工作场所空气有毒物质测定 多环芳香烃类化合物

工作场所空气有毒物质测定 多环芳香烃类化合物
工作场所空气有毒物质测定 多环芳香烃类化合物

G B Z/T160.44 2004

工作场所空气有毒物质测定

多环芳香烃类化合物

1范围

本标准规定了监测工作场所空气中多环芳香烃类化合物的方法三

本标准适用于工作场所空气中多环芳烃类化合物浓度的测定三

2规范性引用

下列文件中的条款,通过本标准的引用而成为本标准的条款三凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本三凡是不注日期的引用文件,其最新版本适用于本标准三

G B Z159工作场所空气中有害物质监测的采样规范

3萘二萘烷和四氢化萘的溶剂解吸 气相色谱法

3.1原理

空气中的萘二萘烷和四氢化萘用活性炭管采集,溶剂解吸后进样,经色谱柱分离,氢焰离子化检测器检测,以保留时间定性,峰高或峰面积定量三

3.2仪器

3.2.1活性炭管,溶剂解吸型,内装100m g/50m g活性炭三

3.2.2空气采样器,流量0~500m l/m i n三

3.2.3溶剂解吸瓶,5m l三

3.2.4微量注射器,10μl三

3.2.5气相色谱仪,氢焰离子化检测器三

仪器操作参考条件

色谱柱1(用于萘的测定):2m?4m m,聚乙二醇20M?阿皮松L?C h r o m o s o r b WAW D M C S= 5?10?100;

色谱柱2(用于萘烷和四氢化萘的测定):2m?4m m,阿皮松L?6201担体=15?100;

柱温:150?;

汽化室温度:180?;

检测室温度:200?;

载气(氮气)流量:35m l/m i n三

3.3试剂

3.3.1二硫化碳,色谱鉴定无干扰色谱峰三

3.3.2聚乙二醇20M和阿皮松L,色谱固定液三

3.3.36201担体和C h r o m o s o r b WAW D M C S,色谱担体,60~80目三

3.3.4标准溶液:准确称量0.0100g萘二萘烷或四氢化萘(色谱纯),溶于二硫化碳中,定量转移入10m l 容量瓶中,稀释至刻度,此溶液为1.0m g/m l标准贮备液三临用前,用二硫化碳稀释成200μg/m l标准溶液三或用国家认可的标准溶液配制三

3.4样品的采集二运输和保存

1

现场采样按照G B Z159执行三

3.4.1 短时间采样:在采样点,打开活性炭管两端,以200m l /m i n 流量采集15m i n 空气样品三

3.4.2 长时间采样:在采样点,打开活性炭管两端,以50m l /m i n 流量采集2~8h 空气样品三

3.4.3 个体采样:

在采样点,打开活性炭管两端,佩戴在采样对象前胸上部,进气口尽量接近呼吸带,以50m l /m i n 流量采集2~8h 空气样品三

3.4.4 样品空白:

将活性炭管带至采样点,除不连接采样器采集空气样品外,其余操作同样品三采样后,立即封闭采样管两端,置于清洁容器内运输和保存三在室温下,萘样品可保存3d

,萘烷和四氢化萘样品可保存5d

三3.5 分析步骤

3.5.1 样品处理:将采过样的前后段活性炭分别放入溶剂解吸瓶中,加入1.0m l 二硫化碳,

轻摇后,解吸30m i n ,解吸液供测定三若浓度超过测定范围,可用二硫化碳稀释后测定,计算时乘以稀释倍数三3.5.2 标准曲线的绘制:用二硫化碳分别稀释标准溶液成0.0二2.0二5.0二10.0二25.0二40.0μg /m l 萘;0.0二10.0二50.0二100二150二200μ

g /m l 萘烷或四氢化萘标准系列三参照仪器操作条件,将气相色谱仪调节至最佳测定状态,分别进样2.0μl ,测定各标准系列三每个浓度重复测定3次三以测得的峰高或峰面积均值分别对相应的萘二萘烷或四氢化萘浓度(μg /m l )绘制标准曲线三3.5.3 样品测定:

用测定标准系列的操作条件测定样品和样品空白解吸液,测得的峰高或峰面积值后,由标准曲线得萘二萘烷或四氢化萘的浓度(μg /m l )三3.6 计算

3.6.1 按式(1)将采样体积换算成标准采样体积:V o =V?293273+t ?P 101.3

(1)………………………………………………式中:

V o 标准采样体积,L ;

V 采样体积,L ;t 采样点的温度,?;P 采样点的大气压,k P a

三3.6.2 按式(2)计算空气中萘二萘烷或四氢化萘的浓度:C =v (c 1+c 2)V o

(2)……………………………………………………式中:C 空气中萘二萘烷或四氢化萘的浓度,m g /m 3;c 1二c 2 测得解吸液中萘二萘烷或四氢化萘的浓度(减去样品空白),μg /m l ;v 解吸液的体积,m l ;V o 标准采样体积,L ;3.6.3 时间加权平均接触浓度按G B Z159规定计算三

3.7 说明

3.7.1 样品处理方法:

先将溶剂吸附剂管的前段倒入解吸瓶中解吸并测定,如果测定结果显示未超出吸附剂的穿透容量时,后段可以不用解吸和测定;当测定结果显示超出吸附剂的穿透容量时,再将后段吸附剂倒入解吸瓶中解吸并测定,测定结果计算时将前后段的结果相加后作相应处理三

3.7.2 本法的检出限:萘为1μg /m l ,萘烷和四氢化萘为2.5μg /m l ;最低检出浓度:萘为0.3m g /m 3,萘烷和四氢化萘为0.8m g /m 3(以采集3L 空气样品计)三测定范围:萘为1~40μg /m l ,萘烷和四氢化萘为2.5~200μg /m l 三相对标准偏差:萘为0.8%~

4.4%,萘烷和四氢化萘为1.1%~3.8%三3.7.3 本法的穿透容量:100m g 活性炭对萘二萘烷和四氢化萘大于3m g 三平均解吸效率为98%三3.7.4 本法测定萘,

可以将炼焦厂空气中共存物与萘很好分离三如果在使用纯萘的工作场所,也可使2

G B Z /T 1

60.44 2004

G B Z/T160.44 2004用阿皮松L柱或聚乙二醇20M柱三因萘烷有顺反式两种异构体,在阿皮松柱上,反式先于顺式出峰,计算时应将两峰相加三

3.7.5本法可采用相应的毛细管柱进行测定三

4蒽二菲和3,4-苯并(a)芘的高效液相色谱法

4.1原理

空气中气溶胶态的蒽二菲和3,4-苯并(a)芘用玻璃纤维滤纸采集,溶剂洗脱后进样,经色谱柱分离,紫外光或荧光检测器检测,以保留时间定性,峰高或峰面积定量三

4.2仪器

4.2.1玻璃纤维滤纸三

4.2.2采样夹,滤料直径40m m三

4.2.3小型塑料采样夹,滤料直径25m m三

4.2.4空气采样器,流量0~3L/m i n和0~30L/m i n三

4.2.5具塞试管,10m l三

4.2.6索氏提取器三

4.2.7 K-D浓缩器或旋转蒸发器三

4.2.8微量注射器,10μl三

4.2.9高效液相色谱仪三

仪器操作参考条件

色谱柱:150m m?4.6m m?5μm,O D S;

柱温:25?;

紫外检测器:波长254n m;

荧光检测器:激发波长为365n m,发射波长为405n m;

流动相:甲醇?水=85?15;

流动相流量:1m l/m i n三

4.3试剂

实验用水为蒸馏水三

4.3.1甲醇,优级纯三

4.3.2苯,优级纯三

4.3.3二甲基甲酰胺,优级纯三

4.3.4环己烷,分析纯三

4.3.5二氯甲烷,分析纯三

4.3.6标准溶液:

4.3.6.1蒽或菲标准溶液:准确称量50m g蒽或菲,溶于少量苯,定量转移入50m l容量瓶中,加甲醇至刻度,为标准贮备液三临用前,用甲醇稀释成

5.0μg/m l标准溶液三或用国家认可的标准溶液配制三4.3.

