电化学论文

电化学论文
电化学论文

学院化工学院

专业生物工程

年级2015级本科一年级姓名冯国政

学号3015207252

指导教师王为

2016年5月14日

浅谈生物电池

摘要从我们读到的文献上发现目前生物电池按照作用机理可以大致以下两类。

一是生物质产氢,然后利用氢能进行发电。二是生物直接在电极将有机物(如糖类)氧化,进行直接发电。按照产电的主体划分又可以分为酶燃料电池和微生物燃料电池。本文将主要讨论生物电池的历史、微生物燃料电池、酶生物燃料电池,还将对生物电池的前景进行展望。

1 生物电池的历史

早在1910年,英国植物学家就将铂作为电极置于大肠杆菌的培养液里,成功地制造出了世界上第一个细菌电池。1984年,美国科学家设计出一种用于太空飞船的细菌电池,其电极的活性物来自宇航员的尿液和活细菌。但当时的细菌电池发电效率较低。到了20世纪80年代末,细菌发电取得重要进展,英国化学家让细菌在电池组里分解分子以释放电子并向阳极运动产生电能。他们在糖液中添加某些诸如染料之类的芳香族化合物作为稀释液来提高生物系统输送电子的能力,而在细菌发电期间还需朝电池里不断充气并搅拌细菌培养液和氧化物的混和物。理论上,利用这种细菌电池每100g糖可获得1352930库仑的电能,其效率可达40%远高于当时使用的电池的效率,而且还有10%的潜力可挖掘。只要不断地往电池里添入糖就可获得2A电流,且能持续数月之久。利用细菌发电原理,人们正在构想建立细菌发电站。比如,基于10m见方的立方体容器内的细菌培养液,可建立起一个1000kW的细菌发电站,每小时耗糖量为200kg。发电成本虽然高一些,但这是一种对环境无污染的“绿色”电站。且随着技术的发展,完全可用诸如锯末、秸秆、落叶等废有机物的水解物来代替糖液。因此,细菌发电的前景十分诱人。[1]

2 微生物燃料电池

2.1 微生物燃料电池的原理

微生物燃料电池本质上是收获微生物代谢过程中产生的电子并引导电子产生电流的系统。(如图1)微生物燃料电池的功率输出取决于系统传递电子的数量和速率以及阳极与阴极间的电位差。由于微生物燃料电池并非一个热机系统,避免了卡诺循坏的热力学限制,因此,理论上微生物燃料电池是化学能转化为电能最有效的装置,最大效率有可能接近100%。[2]

其基本原理是微生物可以通过各种途径从燃料(葡萄糖、蔗糖、乙酸盐、废水)中获取电子,并将电子从还原性物质(如葡萄糖)转移到氧化性物质(如氧)以获得能量。获得的能量可按下式计算:

?G=-n×F×?E

式中?G——获得的能量

n——电子转移的数量

F——法拉第常数,96485C/mol

?E——电子供体和受体间的电势差。

图1 微生物电池基本原理

以葡萄糖作为燃料电池的燃料,阴阳两极的电化学反应式如下:

阳极:C6H12O6+6H2O→24H++24e-+6CO2①

阴极:6O2+24e-→12H2O ②

如式①、式②所示,在阳极室中,微生物通过呼吸作用催化底物脱氢,产生电子,此时阳极电极作为临时的电子受体吸收电子,并通过回路将电子传递到阴极表面,O2作为最终电子受体与通过质子交换膜传递过来的氢质子结合生成H2O。阳极室内,微生物产电、产氢并进行传递,是微生物燃料电池产电的关键。从动力学因素看,微生物自主放电的活化势比较高,使其在电极表面的反应速率低。所以培养驯化产电效率高的菌种以及扩大阳极表面积,富集更多微生物,生成更大面积的生物膜,是提高电能的方法。

目前,人们围绕产电性能的提高,从电池结构的设计、电极材料的选择、产电产氢菌的培养以及对电解质溶液环境(如pH值、温度、离子强度等)的改变等各个方面进行研究取得了一定的成果。[3]

2.2 微生物燃料电池的优势

与传统电池技术相比,微生物燃料电池技术具有操作上和功能上的优势。(1)它将底物直接转化为电能,保证了具有极高的能量转化效率。

(2)微生物燃料电池在常温常压甚至是低温环境条件下有效运作,电池维护成本低、安全性强。

(3)微生物燃料电池所产生的废气的主要成分是CO2,不会产生污染环境的副产物。

(4)微生物燃料电池具有生物相容性,利用人体内的葡萄糖和氧为原料的微生物燃料电池可以直接植入人体。

(5)在缺乏电力基础设施的局部地区,微生物燃料电池可以被广泛应用。在化石燃料日趋紧张、环境污染越来越严重的今天,微生物燃料电池以其良好的性能向我们展示了一个美好的发展前景。[4]

2.3 微生物燃料电池的研究进展

微生物燃料电池与微生物的呼吸密切相关。在微生物燃料电池中,微生物氧化有机物,然后把氧化过程中产生的电子通过电子传递链传递到燃料电池电极上产生电流,同时微生物在电子传递过程中获得能量支持生长,这一过程被认为是一种新的微生物呼吸方式,即以电极为唯一电子受体的呼吸产能过程。电子从电子

供体到Cytochrome c传递过程中产生的能量用于细胞的生长和代谢,而电子从Cytochrome c到O2传递产生的能量可以转化MFC的电能.所以说微生物呼吸是MFC的重要理论基础。

利用电极作为唯一电子受体的发现,给MFC的研究与开发带来光明的前景。因为微生物产电不是与其生存直接相关的自然选择压力,只是厌氧呼吸过程的延伸。所以微生物的产电效率在自然条件下是很低的。因此对现有的产电微生物进行驯化改良是进一步提高产电微生物的产电效率重要一步。其主要途径之一是对微生物进行基因工程改造,例如增加某个基因过量表达与电极直接接触的膜蛋白,提高电子传递率。另外还可以通过增加选择压力, 迫使微生物本身向着高产电效率的方向进化。对于产电微生物的驯化目前还没有大的进展。[5]

