 ( < )上的样点值 所确定。根据时域与频域的对称性,可以由时 域采样定理直接推出频域采样定理。 (a) ) (t f ) ()(t t s S T δ=) (t f s 连续信号 取样脉冲信号 抽样信号 ) (ωj H ) (0t f 理想低通滤波器 恢复信号

快速傅里叶变换(FFT)原理及源程序

《测试信号分析及处理》课程作业 快速傅里叶变换 一、程序设计思路 快速傅里叶变换的目的是减少运算量,其用到的方法是分级进行运算。全部计算分解为M 级,其中N M 2log =;在输入序列()i x 中是按码位倒序排列的,输出序列()k X 是按顺序排列;每级包含2N 个蝶形单元,第i 级有i N 2 个群,每个群有12-i 个蝶形单元; 每个蝶形单元都包含乘r N W 和r N W -系数的运算,每个蝶形 单元数据的间隔为12-i ,i 为第i 级; 同一级中各个群的系数W 分布规律完全相同。 将输入序列()i x 按码位倒序排列时,用到的是倒序算法——雷德算法。 自然序排列的二进制数,其下面一个数总比上面的数大1,而倒序二进制数的下面一个数是上面一个数在最高位加1并由高位向低位仅为而得到的。 若已知某数的倒序数是J ,求下一个倒序数,应先判断J 的最高位是否为0,与2 N k =进行比较即可得到结果。如果J k >,说明最高位为0,应把其变成1,即2 N J +,这样就得到倒序数了。如果J k ≤,即J 的最高位为1,将最高位化为0,即2N J -,再判断次高位;与4N k =进行比较,若为0,将其变位1,即4 N J +,即得到倒序数,如果次高位为1,将其化为0,再判断下一位……即从高位到低位依次判断其是否为1,为1将其变位0,若这一位为0,将其变位1,即可得到倒序数。若倒序数小于顺序数,进行换位,否则不变,防治重复交换,变回原数。 注:因为0的倒序数为0,所以可从1开始进行求解。 二、程序设计框图 (1)倒序算法——雷德算法流程图

(2)FFT算法流程

傅里叶Fourier级数的指数形式与傅里叶变换

(4) 2 T 2 T f (t)dt 傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅 里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种 信号与系统进行分析。 通过对描述实际对象数学模型的数学分析、 求解,对所得结果给以物 理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号 的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换 域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的 z 变换。 而傅里叶变换的理论基础是傅里叶积分定理。 傅里叶积分定理的数学表达式就是傅里叶级数 的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里 叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。 我们 承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展 式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数f (t ),在[-T ,T ]上满足狄里克莱条件:1o f (t )连续或只有 2 2 数。在连续点处 有限个第一类间断点; 2。 只有有限个极值点。 那么f (t )在nT,T ]上就可以展成傅里叶级 f(t) a 0 ,. (a n cosn ?t b n sin n ?t) (1) 其中 a n T 2 f (t) cosn tdt, (n 二 0,1,2,), _2 根据欧拉(Euler )公式: b n ;认)州艸(n=1,2,3,), (3) e" - cos : j si , (1)式化为 f(t)二色二 a 2 J e jn e" n jn ? £ j jn ? t +b e —e M n 2j 若令 a n - j b n 一 2 jn ;.-:t . a n jb n ?弓曲 2 」,

抽样定理的真与分析

抽样定理的仿真与分析 一 .仿真目的 1)熟悉抽样定理、信号的抽样过程; 2)通过实验观察欠采样时信号频谱的混叠现象; 3)掌握抽样前后信号的频谱的变化,加深对抽样定理的理解; 4)掌握抽样频率的确定方法。 二 .仿真原理说明及设计内容 抽样原理框图 低通抽样定理:一个频带限制在(0,H f )赫内的时间连续信号()m t ,如果以()1/2s H T f <秒的时间间隔对它进行等间隔(均匀抽样,则()m t 将被所得到的抽样值完全确定。 此定理告诉我们:若()m t 的频谱在某一角频率上h w 以上为零,则()m t 中的全部信息完全包含在其间隔不大于()1/2H f 秒的均匀抽样序列里。抽样速率s f (每秒钟的抽样点数)应不小于2H f ,否则,若抽样速率2s H f f <,则会产生失真,这种失真叫混叠失真。 三 设计内容 (1)产生一个连续的时间连续信号,并对其进行频谱分析,绘制时域波形图和频域波形图。