6.23,4-苯并(a)芘标准溶液:准确称量10m g3,4-苯并(a)芘,溶于少量二甲基甲酰胺(或苯),定量转移入10m l容量瓶中,并稀释至刻度,为标准贮备液三临用前,用甲醇稀释成1.0μg/m l标准溶液三或用国家认可的标准溶液配制三

4.4样品的采集二运输和保存

现场采样按照G B Z159执行三

4.4.1短时间采样:在采样点,打开装好玻璃纤维滤纸的采样夹,以25L/m i n流量采集15m i n空气样品三4.4.2长时间采样:在采样点,打开装好玻璃纤维滤纸的采样夹,以1L/m i n流量采集4~8h空气样品三

3

邻苯二胺环状希夫碱—Mn(II)配合物的合成及性质

湖南科技大学 毕业设计(论文) 题目邻苯二胺环状希夫碱—Mn (II)配合物的合成及性质 作者郭常远 学院化学化工学院专业化学 学号0806010312 指导教师彭斌 二〇一二年六月三日

湖南科技大学 毕业设计(论文)任务书 化学化工院化学系(教研室) 系(教研室)主任:(签名)年月日 学生姓名: 郭常远学号: 0806010312专业: 化学 1 设计(论文)题目及专题:邻苯二胺环状希夫碱-Mn(II)配合物的合成与性质 2 学生设计(论文)时间:自2012年3月1日开始至2012 年6月3日止 3 设计(论文)所用资源和参考资料: 中国期刊网化学专业教材 湖南科技大学学位论文 4 设计(论文)应完成的主要内容: (1) 合成乙二胺缩[1,4-二溴丁烷缩2-羟基-1-萘甲醛双醚]环状希夫碱配体(配体I)、邻苯二胺缩[1,4-二溴丁烷缩2-羟基-1-萘甲醛双醚]环状希夫碱配体(配体II)、H2L1缩1,5-二溴戊烷环状希夫碱配体(配体III)三种配体和Mn的乙二胺缩[1,4-二溴丁烷缩2-羟基-1-萘甲醛双醚]环状希夫碱配合物(配合物I)、Mn的邻苯二胺缩[1,4-二溴丁烷缩2-羟基-1-萘甲醛双醚]环状希夫碱配合物(配合物II)、Mn的H2L1缩1,5-二溴戊烷环状希夫碱配合物(配合物III)三种配合物。 (2) 配体和配合物的分析(红外和质谱)。 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1)数据要求准确、内容充实、结论可靠。 (2)严格按照湖南科技大学论文格式书写。 (3)及时上交论文初稿及最终稿,做好答辩准备。 6 发题时间:2012年3月1日 指导教师:(签名) 学生:(签名)

工作场所空气有毒物质测定铬及其化合物GBZT160.7-2004

C 52 GBZ xx国家职业卫生标准 GBZ/T 160.7-2004———————————————————————— 工作场所空气有毒物质测定 铬及其化合物 in the air of workplace 2004年5月21日发布 2004年12月1日实施————————————————————————xx卫生部发布 GBZ/T 160.7-2004 前言 为贯彻执行《工业企业设计卫生标准》(GBZ 1)和《工作场所有害因素职业接触限值》(GBZ 2),特制定本标准。本标准是为工作场所有害因素职业接触限值配套的监测方法,用于监测工作场所空气中铬及其化合物[包括铬酸盐(Chromates)、重铬酸盐(Dichromates)和三氧化铬(Chromium trioxide)等]的浓度。本标准是总结、归纳和改进了原有的标准方法后提出。这次修订将同类化合物的同种监测方法和不同种监测方法归并为一个标准方法,并增加了长时间采样和个体采样方法。 本标准从 2004年12月1日起实施。同时代替GB/T 16019- 1995、GB/T 16020-1995。 本标准首次发布于1995年,本次是第一次修订。

本标准由全国职业卫生标准委员会提出。 本标准由xx卫生部批准。 本标准起草单位: 中国疾病预防控制中心职业卫生与中毒控制所、江西省劳动卫生职业病防治研究所和广东省职业病防治院。 本标准主要起草人: 徐伯洪、钱位成、叶能权和黄振侬。GBZ/T 160.7-2004工作场所空气有毒物质测定 铬及其化合物 1范围 本标准规定了监测工作场所空气中铬及其化合物浓度的方法。 本标准适用于工作场所空气中铬及其化合物浓度的测定。 2规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBZ 159工作场所空气中有害物质监测的采样规范 第一法火焰原子吸收光谱法 3原理 空气中铬及其化合物用微孔滤膜采集,消解后,在 357.9 nm波长下,用乙炔-空气火焰原子吸收光谱法测定。

席夫碱的性质

席夫碱目录 概述 应用医药方面 催化方面 分析化学 腐蚀方面 光致变色方面 展开概述 应用医药方面 催化方面 分析化学 腐蚀方面 光致变色方面 展开编辑本段概述席夫碱结构通式 英文名:Schiff's base 也称西佛碱 席夫碱主要是指含有亚胺或甲亚胺特性基团(-RC=N-)的一类有机化合物,通常希夫碱是由胺和活性羰基缩合而成。具有优良液晶特性。用作有机合成试剂和液晶材料。 C=N键长约0.124~0.128nm,偶极矩约0.90D。有顺(Z)-、(E)-两种构型。亚胺是由醛或酮与氨或胺缩合而成的,又可分为醛亚胺和酮亚胺。亚胺基是极活泼的基团。与氰氢酸反应生成α-氨基酸,与丙二酸二乙酯反应生成β-氨基酸,还原反应生成胺,与格利雅试剂反应生成胺的衍生物,水解生成醛或酮和胺。 醛酮与伯胺(RNH2)生成含碳氮双键的亚胺: R2C=O + R'NH2 ——R2C=NR' + H2O R、R’都是脂肪族烃基的亚胺不稳定。R、R’其中一个为芳基的亚胺为稳定的晶体,由于平衡偏右,制备相对容易。 编辑本段应用席夫碱类化合物及其金属配合物在医学、催化、分析化学、腐蚀以及光致变色领域的重要应用。在医学领域,席夫碱具有抑菌、杀菌、抗肿瘤、抗病毒的生物活性;在催化领域,席夫碱的钴和镍配合物已经作为催化剂使用;在分析领域,席夫碱作为良好的配体,可以用来鉴别,鉴定金属离子和定量分析金属离子的含量;在腐蚀领域,某些芳香族的希夫碱经常作为铜的缓蚀剂;在光致变色领域,某些含有特性基团的希夫碱也具有独特的应用。医药方面 由于某些席夫碱具有特殊的生理活性,近年来,越来越引起医药界的重视。据报道,氨基酸