3 酶生物燃料电池

3.1 酶生物燃料电池的原理及现状

在早期的生物燃料电池系统中,更多地用气体扩散电极与酶阳极或阴极相匹配,用两种不同酶电极的酶燃料电池较少。近年来,随着修饰酶电极技术的发展,大多数酶燃料电池研究工作均采用正、负电极均为酶电极的结构。此外,使用固定酶电极的酶燃料电池为了防止两电极间电极反应物与产物的相互干扰,一般将正、负电极用质子交换膜分隔为阴极区和阳极区,即两极室酶燃料电池,这与传统电池阴极/隔膜/阳极的结构相仿。(如图2)1999年出现的无隔膜酶燃料电池,取消了隔膜、电池外壳和相应的密封结构,可更方便地制备微型、高比能量的酶生物燃料电池。

图2 酶燃料电池的基本结构模型

3.2 酶燃料电池的研究进展

至今实用型酶燃料电池的开发尚处于基础研究阶段,真正的应用性成果还较少。由于生物传感器与酶燃料电池之间存在很多技术交叉,因此生物传感器研究也促

进了酶燃料电池研究的发展,表现在固定酶电极的修饰材料、酶电极的稳定性、酶催化的选择性等方面。但与生物传感器使用时消耗能量不同,酶燃料电池是产生电能的装置,两者在工作电流(响应电流)、电压、工作稳定性、抗干扰性等方面的要求存在一定差别。

酶燃料电池需要在几个月甚至更长的时间内连续稳定工作,这不仅要求电极修饰材料具有一定的生物相容性,而且要求酶必须适应人体生理环境或其它使用环境,以保持长期工作下酶的催化活性。这对于氧化还原酶来说还比较困难,因此目前的酶燃料电池连续工作时间较短,一般在几天至一个月左右。电池寿命主要与酶的特性有关,温度、pH值、溶液中离子的组成与浓度等环境因素也会有很大影响。[6]

4 生物电池前景展望

4.1 对微生物燃料电池的前景展望

(1)在偏远地方为电子监控设备提供电能。这一应用有望可以在短期实现。华盛顿大学和俄勒冈州立大学的研究人员合作开发了一套利用海洋污泥的微生物燃料电池系统,这个系统能够有效的为海上分析检测设备提供电源。微生物燃料电池还可以在诸如深海底部和国土安全的军事“特殊区域”具有潜在用途。(2)废水处理。在废水中,一般含有丰富的有机物质。利用MFC不仅可以净化水质,还可以发电。因此微生物燃料电池有望可以把废水处理变成一个有利可图的产业,是微生物燃料电池最有发展前景的方向。

(3)生物修复。通常情况下,为了促进有毒污染物的生物降解,加入电子供体或电子受体支持微生物的呼吸。电极可以作为电子受体支持微生物呼吸,达到降解污染物的目的。

随着微生物燃料电池在未来的不断进步和发展,将会有越来越多的应用领域。有人预测在宇航员的太空旅行中,可以用到太空废物支持微生物燃料电池产能。

[7]

4.2对酶生物燃料电池的前景展望

酶燃料电池原料来源广泛、生物相容性好、在常温常压和中性溶液环境中工作、可以用多种天然有机物作为燃料,是一种可再生的绿色能源,可为微型电子装置提供电能。在疾病的诊断和治疗、环境保护以及航空航天等领域具有诱人的应用前景。

近几年,国内外对酶生物燃料电池的研究不断深入。酶燃料电池的进一步研究和发展需要多学科、多领域的研究人员的广泛参与,共同合作。相信酶燃料电池作为一种绿色能源会再能源和医疗等领域发挥巨大的作用。[8]