(2)对产生的连续信号进行抽样,并绘制抽样后的时域波形图,和频域波形图。 (3)改变抽样频率,分别对原始连续信号抽样,绘制抽样后的时域和频域波形,最后对得到的波形进行分析。从而验证抽样定理。 四仿真设计实现:信号的产生和频域分析 用MATLAB产生一个连续的信号,2 t t m=;根据抽样定理, ) (t 200 /) 200 (sin( )^ 在MATLAB中编写源程序代码,画出原信号时域波形和频域波形,再分别用不同的频率的抽样脉冲对其进行抽样,在MATLAB中实现不同频率抽样时,时域和频域波形的效果对比,验证抽样定理。 (1)原始信号2 ) (t t m=的时域波形和频域波形的源程序代 t 200 )^ 200 /) (sin( 码如下: t0=10;%定义时间长度 ts=0.001; % 抽样周期 fs=1/ts; df=0.5;% 频率的分辨率 t=[-t0/2:ts:t0/2];%定义时间序列 x=sin(200*t);m=x./(200*t); w=t0/(2*ts)+1; m(w)=1;%定义在t=0时刻的值为1 m=m.*m; m=50.*m;%定义函数sinc(200t) subplot(2,1,1); plot(t,m); xlabel('时间'); title('原信号的时域波形') axis([-0.15,0.15,-1,50]); [M,mn,dfy]=fftseq(m,ts,df);%傅里叶变换,程序在后面 M=M/fs; f=[0:dfy:dfy*length(mn)-dfy]-fs/2;%定义频率序列 subplot(2,1,2); plot(f,abs(fftshift(M))); xlabel('频率');

快速傅里叶变换原理及其应用(快速入门)

快速傅里叶变换的原理及其应用 摘要 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。傅里叶变换的理论与方法在“数理方程”、“线性系统分析”、“信号处理、仿真”等很多学科领域都有着广泛应用,由于计算机只能处理有限长度的离散的序列,所以真正在计算机上运算的是一种离散傅里叶变换. 虽然傅里叶运算在各方面计算中有着重要的作用,但是它的计算过于复杂,大量的计算对于系统的运算负担过于庞大,使得一些对于耗电量少,运算速度慢的系统对其敬而远之,然而,快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。 关键词快速傅氏变换;快速算法;简化;广泛应用

Abstract Fast Fourier Transform (FFT), is a discrete fast Fourier transform algorithm, which is based on the Discrete Fourier Transform of odd and even, false, false, and other characteristics of the Discrete Fourier Transform algorithms improvements obtained. Its Fourier transform theory has not found a new, but in the computer system or the application of digital systems Discrete Fourier Transform can be said to be a big step into. Fourier transform theory and methods in the "mathematical equation" and "linear systems analysis" and "signal processing, simulation," and many other areas have a wide range of applications, as the computer can only handle a limited length of the sequence of discrete, so true On the computer's operation is a discrete Fourier transform. Fourier Although all aspects of computing in the calculation has an important role, but its calculation was too complicated, a lot of computing system for calculating the burden is too large for some Less power consumption, the slow speed of operation of its system at arm's length, however, have the fast Fourier transform, Fourier transform greatly simplifying the making, not in power at the expense of the conditions to increase the speed of computing systems, and enhance the system The comprehensive ability to improve the speed of operation, the Fast Fourier Transform in the production and life have a very important role in learning to master all have great significance. Key words Fast Fourier Transform; fast algorithm; simplified; widely used

基于MATLAB信号与系统中抽样定理的仿真 (最终版)

分类号编号 烟台大学文经学院毕业论文(设计) 基于MATLAB信号与系统中抽样定理的仿 真 Signal and System Based on MATLAB simulation sampling theorem 系别:电子信息与计算机科学系 专业:通信技术 班级: 姓名: 学号:

指导老师:(讲师) 2013年 6 月 1 日 烟台大学文经学院

基于MATLAB信号与系统中抽样定理的仿 真 姓名:

导师: 2013年 6 月 1 日烟台大学文经学院

烟台大学文经学院毕业论文(设计)任务书系(部):电子信息与计算机科学系 姓名学号毕业届 别 专业通信技术 毕业论文(设计)题目基于MATLAB的信号与系统中抽样定理的仿真 指导教师学历硕士 研究 生 职称讲师所学专业物理电子学 具体要求(主要内容、基本要求、主要参考资料等): 主要内容:基于MATLAB的信号与系统中抽样定理的仿真,利用MATLAB在数字信号处理中的基本应用,并会对结果用所学知识进行分析。 基本要求:掌握MATLAB的基本操作,掌握基于MATLAB的通信系统的设计与实现的基本工作原理,理解系统中各信号抽样仿真的原理。 主要参考资料: [1] 楼顺天.基于MATLAB的系统分析与设计——信号处理[M].西安:西安电子科 技大学出版社 [2] 邹理和.数字信号处理[M].北京:国防工业出版社,1988.39~41滞后,这就是离 散系统最常用零阶保持器的主要原因之一。 进度安排: 2013年3月5日前,确定选题及指导教师 2013年3月5日至3月31日,进行毕业设计调研,完成大概设计 2013年4月1日至4月20日,进行毕业设计,写论文 2013年4月20日至4月25日,对内容和机构进行第一遍修改 2013年5月1日前,进行第二遍修改