多环芳烃的介绍

多环芳烃(PAHs)的介绍 一、简介 PAHs,学名多环芳烃。是石油、煤等燃料及木材、可燃气体在不完全燃烧或在高温处理条件下所产生的一类有害物质,通常存在于石化产品、橡胶、塑胶、润滑油、防锈油、不完全燃烧的有机化合物等物质中,是环境中重要致癌物质之一. 在环境中,有机污染物充斥于各处,多环芳香化合物(PAH)为其大宗,且部分已被证实对人体具有致癌与致突变性。PAH之来源包括:藻类或细菌之生物合成、森林大火、火山爆发,以及火力发电厂、**场焚化场、汽机车与工厂排气等。PAH之种类很多,其中之16种化合物于1979年被美国环境保护署(US EPA)所列管。 PAHs主要包括以下16种同类物质: 1 Naphthalene 萘 2 Acenaphthylene 苊烯 3 Acenaphthene 苊 4 Fluorene 芴 5 Phenanthrene 菲 6 Anthracene 蒽 7 Fluoranthene 荧蒽 8 Pyrene 芘 9 Benzo(a)anthracene 苯并(a)蒽 10 Chrysene 屈 11 Benzo(b)fluoranthene 苯并(b)荧蒽 12 Benzo(k)fluoranthene 苯并 (k)荧蒽 13 Benzo(a)pyrene 苯并(a)芘 14 Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15 Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16 Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 性状:纯的PAH通常是无色,白色,或浅黄绿色的固体。 我们为您提供的测试标准: EPA8270 索氏萃取提取PAHs,其中覆盖了16项PAHs的测试项目!

环境中多环芳烃的研究进展

环境中多环芳烃的研究进展 摘要:多环芳烃(PAHs)是一类已被证实具有难降解性,“三致”作用且易在生物体内富集的碳氢化合物,它广泛存在于大气、水、动植物和土壤中。本文论述了多环芳烃的性质和来源,研究了它在各介质中的迁移转化,着重阐述了它的监测分析方法的研究进展,包括预处理方法,各种仪器监测以及生物监测的原理及方法,也论述了环境中多环芳烃的降解方法,涉及到物理降解、化学降解以及微生物降解。 关键词:PAHs 来源迁移仪器监测生物监测微生物降解 一、多环芳烃的定义、性质及来源 多环芳烃从广义上说上讲是指分子中含有2个或2个以上苯环的化合物,而狭义的多环芳烃是指若干个苯环稠合在一起或是由若干个苯环和环戊二烯稠合在一起组成的稠环芳香烃类[1]。它是煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物。它是最早发现且数量最多的致癌物,也是环境中最早发现且数量最多的致癌物。目前已经发现的致癌性多环芳烃及其衍生物已超过400种,每年排放到大气中的多环芳烃约几十万t[2]。美国环保局提出的129种“优先污染物”中,多环芳烃类化合物有16种。 多环芳烃具有强疏水性,其水溶性随分子量的增加而减小。但是当溶液中存在其它有机化合物时,它们可与这些有机物形成胶体,使水溶性发生很大的变化;另外,由于其由两个或两个以上苯环构成,结构稳定,不易被降解,且随分子量的增加降解性降低,故具有强吸附性,此外它还具有难降解性、毒性以及生物蓄积性,多环芳烃最突出的特性是具有强致癌性、致畸性及致突变性,当PAHs与-N02、-0H、-NH2等发生作用时,会生成致癌性更强的PAHs衍生物。另外,PAHs 很容易吸收太阳光中可见(400-760nm)和紫外(290-400nm)区的光。对紫外辐射引起的光化学反应尤为敏感。另外可在其生成、迁移、转化和降解过程中,可直接通过呼吸道、皮肤、消化道进入人体和动物体,并且可以间接通过食物链的放大作用进入人体和动物,又由于其亲脂性及难降解性,易在生物体内蓄积,对人体及动物健康产生危害。 环境中的PAHs除极少量来源于生物体(某些藻类、植物和细菌)内合成,森林草原自然起火,火山喷发等自然本底外,绝大部分由人为活动污染造成,主要来自于两方面:首先是煤、石油和木材及有机高分子化合物的不完全燃烧,即热解成因[3]。随着生活水平的提高及基础设施的完备,交通污染源也逐渐成为多环芳烃污染非常重要的一部分;此外,我国是燃煤大国,在北方城市,使用煤炉取暖的情况很普遍,而在煤炉排放的废气中,致癌性PAHs浓度可达1000ug/m3,另外,家庭炉灶每年所产生的PAHs的含量也相当多,以居室厨房内做饭时由于欠氧燃烧产生的为例,其中BaP含量可达559ug/m3,超过国家卫生标准近百倍;在食品制作过程中,若油炸时温度超过200°C以上,就会分解放出含有大量PAHs的致癌物;吸烟所引起的居室环境的污染,已引起国内外的关

第十一章杂环化合物和生物碱

第十一章 杂环化合物和生物碱 一、学习要求 1.掌握杂环化合物的分类和命名 2.掌握五元杂环、六元杂环和稠杂环的结构和性质 3.掌握生物碱的基本概念及分类 4.了解生物碱的一般性质、提取方法及重要的生物碱 二、本章要点 (一)杂环化合物的分类和命名 1.杂环化合物的概念 由碳原子和非碳原子所构成的环状有机化合物称为杂环化合物,环中的非碳原子称为杂原子,最常见的杂原子有氧、硫、氮等。 2.杂环化合物的分类 按环的数目不同,可分为单杂环和稠杂环两大类。单杂环按环的大小不同又可分为五元杂环和六元杂环。稠杂环通常由苯与单杂环或单杂环与单杂环稠合杂环化合物而成。 3.杂环化合物的命名 杂环化合物的命名比较复杂,目前我国常使用“音译法”,即按英文的读音,用同音汉字加上“口”字旁命名: O 1 2 3 45 5 43 2 1 S 5 432 1N 543 2 1 N S 543 2 1N N H 5432 1N N H 呋喃 噻吩 吡咯 噻唑 吡唑 咪唑 (furan ) (thiophene ) (pyrrole ) (thiazole ) (pyrazole ) (imidazole ) 6 54 32 1 O N N 1 2 3456 N N 1 2 3456 N N 1 2 3456 6 54 3 2 1 N 吡啶 哒嗪 嘧啶 吡嗪 吡喃(pyridine ) (pyridazine) (pyrimidine) (pyrazine) (pyran)