参考文献

[1]吴祖林,刘静. 生物质燃料电池的研究进展. 北京:电源技术1002-087X (2005)05-0333-08

[2]谢静怡. 环境生物电化学原理与应用. 哈尔滨:哈尔滨工业大学出版社. 2014

[3]王玮瑶,张铁瀚. 微生物发电及其应用研究. 湖南:湖南工程学院学报161-119X(2012)01-0072-04

[4]谢静怡. 环境生物电化学原理与应用. 哈尔滨:哈尔滨工业大学出版社. 2014

[5]洪义国,郭俊,孙国萍. 产电微生物及微生物燃料电池最新研究进展. 广东:微生物学报0001-6209(2007)01-0173-05

[6]刘强,许鑫华,任光雷,王为. 酶生物燃料电池. 天津:化学进展005—28lx(2006)11—1530.08

[7]洪义国,郭俊,孙国萍. 产电微生物及微生物燃料电池最新研究进展. 广东:微生物学报0001-6209(2007)01-0173-05

[8]刘强,许鑫华,任光雷,王为. 酶生物燃料电池. 天津:化学进展005—28lx(2006)11—1530.08

第13次全国电化学学术会议论文摘要格式样板

第13次全国电化学学术会议论文摘要格式样板 第13次全国电化学学术会议筹备组* (华南师范大学,广东 广州,510631) 本次会议应征论文应是未曾发表的研究成果,涉及如下方面:电化学基础研究、化学电源、金属腐蚀与防腐、电沉积与电解、生物电化学与有机电化学、电分析化学与传感器、纳米电化学及电化学微系统、电化学测量新技术与仪器。征集的论文将被分为口头报告和墙报展讲两种形式(发表方式由投稿人提出意向,大会根据来稿情况统筹安排。报告人用下画线表明。)在本次会议上进行交流。口头报告和墙报均具有同等的学术地位。大会学术委员会将根据论文的内容与质量确定是否录用。为提高墙报的地位和作用,大会将对墙报进行评奖,给获奖者颁发奖状和奖金。 1. 写作格式 请用中文或英文撰写,篇幅不超过2页(大会邀请报告3页)。论文摘要请严格按照以下格式编辑: 1.题目用12号字(加粗居中) 2.作者和所属单位用10号字 3.正文用仿宋体10号字、单倍行间距 4.使用A4纸(21.6cm × 28cm)、四边页边距均为25mm 5.标题和正文为中文,应在文后加英文题目、作者和单位地址,以便国际交流,如果正文为英文,则附中文题目、作者和单位地址。 6. 计量单位一律采用法定计量单位; 7. 插图、表格:插图、照片、表格要精选。用计算机绘图,用扫描仪录入照片,并按适当尺寸插入论文中。图、表大小请按本刊版心宽度170 mm 的1,1/2,1/4倍安排。 8.参考文献:采用顺序编码制,书写格式如下: 著作 作者.书名[M].版本.出版地:出版者,出版年:页数(著作) 期刊 作者,论文名[J]. 刊名,年,卷(期):页 2排版规范 2.1 公式 较复杂的公式请用 equation 3排版。凡变量均用斜体,物理量简称均用正体(不论上下角)。如: ]1ln[)()(0θ θ θ---=F RT F U E E (1) 2.2 表 中、英文表题,(首字母大写)。如表1所示。 表1.样品LiM x Mn 2-x O 4(M=Cr,x=0, 0.16)的晶胞常数、晶胞体积和原子间距. Table 1. Lattice constants, unit cell volume , and interatomic distances for LiM x Mn 2-x O 4(M=Cr,x=0, 0.16) Sample a(?) V(?3) R Mn-Mn (?) R Mn-O (?) LiMn 2O 4 8.235 558.46 2.912 1.943 LiCr 0.16Mn 1.84O 4 8.223 556.02 2.907 1.941 * 联系人简介: 姓名,年龄,职称,主要研究方向 基金资助: 基金名称(编号)

特种加工论文

特种加工技术的现代应用及其发展研究 摘要:特种加工技术是直接借助电能、热能、声能、光化学能或者复合能实现材料切削的加工方法,是难切削材料、复杂型面、低刚度零件及模具加工中的重要工艺方法。本文介绍了概念、特点、分类以及近些年应用于特种加工的一些新方法、新工艺。 关键词:特种加工电火花加工电化学加工高能束流加工超声波加工复合加工 1、特种加工技术的特点 现代特种加工(SP,SpciaI Machining)技术是直接借助电能、热能、声能、光能、电化学能、化学能及特殊机械能等多种能量或其复合以实现材料切除的加工方法。与常规机械加工方法相比它具有许多独到之处。 1.1以柔克刚。因为工具与工件不直接接触,加工时无明显的强大机械作用力,故加工脆性材料和精密微细零件、薄壁零件、弹性元件时,工具硬度可低于被加工材料的硬度。 1.2用简单运动加工复杂型面。特种加工技术只需简单的进给运动即可加工出三维复杂型面。特种加工技术已成为复杂型面的主要加工手段。 1.3不受材料硬度限制。因为特种加工技术主要不依靠机械力和机械能切除材料,而是直接用电、热、声、光、化学和电化学能去除金属和非金属材料。它们瞬时能量密度高,可以直接有效地利用各种能量,造成瞬时或局部熔化,以强力、高速爆炸、冲击去除材料。其加工性能与工件材料的强度或硬度力学性能无关,故可以加工各种超硬超强材料、高脆性和热敏材料以及特殊的金属和非金属材料,因此,特别适用于航空产品结构材料的加工。 1.4可以获得优异的表面质量。由于在特种加工过程中,工件表面不产生强烈的弹、塑性变形,故有些特种加工方法可获得良好的表面粗糙度。热应力、残余应力、冷作硬化、热影响区及毛刺等表面缺陷均比机械切削表面小。 各种加工方法可以任意复合,扬长避短,形成新的工艺方法,更突出其优越性,便于扩大应用范围。 由于特种加工技术具有其它常规加工技术无法比拟的优点,在现代加工技术中,占有越来越重要的地位。许多现代技术装备,特别是航空航天高技术产品的一些结构件,如工程陶瓷、涡轮叶片、燃烧室的三维型腔、型孔的加工和航空陀

电化学原理及其应用(习题及答案)

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是(C) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是Zn |Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+ Eθ(Cu2+/Cu)=(1) , Eθ(Sn4+/Sn2+)=(2) 则有(C) A. (1) = (2) B. (1)<(2) C. (1)>(2) D. 都不对 二、填空题 1.将下列方程式配平 3PbO2 + 2 Cr3+ + ____H2O___ =1Cr2O72—+ 3Pb2+ + __2H+___ (酸性介质) 2MnO2 + 3 H2O2 +__2OH-___ =2MnO4—+ ___4H2O______ (碱性介质)2.现有三种氧化剂Cr2O72—,H2O2,Fe3+,若要使Cl—、Br—、I—混合溶液中的I—氧化为I2,而Br-和Cl-都不发生变化,选用Fe3+最合适。(EθCl2/Cl-=1.36V, EθBr2/Br-=1.065V, EθI2/I-=0.535V) 3.把氧化还原反应Fe2++Ag+=Fe3++Ag设计为原电池,则正极反应为Ag++ e = Ag,负极反应为Fe3++e= Fe2+ ,原电池符号为Pt︱Fe3+(c1),Fe2+(c2)‖Ag+(c3)︱Ag。 4.在Mn++n e=M(s)电极反应中,当加入Mn+的沉淀剂时,可使其电极电势值降低,如增加M的量,则电极电势不变 5.已知EθAg+/Ag=0.800V, K sp=1.6×10—10则Eθ(AgCl/Ag)= 0.222V。 6.已知电极反应Cu2++2e=Cu的Eo为0.347V,则电极反应2Cu - 4e =2Cu2+的Eθ值为0.347V 。7.用氧化数法配平下列氧化还原反应。 (1)K2Cr2O7+H2S+H2SO4K2SO4+Cr2(SO4)3+S+H2O K2Cr2O7+3H2S+4H2SO4 =K2SO4+Cr2(SO4)3+3S+7H2O