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT定义为: 可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点 的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。 将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为: 上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。 FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。以256为基数、长度为N字节的数

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

实验四抽样定理

实验四:抽样定理
一、实验目的
1、理解信号的抽样及抽样定理以及抽样信号的频谱分析。 2、掌握和理解信号抽样以及信号重建的原理。
二、实验原理
1、信号的抽样及抽样定理
抽样(Sampling),就是从连续时间信号中抽取一系列的信号样本,从而,得到一个离 散时间序列(Discrete-time sequence),这个离散序列经量化(Quantize)后,就成为所谓的 数字信号(Digital Signal)。今天,很多信号在传输与处理时,都是采用数字系统(Digital system)进行的,但是,数字系统只能处理数字信号,不能直接处理连续时间信号或模拟信 号(Analog signal)。为了能够处理模拟信号,必须先将模拟信号进行抽样,使之成为数字 信号,然后才能使用数字系统进行传输与处理。所以,抽样是将连续时间信号转换成离散时 间信号必要过程。模拟信号经抽样、量化、传输和处理之后,其结果仍然是一个数字信号, 为了恢复原始连续时间信号,还需要将数字信号经过所谓的重建(Reconstruction)和平滑 滤波(Smoothing)。图 4.1 展示了信号抽样与信号重建的整个过程。
Antialiasing
xa (t) filter
Sampler/ Holder
p(t)
A/D convertor
Digital Processor
图 4.1 模拟信号的数字处理过程
图 4.2 给出了信号理想抽样的原理图:
x(t)
×
xs (t)
D/A convertor
X( jω)
Antialiasing
filter y(t)
p(t)
ω
?ωm ωm
(a)
(b)
图 4.2 (a) 抽样原理图,(b) 带限信号的频谱
上图中,假设连续时间信号是一个带限信号(Bandlimited Signal),其频率范围为
? ωm ~ ωm ,抽样脉冲为理想单位冲激串(Unit Impulse Train),其数学表达式为:

p(t) = ∑δ (t ? nTs )
4.1
?∞
由图可见,模拟信号 x(t)经抽样后,得到已抽样信号(Sampled Signal)xs(t),且:
xs (t) = x(t) p(t)
4.2

图像处理与傅里叶变换原理与运用

图像处理与傅里叶变换 1背景 傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discrete Fourier Transform) 。 1.1离散傅立叶变换 图象是由灰度(RGB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。 对图像数据f(x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。则其离散傅立叶变换定义可表示为: 式中,u=0,1,…, M-1;v= 0,1,…, N-1 其逆变换为 式中,x=0,1,…, M-1;y= 0,1,…, N-1 在图象处理中,一般总是选择方形数据,即M=N 影像f(x,y)的振幅谱或傅立叶频谱: 相位谱: 能量谱(功率谱) ) 1(2exp ),(1),(101 ∑∑ -=-=????? ???? ??+-= M x N y N vy M ux i y x f MN v u F π) 2(2exp ),(1),(101 ∑∑ -=-=????? ???? ??+= M u N v N vy M ux i v u F MN y x f π) ,(),(),(2 2 v u I v u R v u F +=[] ),(/),(),(v u R v u I arctg v u =?) ,(),(),(),(222v u I v u R v u F v u E +==

1.2快速傅里叶变化 可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f(x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换 正变化 逆变换 由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。 正变换 逆变换 由于计算机进行运算的时间主要取决于所用的乘法的次数。 按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F ∑ ∑∑∑ -=-=-=-=? ???? ? ?????? ? = ?? ???? +=1 1 0101 )(2exp ),(1 )(2exp ),(1 )(2exp ),(1),(N v N u N u N v N vy i v u F N N ux i v u F N N vy ux i v u F NN y x f πππ∑ -=?? ? ???-= 1 2exp )(1)(N x N ux i x f N u F π∑ ∑ ∑∑ -=-=-=-=? ???? ? -?????? ? -= ?? ???? +-= 1 1 101 )(2exp ),(1 )( 2exp ),(1 )(2exp ),(1),(N y N x N x N y N vy i y x f N N ux i y x f N N vy ux i y x f NN v u F πππ∑ -=?? ????= 1 2exp )(1)(N u N ux i u F N x f π

相关文档
最新文档