环上有取代基的杂环化合物的名称是以杂环为母体,并注明取代基的位置、数目和名称。杂原子的编号,除个别稠杂环外,一般从杂原子开始编号,环上有不同不同杂原子时,按O 、S 、NH 和N 的顺序编号;某些杂环可能有互变异构体,为区别各异构体,需用大写斜体“H ”及其位置编号标明一个或多个氢原子所在的位置。例如: 2,4-二羟基嘧啶 2-氨基-6-氧嘌呤 4H -吡喃 2H -吡喃 此外,还可以将杂环作为取代基,以官能团侧链为母体进行命名。例如: N ,N-二乙基-3- 4-嘧啶甲酸 3-吲哚乙酸 2-呋喃甲醛 吡啶甲酰胺 (二)含氮六元杂环 1.吡啶的结构 1 2345 6 7 8 9 N N N N H 2N O H N N OH OH 1 23 4 56 O 1 2 34 56 1 2 3 45O 6 1 2 1 CHO O CON(C 2H 5)2 N 2 34 56 COOH 6 5432 1 N N CH 2COOH N H 12 3 456 7 N .. 6 8 75 43 2 110 98 76 5321 6 58 7 654321 H N N N N N N 8 7 65 432 N 7 4 32 1H N 喹啉 异喹啉 吲哚 吖啶 嘌呤 ( quinoline) (isoquinoline) (indole) (acridine) (purine)

席夫碱的反应机理

席夫碱的反应机理 编辑本段 Hugo Schiff 在1864年首次描述通过两个等物质的量的醛和胺的缩合反应形成Schiff base(希夫碱),距今已140年,其反应机理是:由含羰基的醛、酮类化合物与一级胺类化合物进行亲核加成反应,亲核试剂为胺类化合物,其化合物结构中带有孤电子对的氮原子进攻羰基基团上带有正电荷的碳原子,完成亲核加成反应,形成中间物α-羟基胺类化合物,然后进一步脱水形成Schiff base。 席夫碱的用途 编辑本段 由于席夫碱类化合物具有一定的药理学和生理学活性, 今年来一直是引人注目的研究对象。席夫碱化合物具有很好的抗菌、抗真菌作用。例如金黄色葡萄球菌, 革兰氏阳性菌、枯草杆菌, 革兰氏阳性菌、大肠杆菌,革兰氏阴性菌, 其杀菌率达到以上, 对新型隐球菌和白色念珠球菌也有很好的抑制作用。同时, 这些化合物均对超氧阳离子自由基有较好的抑制。席夫碱类化合物及其配合物具有抗结核、抗癌、抗菌等药理作用, 且其生物活性和金属的配合有关, 广泛应用于治疗、合成、生化反应等方向。今年来研究席夫碱配合物, 不仅讲究选择功能性原料, 并对其形成机理、光谱性质等方面有进一步的研究, 而且综合考虑形成配合物后的广谱性、功能性。席夫碱基团通过碳一氮双键一毛一上的氮原子与相邻的具有孤对电子的氧、硫、磷原子作为给体与金属原子配对。由于席夫碱配合物的广谱作用, 故关于这类化合物的研究是半个世纪以来生物无机领域的研究热点。研究金属离子和席夫碱配体之间的合成、结构、相互作用, 对于深入考察其生理、药理活性的作用机理、构造、稳定性等方面有着十分重要的作用。 参考资料 编辑本段 【1】南光明,刘德蓉.浅述希夫碱及其金属配合物的由来、产生机理、合成方法及展望.伊犁师范学院学报.2005,(3):58-59 【2】罗斌.席夫碱的合成及其金属配合物的合成与表征.化学工程与装备.2008,(10):45-49 Schiff's base 也称西佛碱

多环芳烃(PAHs)

TPE材料出口的环保指令和认证(二) (二) PAHs规定:多环芳烃(PAHs)是指具有两个或两个以上苯的一类有机化合物。多环芳烃是分子中含有两个以上苯环的碳氢化合物,包括萘、蒽、菲、芘等150余种化合物。英文全称为polycyclic aromatic hydrocarbon,简称PAHs。有些多环芳烃还含有氮、硫和环戊烷,常风的多环芳烃具有致癌作用的多环芳烃多为四到六环的稠环化合物。国际癌研究中心(IARC)(1976年)列出的94种对实验动物致癌的化合物。其中15种属于多环芳烃,由于苯并[a]芘是第一个被发现的环境化学致癌物,而且致癌性很强,故常以苯并(a)芘作为多环芳的代表,它占全部致癌性多环芳烃1%-20%。多环芳烃主(PAHs)要的十八种化合物为:萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、茚并(1,2,3-cd)芘、二苯并(a,h)蒽和苯并(g,h,i)苝、1-甲基奈、2-甲基奈。 目前确定的PAHs常见的16种同类物质主要包括: 1) Naphthalene 萘9) Benzo(a)anthracene 苯并(a)蒽 2) Acenaphthylene 苊烯10) Chrysene 苣 3) Acenaphthene 苊11) Benzo(b)fluoranthene 苯并(b)荧蒽 4) Fluorene 芴12) Benzo(k)fluoranthene 苯并(k)荧蒽 5) Phenanthrene 菲13) Benzo(a)pyrene 苯并(a)芘

6) Anthracene 蒽14) Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 7) Fluoranthene 荧蒽15) Dibenzo(a,h)anthracene 二苯并(a,n)蒽 8) Pyrene 芘16) Benzo(g,hi)perylene 苯并(ghi) 北(二萘嵌苯) 多环芳烃(PAHs)常存在于原油,木馏油,焦油, 染料,塑料,橡胶,润滑油,防锈油,脱膜剂,汽油阻凝剂,电容电解液,矿物油,柏油等石化产品中,还存在于农药,木炭,杀菌剂,蚊香等日常化学产品中。 PAHs通常是作为塑料添加剂进入生产环节中,如塑料粒子在挤塑的时候,和模具之间存在黏着,此时要加入脱模剂,而脱模剂中可能含有PAHs。 由此目前多环芳烃PAHs的检测范围: ●电子、电机等消费性产品 ●橡胶制品、塑料制品、汽车塑料、橡胶零件 ●食品包装材料、玩具、容器材料等 ●其它材料等 各国对多环芳香烃(PAHs)的法规要求:到目前为止,各国家地区通过书面法律或法令确定下来的有:欧盟 76/769/EEC;德国German:GS认证、LFGB;美国US:EPA;中国:GB,GB/T,GHZ。根据德国技术设备及消费

工作场所空气有毒物质测定氯化物

工作场所空气有毒物质测定氯化物 标准号:GBZ/T 160.37-2004 替代情况:替代 GB/T 16029-1995;GB/T 16109-1995 发布单位:中华人民共和国卫生部 起草单位:四川省疾病预防控制中心、江苏省扬州市疾病预防控制中心 发布日期:2004-05-21 实施日期:2004-12-01 点击数:2441 更新日期:2010年05月18日 1 范围 本标准规定了监测工作场所空气中氯化物浓度的方法。 本标准适用于工作场所空气中氯化物浓度的测定。 2 规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准 GBZ 159 工作场所空气中有害物质监测的采样规范