电化学发展史

电化学发展史 电化学是物理化学的一个重要组成部分,它不仅与无机 化学、有机化学、分析化学和化学工程等学科相关,还渗透 到环境科学、能源科学、生物学和金属工业等领域。 电化学作为化学的分支之一,是研究两类导体(电子导 体,如金属或半导体,以及离子导体,如电解质溶液)形成 的接界面上所发生的带电及电子转移变化的科学。

传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。 一、16-17世纪:早期的相关研究 公元16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家William Gilbert (威廉·吉尔伯特,1540-1605)花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 吉尔伯特按照马里古特的办法,制成球状磁石,取名为“小地球”,在球面上用罗盘针和粉笔划出了磁子午线。他证明诺曼所发现的下倾现象也在这种球状磁石上表现出来,在球面上罗盘磁针也会下倾。他还证明表面不规则的磁石球,其磁子午线也是不规则的,由此认为罗盘针在地球上和正北方的偏离是由陆地所致。他发现两极装上铁帽的磁石,磁力大大增加,他还研究了某一给定的铁块同磁石的大小和它的吸引力的关系,发现这是一种正比关系。吉尔伯特根据他所发现的这些磁力现象,建立了一个理论体系。他设想整个地球是一块巨大的磁石,上面为一层水、岩石和泥土覆盖着。他认为磁石的磁力会产生运动和变化。他认为地球的磁力一直伸到天上并使宇宙合为一体。在吉尔伯特看来,引力无非就是磁力。吉尔伯特关于磁学的研究为电磁学的产生和发展创造了条件。在电磁学中,磁通势单位的吉伯 (gilbert)就是以他的名字命名,以纪 念他的贡献。 1663年,德国物理学家Otto von Guericke(奥托·冯·格里克1602-1686) 发明了第一台静电起电机。这台机器由 球形玻璃罩中的巨大硫磺球和转动硫 磺球用的曲轴组成的。当摇动曲轴来转 动球体的时候,衬垫与硫磺球发生摩擦 产生静电。这个球体可以拆卸并可以用 作电学试验的来源。 二、18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(玻璃),以及负电“resinous”(树脂),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家Charles Augustin de Coulomb (夏尔·奥古斯丁·库仑1736-1806)在试图研究由英国科学家Joseph Priestley (约瑟夫·普利斯特里1733-1804)提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家Luigi Galvani(路易吉·伽伐尼1737-1798)发现蛙腿肌肉接触金属刀片时候会发生痉挛。他于1791年发表了题为“电流在肌肉运动中所起的作用”的论文,提出在生物形态下存在的“神经电流物质”,在化学反应与电流之间架起了一座桥梁。这篇论文的发表标志着电化学和电生理学的诞生。在论文中,伽伐尼认为动物体内中存在着一种与“自然”形式(如闪电)或“人工”形式(如摩擦起电)都不同的“动物电”,

电化学基础-王玮

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 电化学基础是在学习无机化学和物理化学的基础上开设的电化学入门课程,是材料化学专业的学科基础必修课程。主要介绍电化学材料科学的基本理论、基本概念等内容,为今后学习奠定基础。 2.设计思路: 尽管先修课程物理化学中有专门一章介绍电化学,但是随着电化学材料科学的快速发展,电化学技术在材料科学与工程领域中的应用越来越广泛。本课程着重介绍电化学的基本知识、基本原理和电化学技术应用。 3.课程与其他课程的关系 本课程的先修课程是物理化学。为后期更好的学习新能源材料概论、金属腐蚀与防护、功能高分子材料等专业课程,更好的开展毕业论文(设计)工作奠定基础。二、课程目标 本课程的目标是让学生在前期学习物理化学等课程的基础上,系统学习电化学的基本理论、基本原理等内容,并能够应用于后续其他专业课程的学习。了解、掌握电 - 1 -

化学材料科学研究所涉及的基本理论和基本原理以及电化学技术的应用。 三、学习要求 本课程要求学生(或小组)及时关注网络教学(包括移动客户端)的阅读资料、思考讨论题等,按照要求在课前完成相关的资料检索汇总及思考;在课堂上认真听讲,积极参与课堂讨论;课后积极参与小组活动并完成作业。 四、教学内容 五、参考教材与主要参考书 [1] (美)巴德等. 电化学方法原理和应用(第二版). 化学工业出版社. 2005.5 [2] 高鹏等. 电化学基础教程. 化学工业出版社. 2013.9 [3] (德)哈曼等. 电化学. 化学工业出版社. 2010 六、成绩评定 (一)考核方式 A.闭卷考试:A.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他(二)成绩综合评分体系: - 1 -

精密超精密加工技术论文

精密超精密加工技术 论文 班级:机械09-4班 姓名:侯艳飞 学号:20091058

精密超精密加工技术的发展,直接影响到一个国家尖端技术和国防工业的发展,因此世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。 精密超精密加工技术,是现代机械制造业最主要的发展方向之一。在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。 精密超精密加工是指亚微米级(尺寸误差为0.3~0.03μm,表面粗糙度为Ra0.03~0.005μm)和纳米级(精度误差为0.03nm,表面粗糙度小于 Ra0.005nm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为精密超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。 超精密加工主要包括三个领域: 1.超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。2.超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。3.超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1μm。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。 近年来,在传统加工方法中,金刚石刀具超精密切削、金刚石微粉砂轮超精密磨削、精密高速切削、精密砂带磨削等已占有重要地位;在非传统加工中,出现了电子束、离子束、激光束等高能加工、微波加工、超声加工、蚀刻、电火花和电化学加工等多种方法,特别是复合加工,如磁性研磨、磁流体抛光、电解研磨、超声珩磨等,在加工机理上均有所创新。 对精密和超精密加工所用的加工设备有下列要求。 (1)高精度。包括高的静精度和动精度,主要的性能指标有几何精度、定位精度和重复定位精度、分辨率等,如主轴回转精度、导轨运动精度、分度精度等; (2)高刚度。包括高的静刚度和动刚度,除本身刚度外,还应注意接触刚度,以及由工件、机床、刀具、夹具所组成的工艺系统刚度。 (3)高稳定性。设备在经运输、存储以后,在规定的工作环境下使用,应能长时间保持精度、抗干扰、稳定工作。设备应有良好的耐磨性、抗振性等。 (4)高自动化。为了保证加工质量,减少人为因素影响,加工设备多采用数控系统实现自动化。 加工设备的质量与基础元部件,如主轴系统、导轨、直线运动单元和分度转台等密切相关,应注意这些元部件质量。此外,夹具、辅具等也要求有相应的高精度、高刚度和高稳定性。 加工工具主要是指刀具、磨具及刃磨技术。用金刚石刀具超精密切削,值得研究的问题有:金刚石刀具的超精密刃磨,其刃口钝圆半径应达到2~4nm,同时应解决其检测方法,刃口钝圆半径与切削厚度关系密切,若切削的厚度欲达到10nm,则刃口钝圆半径应为2nm。 磨具当前主要采用金刚石微粉砂轮超精密磨削,这种砂轮有磨料粒度、粘接剂、修整等问题,通常,采用粒度为W20~W0.5的微粉金刚石,粘接剂采用树脂、铜、纤维铸铁等。 航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求,如人造卫星用的姿态轴承和遥测部件对观测性能影响很大。该轴承为真空无润滑轴承,其孔和轴的表面粗糙度要求为Ry0.01μm,即1nm,其圆度和圆柱度均要求纳米级精度。被送入太空的哈勃望远镜(HST),

浅谈应用电化学与生活中的化学

浅谈应用电化学与生活中的化学 电化学是研究电和化学反应之间的相互作用。电化学技术成果与人类的生活和生产实际密切相关,如化学电池、腐蚀保护、表面精饰、金属精炼、电化学传感器等等,同时也应用于电解合成、环境治理、人造器官、生物电池、心脑电图、信息传递等方面。它的发展推动了世界科学的进步,促进了社会经济的发展,对解决人类社会面临的能源、交通、材料、环保、信息、生命等问题已经作出并正在作出巨大的贡献。 下面简单介绍几种应用电化学在生活中的应用: 一、金属腐蚀防护 金属腐蚀在生活中十分常见,全世界每年因腐蚀而造成的金属损失相当于全世界金属产量的1/4以上,我国因腐蚀造成的经济损失达200亿以上。因此金属腐蚀防护研究具有很高的现实意义。 由于绝大部分的金属腐蚀都是电化学腐蚀,因此,电化学方法在金属防护上有极大的应用。 常用的防腐蚀方法有调节PH、阴极保护、阳极保护、金属钝化、金属镀层。 金属的电化学腐蚀:若金属与非电解介质直接反应而腐蚀称为化学腐蚀。 1:金属与电解质溶液(潮湿空气,溶解有杂质或污染物的水,海水)接触。 2:金属/电解质溶液界面可发生阳极氧化溶解过程。 3:若存在相应的阴极还原反应,就构成了自发的原电池,持续放电而腐蚀。 金属之所以受到腐蚀,是由于在金属表面的区域之间存在着电极电势差,即存在着电化学不均匀而造成的,各种不均匀性加速腐蚀,称为局部腐蚀。 金属腐蚀的防护: 1:金属的化学钝化(强氧化剂作用,在表面形成一层致密的氧化物膜)。 2:选配设计合金,改善钝化性能。 3:阴极保护(牺牲阳极,与直流电源的负极相连使成为阴极)。 4:阳极保护(与直流电源的正极相连,使处于f -pH图的钝化区,阳极钝化)。 5:镀层(耐腐蚀金属,油漆,搪瓷,塑料,橡胶等)。 6:缓蚀剂 a:在介质中添加,无机盐类,氧化剂,有机物,减慢反应速度,加大极化。 b:生成胶体粒子,生成难溶性沉淀,发生钝化,有机分子吸附,从而覆盖电极表面,妨碍反应进行,阻止或减缓金属腐蚀。 二、化学电源 1:干电池 酸性锌锰干电池:负极为锌筒,正极为MnO2和活性炭混合物,电解质溶液为NH4Cl和ZnCl2水溶液,加淀粉糊凝固,电极反应为Zn氧化和MnO2还原。 碱性锌锰干电池:负极为汞齐化的锌粉,正极为MnO2粉和炭粉混合物装在一个钢壳内,电解质溶液为KOH水溶液。 2:蓄电池 锂电池:质量轻,Li/Li+标准电极电势最负,导电性和机械性能都很好。 以金属锂或锂合金作为负极,无机物或有机材料做正极如锂|二硫化钼,锂|钒氧化物,锂|二氧化锰,有机聚合物或导电高分子作正极。 3:燃料电池:是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。 a:燃料电池中的燃料和氧化剂都是由外部供给,理论上电池的电极不消耗。 b:只要连续供给燃料和氧化剂,电池就可以连续对外放电。 c:燃料电池所发生的电化学反应实质上就是燃料的燃烧反应。

电化学与现代生活论文

《公选课论文》 课程名称:电化学与现代生活 论文题目:电化学与金属腐及保护姓名:杨书海 学号:310909030227 专业班级:信管1001 2012年11 月1日