3 氯气的甲基橙分光光度法 3.1 原理 空气中氯气用大型气泡吸收管采集,在酸性溶液中,氯置换出溴化钾中的溴,溴破坏甲基橙分子结构使褪色;根据褪色程度,于515nm 波长处测量吸光度,定量测定。 3.2 仪器 3.2.1 大型气泡吸收管。 3.2.2 空气采样器,流量0~1L/min。 3.2.3 具塞比色管,10ml。 3.2.4 分光光度计。 3.3 试剂 实验用水为无氯蒸馏水。 3.3.1 吸收液:称取0.1000g 甲基橙,溶于约100ml 40~50℃水中,冷却后加入20ml 95%(V/V)乙醇,用水定量转移入1000ml 容量瓶中,并稀释至刻度。1ml 此溶液约相当于24g氯。 标定方法: 量取5.0ml 此溶液于100ml 锥形瓶中,加入0.1g 溴化钾,20ml 水和5ml 硫酸溶液(2.57mol/L);用5ml 微量滴定管逐滴加入氯标准溶

席夫碱的研究进展

席夫碱的研究进展 1席夫碱的简单介绍 1.1席夫碱定义 席夫碱主要是指含有亚胺或甲亚胺特性基团(-RC=N-)的一类有机化合 物,通常席夫碱是由胺和活性羰基缩合而成。席夫碱类化合物及其金属配合 物主要在药学、催化、分析化学、腐蚀以及光致变色领域的重要应用。在医 学领域,席夫碱具有抑菌、杀菌、抗肿瘤、抗病毒的生物活性;在催化领域, 席夫碱的钴、镍和钯的配合物已经作为催化剂使用;在分析化学领域,席夫 碱作为良好配体,可以用来鉴别、鉴定金属离子和定量分析金属离子的含量 [ 1];在腐蚀领域,某些芳香族的席夫碱经常作为铜的缓蚀剂[ 2];在光致变 色领域,某些含有特性基团的席夫碱也具有独特的应用[ 3] 。 R2C=O + R'NH2 →R2C=NR' + H2O 席夫碱的制备在催化下反应,但是不能用强酸,因为氢离子和羰基结合 成珜盐而增加羰基的亲电性能,但亲离子和氨基结合后形成铵离子的衍生物, 丧失了胺的亲核能力,所以本类反应条件要求非常严格。席夫碱类化合物的 C=N基团中杂化轨道的N原子具有易于流动的二维平面孤对电子,能够有效 配位金属离子和中性小分子,使席夫碱成为配位化学研究的重要的配体。 1.2席夫碱的种类 1.2.1按配体结构 按配体结构分:单席夫碱、双席夫碱、大环席夫碱。单希夫碱合成采用单胺类和单羰基化合物的缩合。这类希夫碱化合物的结构形式如图1所 示[ 4]。双希夫碱多采用二胺和羰基化合物反应制备得到这类配体的结构如 图2所示。大环希夫碱在合成中经常采用碱土金属阳离子或镧系金属作为 模板试剂,形成(1 + 1) 、(2十2) 、(3 + 3)型大环希夫碱,结构如图3所 示:( a) 、( b) 、( c)分别对应所 1 + l,2 + 2和3十3型大环希夫碱。 图1单席夫碱图2双席夫碱图3大环席夫碱 1.2.2按缩合物质不同 按缩合物质不同可分为缩胺类希夫碱、缩酮类希夫碱等。希夫碱的早期研究为缩胺类,后来发展为缩酮类、缩胺类、缩氨基脲类、胍类、氨基酸类及氨基酸酯类[ 4]。

多环芳烃类化合物污染及其预防

多环芳烃类化合物污染及其预防 一、食品中B(a)P 污染来源 1.熏烤食品污染熏烤食品时所使用的熏烟中含有多环芳烃(包括B(a)P)。烤制时,滴于火上的食物脂肪焦化产物热聚合反应,形成B(a)P,附着于食物表面,这是烤制食物中B(a)P 的主要来源。食物炭化时,脂肪因高温裂解,产生自由基,并相互结合(热聚合)生成B(a)P,例如烤焦的鱼皮,B(a)P 可高达53.6~70μg/kg。 2.油墨污染油墨中含有炭黑,炭黑含有几种致癌性多环芳烃。有些食品包装纸的油墨未干时,炭黑里的多环芳烃可以污染食品。 3.沥青污染沥青有煤焦沥青及石油沥青两种。煤焦油的蒽油以上的高沸点馏分中含有多环芳烃,石油沥青B(a)P。含量较煤焦沥青少。我国一些地方的农民常将粮食晒在用煤焦沥青铺的马路上,从而使粮食受到污染。 4.石蜡油污染通过包装纸上的不纯石蜡油,可以使食品污染多环芳烃。不纯的石蜡纸中的多环芳烃还可污染牛奶。 5.环境污染食物大气、水和土壤如果含有多环芳烃,则可污染植物。一些粮食作物、蔬菜和水果受污染较突出。 二、对人体的危害 B(a)P 主要是通过食物或饮水进入机体,在肠道被吸收,入血后很快分布于全身。乳腺和脂肪组织可蓄积B(a)P。动物实验发现,经口摄入B(a)P 可通过胎盘进入胎仔体内,引起毒性及致癌作用。B(a)P 主要经过肝脏、胆道从粪便排出体外。 B(a)P 对兔、豚鼠、大鼠、小鼠、鸭、猴等多种动物,均能引起胃癌,并可经胎盘使子代发生肿瘤,造成胚胎死亡及仔鼠免疫功能下降。B(a)P 是许多短期致突变实验的阳性物,但它是间接致突变物,在Ames 试验及其他细菌突变、细菌DNA 修复、姐妹染色单体交换、染色体畸变、哺乳类细胞培养及哺乳类动物精子畸变等实验中均呈阳性反应。 关于B(a)P 致癌的机制与其代谢活化过程有关。B(a)P 在体外并不能与DNA、RNA 或蛋白质以共价结合,但是进入体内后,即被微粒体混合功能氧化

09-水杨酸毒扁豆碱眼膏说明书

水杨酸毒扁豆碱眼膏说明书 【药品名称】 通用名:水杨酸毒扁豆碱眼膏 曾用名:依色林眼膏 商品名: 英文名:Physostigmine Salicylate Eye Ointment 汉语拼音:Shuiyangsuan Dubiandoujian Yangao 本品主要成分及其化学名称为:主要成分是水杨酸毒扁豆碱,化学名为1,2,3,3a-六氢-1,3a,8-三甲基吡咯并[2,3-b]吲哚-5-酚甲基氨基甲酸酯水杨酸盐 其结构式为: 分子式:C15H21N3O2 C7H6O3 分子量:413.47 【性状】本品为淡黄色或黄色的软膏 【药理毒理】本品能可逆性地抑制胆碱脂酶,使胆碱能神经末梢所释放的乙酰胆碱免遭此酶的水解,从而表现为乙酰胆碱的毒蕈碱样和烟碱样作用。局部点眼能缩小瞳孔,降低眼压,收缩睫状肌而引起调节痉挛等。作用较毛果芸香碱强而持久,但刺激性较大。又由于收缩睫状肌的作用较强,可引起眼痛、头痛。对去除副交感神经支配的组织,本品丧失其原有作用。 【药代动力学】本品点眼后5~10分钟即出现缩瞳、降眼压,4小时达作用最大值,有时作用可维持约一天。 【适应症】原发性闭角型青光眼,偶用于原发开角型青光眼。 【用法用量】晚上临睡前点眼,涂于眼睑内,一般白天用毛果芸香碱,晚上用本品。或遵医嘱。