电化学与金属腐蚀及保护 摘要:根据腐蚀的作用原理,金属的腐蚀可分为化学腐蚀和电化学腐蚀。两者的区别是当电化学腐蚀发生时,金属表面存在隔离的阴极与阳极,有微小的电流存在于两极之间,单纯的化学腐蚀则不形成微电池。过去认为,高温气体腐蚀属于化学腐蚀,但近代概念指出在高温腐蚀中也存在隔离的阳极和阴极区,也有电子和离子的流动。金属电化学腐蚀和保护的原理就是牺牲阳极的阴极保护法 :即在电解质溶液中,作为阳极的金属容比阴极的金属更易失去电子,所以形成电子的转移,同时阳极被氧化,阴极就被保护起来了。 关键字:金属腐蚀、电化学、阴极、阳极、电子转移 随着社会生产力的发展,人民生活水平的提高,金属的使用在日常生活中应用的越来越普遍,然而由金属腐蚀所带来的损失也越来越严重,据估计全世界每年因为电化学腐蚀而报废的金属材料的量的四分之一到四分之三,据由此可见研究金属的腐蚀与防护是一件富有意义又艰巨的工作。 一.电化学腐蚀原理 根据腐蚀的作用原理,可分为化学腐蚀和电化学腐蚀。两者的区别是当电化学腐蚀发生时,金属表面存在隔离的阴极与阳极,有微小的电流存在于两极之间,单纯的化学腐蚀则不形成微电池。过去认为,高温气体腐蚀(如高温氧化)属于化学腐蚀,但近代概念指出在高温腐蚀中也存在隔离的阳极和阴极区,也有电子和离子的流动。据此,出现了另一种分类:干腐蚀和湿腐蚀。湿腐蚀是指金属在水溶液中的腐蚀,是典型的电化学腐蚀,干腐蚀则是指在干气体(通常是在高温)或非水溶液中的腐蚀。单纯的物理腐蚀,对于金属很少见,对于非金属,则多半产生单纯的化学或物理腐蚀,有时两种作用同时发生。 例如在轮船上,为了防止船体的钢铁锈蚀,所以在轮船体下方焊接一些锌块。再例如在常温下的中性溶液中,钢铁的腐蚀一般是以氧为去极化剂进行的:如果氧供应充分的话,Fe(OH)2还会逐步被氧化成含水的四氧化三铁Fe3O4·mH2O和含水的三氧化二铁Fe2O3·nH2O。钢铁在大气中生锈,就是一个以O2为去极化剂的电化学腐蚀过程,直接与金属表面接触的离子导体介质是凝聚在金属表面上

特种加工论文电化学加工

目录 摘要: (2) 前言 (2) 1电化学加工的特点 (2) 2电化学加工的分类 (3) 2.1电解加工 (3) 2.2电解磨削 (3) 3电化学加工的设备 (4) 3.1电解液 (4) 3.2机床 (4) 3.3直流电源 (5) 4电化学加工的现状及发展前景 (5) 参考文献 (5)

电化学加工论文 摘要:本文通过对电化学的各种加工方法的研究,以及分析电化学加工的各种特点,对电化学加工的前景发展趋势进行分析总结。电化学加工包括从工件上去除金属的电解加工和向工件上沉积金属的电镀、涂覆、电铸加工两大类。虽然有关的基本理论在19世纪末已经建立,但真正在工业上得到大规模应用,还是20世纪30~50年代以后的事。目前,电化学加工已经成为我国民用和国防工业中一个不可或缺的加工手段。 关键词:电火花加工特点发展趋势 前言 电化学加工的基本理论建立与19世纪末,但在工业上的大规模应用,还应该是在20世纪30~50年代。目前,电化学加工已经成为我国民用、国防工业中的一个不可或缺的加工手段。电化学加工是一种重要的特种加工方法, 已被广泛应用于难加工金属材料、复杂形状零件的批量加工中。它利用金属的电解现象,在通电的电解液中,使离子从一个电极移向另一个电极,从而实现对工件材料的双向加工,即阳极溶解去除 (如电解、电化学抛光)和阴极沉积生长(如电镀、电铸)。无论材料的减少或增加,加工过程都是以离子的形式进行的,而金属离子的尺寸非常微小,因此,从原理上讲,电化学加工可以实现加工精度和微细程度在微米级甚至更小尺度的微加工。只要采取措施精确地控制电流密度和电化学反应发生的区域,就能实现电化学微加工,达到对金属表面进行微量“去除”或“生长”加工的目的。 电化学是一门古老而又年轻的学科,一般公认电化学起源于1791年意大利解剖学家伽伐尼发现解剖刀或金属能使蛙腿肌肉抽缩的“动物电”现象。1800年伏特制成了第一个实用电池,开始了电化学研究的新时代。在经历了一个多世纪以后,电化学科学的发展和成就举世瞩目,无论是基础研究还是技术应用,从理论到方法,都有许多重大突破。电化学科学的发展,推动了世界科学的进步,促进了社会经济的发展,对解决人类社会面临的能源、交通、材料、环保、信息、生命等问题,已经作出并正在作出巨大的贡献。 1电化学加工的特点 电化学加工工艺与一般的机制工艺相比较,具有以下特点:能同时进行三维的加工,一次加工出形状复杂的型面、型腔、异形孔;电化学加工的工件表面

电化学原理知识点

电 化学原理 第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动是独立的,这时电解质溶液的当量电导等于电解质全部电离后所产生的离子当量电导之和: 同一离子在任何无限稀溶液中极限当量电导值不变! 离子淌度:单位场强(V/cm )下的离子迁移速度,又称离子绝对运动速度。 离子迁移数:某种离子迁移的电量在溶液中各种离子迁移的总电量中所占的百分数。 或 第二章 电化学热力学 i i i x αγ= ∑= 22 1 i i z m I I A ?-=± γlog L A G κ= KV =λN c N c k 1000 =λ-++=000λλλ

-蒎烯电化学氧化合成蒎烷二醇的可行性研究

α-蒎烯电化学氧化合成蒎烷二醇的可行性研究 摘要 本论文提出1S,2S,3R,5S-(+)-2,3-蒎烷二醇是一种重要的药品,其市场需求量在 醇的合成开辟了一条绿色技术途径 1S,2S,3R,5S-(+)-2,3-

Preliminary study on synthesis of 1s,2s,3r,5s-(+)-pinanediol by electrochemical oxidation process Abstract A procedure is 1S,2S,3R,5S-(+)-2,3-Pinanediol is significant for humans as a kind of anticancer medicine, of which the demand and price are soaring year by year. On the basis of the chemical synthesis method using potassium permanganate as oxidant, the synthesis of 1S,2S,3R,5S-(+)-2,3-pinanediol by electrochemical oxidation was also explored. It constitutes a electrochemistry system, with 1S-(+)-α-pinene as raw material, tert-butyl alcohol as cosolvent, sodium sulfate as supporting electrolyte, and yield producing 1S,2S,3R, the without membrane, voltage 12v, reaction time 10h, it could obtain the highest yeild. ;electrochemical

电化学的复习(论文)

考纲解读之电化学的复习 电化学是氧化还原反应知识的应用和延伸,是历年高考的热点内容,原电池的工作原理、电解产物判断与计算是高考的必考题,重现率100%。下面仅就电化学的复习谈几点看法。 ?解读考纲: ?画龙点睛: 考点主要有:原电池、电解池、电镀池的电极名称及电极反应式;根据原电池、电解池的电极变化判断金属活动性强弱;根据电解时电极变化判断电极材料和电解质种类;新型电池的电极反应及应用;有关电解产物的判断和计算。本考点内容能有效地测试考生的判断、推理运算等思维能力,能充分体现高考命题由知识向能力的转变。本部分知识在高考中所占比例近两年来有提高趋势,约占高考试卷总分的5%—10%。本部分试题题型为选择题或填空题。 预测2006: 预测2006年高考理综卷化学试题中本部分内容仍是高考命题的重要知识点之一,其中原电池的工作原理、电解产物判断与计算是高考命题的热点与重点,是必考题,试题仍以选择题为主,可能会出现填空题,注意电化学试题可能涉及工业生产、环境保护、新科技、新能源知识,试题难度中等。

直击考点 考点一:原电池的有关问题 1.是否为原电池的判断 (1)先分析有无外接电源,有外接电源的为电解池,无外接电源的可能为原电池;然后依据原电池的形成条件分析判断,主要是“四看”:看电极——两极为导体且存在活泼性差异(燃料电池的电极一般为惰性电极);看溶液——两极插人溶液中;看回路——形成闭合回路或两极直接接触;看本质——有无氧化还原反应发生。 (2)多池相连,但无外接电源时,两极活泼性差异最大的一池为原电池,其他各池可看做电解池。 2.原电池正、负极的确定 (1)由两极的相对活泼性确定:相对活泼性较强的金属为负极,相对活泼性较差的金属或导电的非金属为正极。一般,负极材料与电解质溶液要能发生反应,如:Mg—Al—HCl溶液构成的原电池中,负极为Mg;但Mg—Al—KOH溶液构成的原电池中,负极为A1。 (2)根据在两电极发生反应的物质的化合价的升降情况来判断。如:甲醇燃料电池,顾名思义,甲醇燃烧一般生成二氧化碳,则碳的价态升高失电子,所以通人甲醇的电极为负极。 (3)由电极变化情况确定:某一电极若不断溶解或质量不断减少,该电极发生氧化反应,则此电极为负极;若某一电极上有气体产生,电极的质量不断增加或不变,该电极发生还原反应,则此电极为正极,燃料电池除外。如:Zn—C—CuSO4溶液构成的原电池中,C电极上会析出紫红色固体物质,则C为此原电池的正极。 (4)根据某些显色现象确定:一般可以根据电极附近显色指示剂(石蕊、酚酞、湿润的淀粉、高锰酸钾溶液等)的变化情况来分析推断该电极发生的反应、化合价升降情况、是氧化反应还是还原反应、是H+还是OH-或I-等放电,从而确定正、负极。

电化学原理

第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质 分类: ? 弱电解质与强电解质—根据电离程度 ? 缔合式与非缔合式—根据离子在溶液中存在的形态 ? 可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”. 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm -3 时才有效。 电导∶量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 i i i x αγ=∑= 2 2 1i i z m I I A ?-=±γlog L A G κ=

浅赏电化学加工和电火花加工

浅赏电化学加工和电火花加工 摘要 制造业是一个传统行业。一个国家的发展终归要落脚于制造业,因此作为基础工业,制造业必定拥有永久的生命力,而电加工行业也不例外。随着各项技术的不断发展,电加工技术也在进步,特种加技术作为先进制造技术中的重要部分,解决了好多传统加工方法的难题,电化学与电火花加工是特种加工的两大重要组成部分,在此分析两者的原理和特点,不同材料选择不同方法,通过各自的优点和适用范围选择出恰当的方法,是生产效率更高。 关键词:特种加工;电化学加工;电火花加工;发展 ABSTRACT Manufacturing is a traditional industry. The development of a country will eventually locate in manufacturing industry, so as the foundation industry, manufacturing will surely have permanent vitality, and electric processing industry is no exception. With the continuous development of the technology, electric processing technology is also in progress, special and technology as an important part of the advanced manufacturing technology, the traditional processing method to solve a lot of problems, electrochemical and electrical discharge machining is special processing of two important constituent, in the analysis of their principle and characteristics of different materials to choose different methods through their respective advantages and applicability of the choice of the right method, the production efficiency is higher. Keywords:Special processing;Electrochemical machining;Electrical discharge machining;development 1 绪论 随着现代科技的不断发展以及社会需求,对于工业上的要求在不断的改变中,特种加工技术这个被称为21世纪的技术的发展给工业上的发展提供了很大的帮助。新型工程材料不断涌现和被采用,工件的复杂程度以及加工精度的要求越来越高,对机械制造工艺技术提出了更高的要求。由于受刀具材料性能、结构、设备加工能力的限制,使用传统的切削加工方法很难完成对高强度,高韧性,高

应用电化学论文选题

论文题目: 根据以下参考方向自己拟定具体题目 (一)环境电化学: 1、电催化氧化技术在废水处理中的应用无机废水有机废水 2、电催化还原技术在废水处理中的应用无机废水有机废水 3、光电催化氧化技术在有机废水处理中的应用 4、电渗析技术 5、电化学消毒 6、电化学絮凝气浮 7、煤炭的电化学脱硫技术及应用 8、煤的电解氧化技术及应用(二)电源: 9、质子交换膜燃料电池10、太阳能电池 11、高密度锂离子电池12、核电微生物电池(三)电化学检测方法 13、材料的电化学性能检测方法简介14、循环伏安法测电化学性能(四)电化学传感器 15、气体传感器16、溶出伏安法测水中重金属离子17、生物传感器18、位移传感器测车速测地震(五)电解工业19、无机物电解、20、有机物电解、 21、电解水制氢、22、电镀法制膜(六)其他 23、超级电容器24、超导体 25、有机印刷技术26、激光电镀 27、人体生物电28、宇宙中的电磁波和时空 29、电磁波对人体的影响30、液晶显示器