【不良反应】本品点眼后可引起眼睑痉挛, 药物通过皮肤吸收使眼睑内胆碱酯酶灭活和调节痉挛均引起此不良反应。年青人及儿童更常见。 睫状肌痉挛性头痛、眼痛、睫状体充血甚为常见。此外尚有调节痉挛性近视。长期用药偶见接触性过敏皮炎。 本品点眼后引起全身毒性反应极罕见,偶见流涎、流泪、出汗、恶心、呕吐、腹痛、细支气管痉挛、血压下降等全身毒性反应。 【禁忌症】葡萄膜炎,新生血管性青光眼、周边部视网膜病变、视网膜脱离,严重哮喘,支气管阻塞等患者禁用。 【注意事项】 1.消化道溃疡,泌尿道阻塞,急性心衰,甲状腺机能亢进,低血压,帕金森病等患者慎用。 2.长期应用本品可对黑皮肤患者的眼睑起脱色素作用。 【孕妇及哺乳期妇女用药】本品能透过胎盘屏障,重症肌无力妇女孕期用药可导致约20%新生儿产生短暂的肌无力。 【儿童用药】 【老年患者用药】 【药物相互作用】尚不明确。 【药物过量】过量应用本品有招致全身中毒的危险。并加重对眼刺激、眼痛、头痛等症状。 【规格】0.25%;0.5% 【有效期】 【贮藏】遮光,密闭,在凉处保存 【批准文号】 【生产企业】 参考文献

GBZT160.3-2004工作场所空气有毒物质测定铍及化合物

工作场所空气有毒物质测定铍及其化合物 标准号:GBZ/T 160.3-2004 替代情况:替代GB/T 16023-1995 发布单位:中华人民共和国卫生部 起草单位:湖南省劳动卫生职业病防治研究所 发布日期:2004-05-21 实施日期:2004-12-01 点击数:366 更新日期:2010年08月03日 1范围 本标准规定了监测工作场所空气中铍及其化合物浓度的方法。 本标准适用于工作场所空气中铍及其化合物浓度的测定。 2规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBZ159工作场所空气中有害物质监测的采样规范 桑色素荧光分光光度法 3原理 空气中铍及其化合物用微孔滤膜采集,消解后,铍离子与桑色素反应生成黄绿色荧光络

合物;测量荧光强度,进行定量。 4仪器 4.1微孔滤膜,孔径0.8μm。 4.2采样夹,滤膜直径40mm。 4.3小型塑料采样夹,滤膜直径25mm。 4.4空气采样器,流量0~3L/min和0~10L/min。 4.5烧杯,50ml。 4.6电热板或电砂浴。 4.7离心管,5ml。 4.8具塞比色管,10ml。 4.9荧光分光光度计 仪器操作条件 激发光波长:415nm; 狭缝:10nm; 发射光波长:540nm; 狭缝:8nm。 5试剂 实验用水为去离子水,用酸为优级纯。 5.1高氯酸,ρ20=1.67g/ml。

席夫碱

席夫碱配合物的研究 高级工程人才实验班1507100111 李天赐 席夫碱主要是指含有亚胺或甲亚胺特性基团(-RC=N-)的一类有机化合物,通常席夫碱是由胺和活性羰基缩合而成。席夫碱类化合物及其金属配合物主要在药学、催化、分析化学、腐蚀以及光致变色领域的重要应用。在医学领域,席夫碱具有抑菌、杀菌、抗肿瘤、抗病毒的生物活性;在催化领域,席夫碱的钴、镍和钯的配合物已经作为催化剂使用;在分析化学领域,席夫碱作为良好配体,可以用来鉴别、鉴定金属离子和定量分析金属离子的含量;在腐蚀领域,某些芳香族的席夫碱经常作为铜的缓蚀剂;在光致变色领域,某些含有特性基团的席夫碱也具有独特的应用 催化领域的应用 席夫碱及其配合物在催化领域的应用也很广泛,概括起来说,席夫碱做催化剂主要应用于聚合反应、不对称催化环丙烷化反应以及烯烃催化氧化方面和电催化领域等。 在金属有机物合成领域的应用 金属席夫碱是一类重要的有机配合物,和金属卟啉类似,由于过渡金属配合物可以与小分子(如CO和O2)形成轴向配合物,从而有利于催化反应的进行。金属席夫碱对O2分子的电化学还原具有催化作用. 希夫碱配体在配位化学领域的影响 近几年来希夫碱配合物的研究成为配位化学领域的一大热点,。希夫碱是含活泼羰基化合物和胺、氨基脲、氨基硫脲、醇胺、肼、氨基糖、氨基酚等作用所形成的一类化合物。由于其结构的特殊性,在配位化学中占有重要的地位,是配位化学重点研究的内容之一。由于缩合产物的不同,希夫碱构成了一大类良好配体,其应用范围十分广泛。在一定条件下,希夫碱可以与元素周期表中大部分金属离子形成稳定性不同的金属配合物,这些配合物在诸如立体化学结构、磁性、光谱、动力学和反应机理、生物无机化学原理、生物化学的模拟系统、生物活性、药物化学、分析化学、分子催化等学科领域均具有重要的理论和应用研究意义。 希夫碱的合成 取甘氨酸0.010 mol,溶于适量氢氧化钾一乙醇溶液中,进行搅拌、溶解,然后加入薪蒸水杨醛0,010mol乙醇溶液,搅拌约0,5 h。如有沉淀,则过游得到粗产品如无沉淀,可浓缩溶液或加有机溶剂,使希夫碱析出。反应方程式应为 此合成方法产率可达72 ~83 。粗产品可用乙醇等溶剂进行重结晶,用此方法合成的 希夫碱有: N 一亚水扬基甘氨酸钾.分子式为 CqH日O5NK ·1/4H2O,简写成Sal—GlyK。

多环芳香烃 简介

多环芳香烃 多环芳香烃(Polycyclic Aromatic Hydrocarbons, PAH),分子中含有两个或两个以上苯环结构的化合物,是 最早被认识的化学致癌物。早在1775年英国外科医生Pott 就提出打扫烟囱的童工,成年后多发阴囊癌,其原因就 是燃煤烟尘颗粒穿过衣服擦入阴囊皮肤所致,实际上就 是煤炱中的多环芳香烃所致。多环芳香烃也是最早在动物实验中获得成功的化学致癌物。1915年日本学者Yamagiwa 和Ichikawa,用煤焦油中的多环芳香烃所致。在五十年代以前多环芳香烃曾被认为是最主要的致癌因素,五十年代后各种不同类型的致癌物中之一类。但从总的来说,它在致癌物中仍然有很重要的地位,因为至今它仍然是数量最多的一类致癌物,而且分布极广。空气、土壤、水体及植物中都有其存在,甚至在深达地层下五十米的石灰石中也分离出了3,4-苯并芘。在自然界,它主要存在于煤、石油、焦油和沥青中,也可以由含碳氢元素的化合物不完全燃烧产生。汽车、飞机及各种机动车辆所排出的废气中和香烟的烟雾中均含有多种致癌性多环芳香烃。露天焚烧(失火、烧荒)可以产生多种多环芳香烃致癌物。烟熏、烘烤及焙焦的食品均可受到多环芳香烃的污染。 1.致癌性多环芳香的类别 目前已发现的致癌性多环芳香烃及其致癌性的衍生物已达400多种。按其化学结构基本上可分成苯环和杂环两类。 1.苯环类多环芳香烃 苯是单环芳香烃,它是多环芳香烃的母体。过去一直认为苯无致癌作用,近年来通过动物实验和临床观察,发现苯能抑制造血系统,长期接触高浓度的苯可引起白血病。1965年报道,由苯引起的急性与慢性白血病已达60例。 1.三环芳香烃 二环芳香烃不致癌,三环以上的多环芳香烃才有致癌性。三环芳香烃的两异构体蒽和菲都无致癌性。但它们的某些甲基衍生物有致癌性。例如,9,10-二甲基蒽、1,2,9,10-四甲基菲等都有致癌性。菲的环戊基衍生物有不少具有较强的致癌性,特别是15H-环戊并(a)菲的二甲基及三甲基衍生物具有强烈的致癌性。 2.四环芳香烃有六个异构体,实验证明只有3,4-苯并菲有中等强度的致癌性,1, 2-苯并蒽和屈有极弱的致癌性。它们的甲基衍生物中2-甲基-3,4-苯并菲是强致癌物。1,2-苯并蒽的许多甲基、烷基及多种其他取代基的衍生物都有一定的致癌性,如9,10-二甲基-1,2-苯并蒽是目前已知致癌性多环芳香烃中作用最快、活性最大的皮肤致癌物之一。