参考书目: 1、电化学工程基础,吴辉煌编著,化学工业出版社,2008 2、应用电化学,杨辉,卢文庆编著,科学出版社,2001 3、电镀工程,张胜涛,化学工业出版社,2002,5 4、电化学技术在环境工程中的应用,冯玉杰等编,化学工业出版社,2002,5 5、电解加工原理及应用,王建业,徐家文编,国防工业出版社,2001,1 6、应用电化学,贾梦秋,杨文胜编著,高教出版社,2004 7、工业电化学基础,谢德明,童少平,楼白杨,化学工业出版社,2009 8、环境电化学研究方法,易清风,李东艳,科学出版社,2006.6 论文要求: 1、主要讨论具体原理、现状、发展前景; 2、不少于2000字; 3、上述书目有选择地读两本;每人必须选入两篇一年内的参考文 献! 4、严格按照科技论文的格式; 5、不能有完全相同的内容出现。 6、一月内完成。

电化学原理思考题答案

第三章 1.自发形成的双电层和强制形成的双电层在性质和结构上有无不同为什么2.理想极化电极和不极化电极有什么区别它们在电化学中有什么重要用途答:当电极反应速率为0,电流全部用于改变双电层的电极体系的电极称为理想极化电极,可用于界面结构和性质的研究。理想不极化电极是指当电极反应速率和电子反应速率相等时,极化作用和去极化作用平衡,无极化现象,通向界面的电流全部用于电化学反应,可用作参比电极。 3.什么是电毛细现象为什么电毛细曲线是具有极大值的抛物线形状 答:电毛细现象是指界面张力随电极电位变化的现象。溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。 4.标准氢电极的表面剩余电荷是否为零用什么办法能确定其表面带电状况答:不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\ 偶极子双电层\金属表面电位。可通过零电荷电位判断电极表面带电状况,测定氢标电极的零电荷电位,若小于0则电极带正电,反之带负电。 5.你能根据电毛细曲线的基本规律分析气泡在电极上的附着力与电极电位有什么关系吗为什么有这种关系(提示:液体对电极表面的润湿性越高,气体在电极表面的附着力就越小。) 6.为什么在微分电容曲线中,当电极电位绝对值较大时,会出现“平台”7.双电层的电容为什么会随电极电位变化试根据双电层结构的物理模型和数学模型型以解释。 8.双电层的积分电容和微分电容有什么区别和联系9.试述交流电桥法测量微分电容曲线的原理。10.影响双电层结构的主要因素是什么为什么 答:静电作用和热运动。静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。11.什么叫ψ1电位能否说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关ψ1电位的符号是否总是与双电层总电位的符号一致为什么 答:距离电极表面d处的电位叫ψ1电位。不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。当发生超载吸附时ψ1电位的符号与双电层总电位的符号不一致。 12.试述双电层方程式的推导思路。推导的结果说明了什么问题 13.如何通过微分电容曲线和电毛细曲线的分析来判断不同电位下的双电层结构答: 14.比较用微分电容法和电毛细曲线法求解电极表面剩余电荷密度的优缺点。15.什么是特性吸附哪些类型的物质具有特性吸附的能力答:溶液中的各种粒子还可能因非静电作用力而发生吸附称为特性吸附。大部分无机阴离子,部分无机阳离子以及表面活性有机分子可发生特性吸附。

[高分子材料] 中山大学岳晚课题组在有机电化学晶体管(OECT)材料方面取得重要进展

AHAHAGAHAGAGGAGAGGAFFFFAFAF 中山大学岳晚课题组在有机电化学晶体管(OECT )材料方面取得重要进展 有机生物电子学是利用共轭聚合物在生物系统中其独特的电荷和离子传输性能而发展起来的一种器件。在这众多的生物电子器件中,电化学晶体管可以构筑在适合的基底上,能够传输微弱的生物信号。这些优点以及低于1V 的工作电压特点,使得OECTs 在体内和体外能够放大微弱的生物信号。然而目前的OECTs 材料存在着一系列问题,从而限制了其广泛的应用,其中两个关键因素:一,操作稳定性;二,基底粘附性。 Figure 1. Chemical structure of Polymers 针对操作稳定性和基底粘附性,中山大学岳晚课题组根据不同的侧链设计了以上五种聚合物,并对这五种聚合物的掺杂过程、晶体结构、形貌特征以及OECT 性能进行了表征。

Figure 2. Output, transfer, and switching (drain current IDand applied gate voltage VG pulses) characteristics of the OECTs fabricated using (a, b, c) PIBET-AO, (d, e, f) PIBET-O, and (h, i, j) PIBET-BO as active materials. All transfer and switching characteristics have been acquired at constant drain voltage VD = – V. 其中PIBET-AO表现出很高的性能,最大跨导(g m)达到了14 mS,开始电压(Vth) V, 最大开关比达到了x 104。对PIBET-AO和PIBET-O进行了操作稳定性的研究,发现PIBET-O进行了40 min的运行,电流下降了90%,而PIBET-AO运行6 h,3628圈循环,电流基本保持不变,表现出超高的操作稳定性,并且对其机理进行了解释。 此外,对PIBET-AO和PIBET-O基底粘附性进行了研究,在模拟人体体液电解质中,进行了 h的超声,之后再将其进行器件表征,发现PIBET-AO的电流基本不变,而PIBET-O的电流变成了0。从而说明了PIBET-AO表现出了极高的基底粘附性,又将PIBET-AO涂在柔性衬底PET上,超声后对其紫外吸收做了表征,发现吸 AHAHAGAHAGAGGAGAGGAFFFFAFAF

相关文档
最新文档