生物碱类药物的分析

生物碱类药物的分析 掌握盐酸麻黄碱、硫酸阿托品、硫酸奎宁、盐酸吗啡和硝酸士的宁的鉴别、杂质检查和含量测定方法。 一、概述 (一)定义:生物碱是一类存在于生物体内的含氮有机化合物。 (二)分类 1.芳烃胺类 硫酸苯丙胺,精神振奋药pKb=9.9 盐酸麻黄碱,肾上腺受体激动药pKb=9.6 2.异喹啉类 盐酸吗啡,镇痛药pKb1=8.0,pKb2=9.9 磷酸可待因,镇痛镇咳药;盐酸黄连素,抗菌药;度冷丁等 3.喹啉类 硫酸奎宁,抗疟药;异构体硫酸喹尼丁,抗心率失常药; pKb1=5.07,pKb2=9.7 4.托烷类 硫酸阿托品,抗胆碱药pKb=9.9 氢溴酸东莨菪碱,抗胆碱药pKb=7.6; 5.黄嘌呤类 咖啡因,pKb=14.15(碱性极弱); 茶碱,平滑肌松弛药,含活泼氢酸性; 6.吲哚类 硝酸士的宁,中枢神经兴奋药pKb1=6.0,pKb2=11.7(酰胺) 硫酸长春新碱,抗肿瘤药;利血平,抗高血压药;

7.其他类 硝酸毛果芸香碱,缩瞳药。 由上可知,生物碱类药物有如下特点。 (三)特点 1.数量多,绝大多数存在于植物体内;已发现3000多种,100多种有效,中成药中富含生物碱。 2.生理活性强,但大都有毒性 因此,质量控制和临床应用尤应慎重,许多为特殊管制药物,并已超出药物分析的范畴,体育运动中的兴奋剂问题,世界关注的毒品问题,许多是生物碱类成分。该类药物的质量应严格控制,以保证用药的安全和有效。 (四)结构特征和分析方法间的关系 1.碱性:N原子的存在,强弱从N上的取代基是供电子还是吸电子基团,空间位阻两方面考虑。 1)一般情况:季铵>仲铵>伯铵>叔铵>NH3>环酰铵 2)脂肪铵>脂环铵>芳铵 3)个别两性化合物如吗啡有酸性(酚羟基),茶碱只有酸性(活泼氢) 2.存在状态多数以盐的形式存在 1)植物中多与有机酸成盐如吗啡罂粟酸盐,鞣酸奎宁盐; 2)药用多为多为无机酸盐如盐酸、硫酸、磷酸和硝酸盐。 含量测定应考虑上述2个因素,碱性强弱选择滴定溶液和指示剂,成盐的情况在非水滴定时要考虑对滴定的干扰。 3.溶解性 1)共性:游离生物碱易溶于CHCl3等中等极性有机溶剂,难或不溶于水,溶于稀酸溶液;成盐易溶于水;(提问?) 2)个性:两性和酸性化合物易溶于稀碱溶液(吗啡和茶碱);麻黄碱和咖啡因能溶于水;咖啡因和利血平碱性极弱,不能与酸结合成稳定的盐。 溶解性可以用于提取分离和鉴别时的重要依据。

第10章 食品中有毒有害物质限量标准的制定及风险评估和管理

第十章食品中有毒有害物质限量标准的制定及风险评估和管理 第一节食品中有毒有害物质限量标准制定的意义与现状 一、限量标准制定的意义 在国际上,食品安全不仅是涉及技术问题,而且还影响到政治和经济。联合国粮农组织(FAO)、世界卫生组织(wH0)以及国际动物流行病组织(0IE)都十分重视食品安全问题,制定了严格的法规和标准,对食品的生产、加工、运输和国际贸易中的食品安全质量提出了更高的要求,世界各国也采取了相应的管理和控制措施。 制定食品中有毒有害物质限量标准的意义在于: 1.保证食品的食用安全性 虽然对食品安全性并无统一定义,但按照现有的普遍认识和理解,食品的安全性应该是:食品中不应含有任何可能损害或危害人体健康的有毒、有害物质,从而导致消费者产生急性、慢性或其他特殊毒性危害,危及消费者及其后代的隐患。wHO对食品安全的最新解释为“对食品按原定用途进行制作和食用时不会使消费者受害的一种担保”。不管哪一种表述,其关键是如何对危害的理解和解释。如哪些物质有毒、有害以及对“不应”、“不能”含有和“不超过”这些措辞的把握和界定。这就需要严密的毒理学试验,进行安全性评价和制定安全限值,进一步根据被制定物质在食品中的实际残留量和随食物摄人情况制定限量标准,从而保证食用的安全性。 2。国家食品安全质量监督管理的依据 食品中的危害物关系到人的健康与生命安全,各国都制定有相应的法律法规条款加以约束。在行使食品安全质量管理时,从技术层面上必须要有相应具有法律效力的标准值作为界定和管理的依据。食品中有毒有害物质安全限量标准的制定,就是为了便于安全质量问题的仲裁以及依法监督管理。 3.食品安全生产的基础 食品生产过程包括种养殖、加工、包装、储存、运输等多个环节,涉及农业、环保、工业、卫生、商业等诸多领域,各个环节存在各种安全因素,任何一个环节的危害因素均可导致终产品的安全危害。所以,食品安全贯穿食品生产全过程,各个环节按照质量安全标准控制则是食品安全生产的基础。 4.食品贸易的基本条件 中国加入wT0后,农产品及食品将参与广泛的国际贸易,面临着大进大出的挑战。一方面国外大批农产品将大量走进国门,对国内农产品市场形成冲击;另一方面,中国的水果、蔬菜、畜牧品、水产品等将大量出口,这一方面带来极好的市场机遇,也带来了严峻的考验。在国际贸易中,许多国家和地区常常从各自利益出发,以标准的形式筑起各种技术壁垒,限制进口产品的入境。特别是食品安全质量标准已成为农产品走出国门的又一道门槛,由标准频频引发的农产品出口受阻,越来越成为中国农业走向国际市场的拦路虎。因此,为了满足国内外消费市场需求,参与国际竞争,解决这一系列问题的关键是必须有相应的与国际接轨质量标准,符合安全质量标准已成为食品国际贸易的基本条件。 二、限量标准的内容 食品安全质量标准的内容主要包括农(兽)药残留、重金属污染、其他有毒有害物质、有害微生物及其毒素等。 1.农药残留 各地在农业生产中所使用的农药种类和品种不尽相同,主要种类有有机氯农药、有机磷农药、氨基甲酸酯类农药和菊酯类农药,以及近年来逐渐增加的生物类农药。农业生产中使用的农药具体品种多达百余种左右,常见的也有50余种。国际标准以及发达国家对农产品中农药残留标准所规定的种类也都在100种以上。如美国规定的苹果中农药残留标准中包括

席夫碱

席夫碱 席夫碱主要是指含有亚胺或甲亚胺特性基团(-RC=N-)的一类有机化合物,通常席夫碱是由胺和活性羰基缩合而成。席夫碱类化合物及其金属配合物主要在药学、催化、分析化学、腐蚀以及光致变色领域的重要应用。在医学领域,席夫碱具有抑菌、杀菌、抗肿瘤、抗病毒的生物活性[ 1];在催化领域,席夫碱的钴、镍和钯的配合物已经作为催化剂使用[ 2];在分析化学领域,席夫碱作为良好配体,可以用来鉴别、鉴定金属离子和定量分析金属离子的含量[ 3];在腐蚀领域,某些芳香族的席夫碱经常作为铜的缓蚀剂[ 4];在光致变色领域,某些含有特性基团的席夫碱也具有独特的应用[ 5]。 合成方法 Schiff碱稀土配合物的合成方法主要有直接合成法和分步合成法,(该把直接合成法和分步合成法介绍一下)分步合成法得到的产品无论是在(产品)产率上,还是在(产品)纯度上都较直接合成法理想。当反应活性低或选择性不好,用前述两种方法合成的产物不稳定或者产率低时,可选用模板合成法。所谓模板合成法就是将金属离子作为模板试剂加入到羰基化合物中与胺类化合物反应的一类合成方法。如(在)合成二羰基化合物和多胺的Schiff碱配体及其配合物时多采用此方法。当合成的Schiff碱在反应溶剂中溶解度很小,上述三种合成方法均不适用时,一般采用逐滴反应法,即向胺类化合物与金属离子的混合溶液中逐滴活泼碳基化合物溶液的一种方法[ 6]。这些合成方法适用于不同类型的Schiff碱金属配合物,它们各有优缺点。大多数氨基酸Schiff碱稀土配合物的制备均可采用分步合成法。(但分步合成法是制备氨基酸Schiff碱稀土配合物最常用的一种方法)催化领域的应用 席夫碱及其配合物在催化领域的应用也很广泛,概括起来说,席夫碱做催化剂主要应用于聚合反应、不对称催化环丙烷化反应以及烯烃催化氧化方面和电催化领域等。 魏丹毅[ 7]等合成了9种稀土元素(La,Pr,Nd,Sm,Gd,Tb,Er,Yb,Y)与水杨醛-缩β-丙氨酸(H2L)的双核配合物,发现此配合物对甲基丙烯酸甲酯(MMA)的聚合反应有催化活性;姚克敏[ 8]等用直链醚-脂肪族氨基酸新型Schiff碱作为综合配体与稀土离子配位,发现它们在甲基丙烯酸甲酯聚合中有较好的催化活性;Yong [ 9]等发现钛席夫碱配合物对乙烯、苯乙烯的聚合反应有很好的催化活性. 近年来,不对称催化环丙烷化反应已经成为研究的热焦点,在其催化剂体系中铜的席夫碱配合物是被研究最早最深人的体系之一。Cai[ 10]等用氨基醇合成了双核席夫碱配合物,用于催化反应,顺式产物与反式产物最好结果比为1/3,顺式产物的收率为87%,反式产物的收率为93%;仇敏[ 11]等用制备的系列??取代

工作场所空气有毒物质测定有机氮农药GBZT16078-2004(精)

工作场所空气有毒物质测定有机氮农药GBZ/T160.78-2004【发布单位】卫生部 【标准号】GBZ/T160.78-2004 【发布日期】2004-05-21 【实施日期】2004-12-01 【标题】工作场所空气有毒物质测定有机氮农药 1范围 本标准规定了监测工作场所空气中有机氮农药浓度的方法。 本标准适用于工作场所空气中有机氮农药浓度的测定。 2规范性引用文件 下列文件中的条款,通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBZ159工作场所空气中有害物质监测的采样规范 3溴氰菊酯和氰戊菊酯的溶剂解吸-气相色谱法 3.1原理 空气中的溴氰菊酯和氰戊菊酯用聚氨酯泡沫塑料采集,正己烷解吸后进样,经色谱柱分离,电子捕获检测器检测,以保留时间定性,峰高或峰面积定量。 3.2仪器 3.2.1采样管,在长60mm,内径10mm的玻璃管内,装两段聚氨酯泡沫塑料圆柱,其间间隔2mm。聚氨酯泡沫塑料圆柱高20mm,直径12mm;使用前,先用洗净剂洗净,再用正己烷浸泡过夜,并洗涤至无干扰色谱峰,干燥后装入玻璃管内待用。 3.2.2空气采样器,流量0~5L/min。 3.2.3溶剂解吸瓶,5ml。 3.2.4微量注射器,10l。

3.2.5气相色谱仪,电子捕获检测器(63Ni源)。 仪器操作条件 色谱柱:1.5m×4mm,OV-101:ChromosorbWAWDMCS=3:100; 柱温:240℃; 汽化室温度:250℃; 检测室温度:310℃; 载气(氮气)流量:50ml/min。 3.3试剂 3.3.1正己烷。 3.3.2OV-101,色谱固定液。 3.3.3ChromosorbWAWDMCS,60~80目。 3.3.4标准溶液:于10ml容量瓶中,加少量正己烷,准确称量后,加入一定量的溴氰菊酯或氰戊菊酯,再准确称量,加正己烷至刻度;由两次称量之差计算溶液的浓度,为标准贮备液。临用前,用正己烷稀释成0.10mg/ml溴氰菊酯和氰戊菊酯标准溶液。或用国家认可的标准溶液配制。 3.4样品的采集、运输和保存 现场采样按照GBZ159执行。 3.4.1短时间采样:在采样点,用采样管以3L/min流量采集15min空气样品。 3.4.2长时间采样:在采样点,用采样管以1L/min流量采集2~8h空气样品。 3.4.3个体采样:在采样点,将采样管佩戴在采样对象的前胸上部,尽量接近呼吸带,以1L/min流量采集2~8h空气样品。 采样后,封闭采样管的进出气口,置清洁容器内运输和保存。在室温下可保存7d。 3.5分析步骤 3.5.1对照试验:将采样管带至采样点,除不连接采样器采集空气样品外,其余操作同样品,作为样品的空白对照。

相关文档
最新文档