纠错编码

纠错编码
纠错编码

在通信系统中,为提高信息传输可靠性,广泛使用了具有一定纠错能力的信道编码技术,

如奇偶校验码、行列监督码、恒比码、汉明码、循环码(CRC)等编码技术。这些编码技术因

其编码方式比较简单,其检错、纠错能力都不是很强,无法满足数字通信系统中高可靠传输的性能要求,必须采用高性能的强纠错编码技术。

下面介绍几种高性能强纠错编码技术:

1里德- 索罗门码(Read - Solomon)

里德-索罗门码,简称RS码,是一种重要的线性分组编码方式,对突发性错误有较强的纠错能力。该编码技术是利用伽罗华创造的伽罗华域(Galois Field)中的数学关系来把传送数据包的每个

字节映射成伽罗华域中的一个元素(又称符号) ,每个数据包都按码生成多项式为若干个字节

的监督校验字节,组成RS的误码保护包,接收端则按校验矩阵来校验接收到的误码保护包是

否有错,有错时则在错误允许的范围内纠错。RS纠错编码具有很强的纠正突发误码的能力。为了纠正一个错误,要2个符号的检测码,一个用来确定位置,一个用来纠错。一般来说纠t个错误需要2t个检验符,这时要计算2t个等式,确定t个位置和纠t个错。能纠t个符号的RS

码生成多项式为: g ( x) = ( x + a0 ) ( x + a1 ) ( x + a2) …( x + a2t - 1 ) 。

2卷积码(Convolution codes)

卷积码是一种非分组编码,适用于前向纠错法。在许多实际情况下,卷积码的性能常优于分组式编码。卷积编码是将信息序列以k个码元分段,通过编码器输出长为n的一个码段。卷积

码的监督码元并不实行分组监督,每一个监督码元都要对前后的信息单元起监督作用,整个编解码过程也是一环扣一环,连锁地进行下去。卷积编码后的n个码元不仅与本段的信息元有关,而且也与其前N - 1段信息有关,故也称连环码,编码过程中互相关联的码元个数为nN。卷积编码的结构是:“信息码元、监督码元、信息码元、监督码元…”。在解码过程中,首先将接收到的信息码与监督码分离,由接收到的信息码再生监督码,这个过程与编码器相同;再将此再

生监督码与接收到的监督码比较,判断有无差错,并纠正这些差错。

3交织编码

交织编码,其基本思路是将i个能纠t个错的分组码( n, k)中的码元比特排列成i行n列的方阵,每个码元比特记作B ( i, n) 。交织前如果遇到连续j个比特的突发错误,且j >> t,对其中的连续2个码组而言,错误数已远远大于纠错能力t,因而无法正确对出错码组进行纠错。交织后,

总的比特数不变,传输次序由原来的B (1, 1) , B (1, 2) , B (1, 3). . . B (1, n) , B (2, 1) , B (2, 2) , B (2, 3). . . B (2,n) , . . . . . . B ( i, 1) , B ( i, 2) , B ( i, 3). . . B ( i, n)转变为B (1, 1) , B (2, 1) , B (3, 1). . . B ( i, 1) , B (1, 2) , B (2, 2) , B(3, 2). . . B ( i, 2). . . . . . . . . B (1, n) , B (2, n) , B (3, n) , . . . B ( i, n)的次序。此时因干扰或衰落引起的突发错误图样正好落在分组码的纠错能力范围内,可以正确纠正这些

被分解开的差错。通常把码组数i称为交织度,用这种方法构造的码称为交织码。

使用交织编码的好处是提高了纠正突发错误的能力但又不增加新的监督码元,从而不会降低

编码效率。理论上交织度i越大,抗突发错误的能力就越强。

4格状编码调制

格状编码调制(TCM: Trellis CodedModu - lation)技术,最早是由G. Ungerboeck于1982年提出的以“集合划分映射”思想为基础的格状编码调制技术,简称TCM。这种技术将纠错编码和数字调制合二为一,在不损失数据速率或不增加带宽的情况下,增加信道中信号集内的信号状态数目,并增加发送信号的冗余度,从而在很大程度上改善了信号传输中的抗干扰能力,提高能量

利用率,可获得3~6 dB的功率增益,是一种高效调制方法。为了充分体现TCM的这一优越性能,在接收端一般均应用概率译码技术的维特比(Viterbi)译码算法来进行译码。由于采用的调制方式不同、卷积码的约束长度及码率的不同, TCM的种类是多种多样的,其相应的Viterbi

译码方法也不尽相同,如可采用TCM_16 QAM、TCM_32QAM或TCM_8VSBViterbi译码器等。格状编码调制已经作为ITU标准,广泛应用于Modem的传输,个别移动卫星系统也采用TCM 作为传输技术。

纠错编码基本实验matlab实现包含源代码

实验四 纠错编码基本实验 一、实验目的 1、通过实验理解线性分组码的基本原理; 2、练习根据理论分析自行设计实验方法的能力。 二、实验内容 1、已知一(10,4)线性分组码的生成矩阵为 1001110111111000111001101101011101111001G ??????=?????? 试用Matlab 求出该码的全部码字和最小汉明距离。 2、用Matlab 求x 15+1的所有因子,构造(15,4)循环码的所有可能的生成多项式;选择 其中一个作为(15,4)循环码的生成多项式,求出所有的许用码字,并计算最小汉明距离。 三、实验原理 1、线性生成码的原理 线性分组码的构成方式是把信息序列分成每k 个码元一段,并由这k 个码元按一定规则产生r 个校验位,组成长度为n = k + r 的码字,用(n, k) 表示信息码元与校验位之间为线性关系。 一个[n ,k ]线性分组码,是把从信源输出的以k 个码元为一组的信息组m ,通过信道编码器后,变成长度为n ≥k 的码组(码字)c 作为[n ,k ]线性分组码的一个码字。 设GF(q )是一个含有q 个元素的有限数域,若每位码元的取值有q 种(取自GF(q )),则信息组m 共有k q 种不同的状态,因此,需要k q 个码字c 。而长为n 的数组共有n q 个,二进制时(q =2)共有n 2个。显然,n q 个n 维向量组成有限域GF(q )上的一个n 维线性空间V ,编码就是要在这个n 维线性空间中选出k q 个向量作为合法码字,其余的n q -k q 个向量为禁用码字。 如果选出的k q 个作为合法码字的向量的集合构成了V 的一个k 维线性子空间,则称它是一个q 进制[n ,k ]线性分组码。 如果值取自GF(q )上的[n ,k ]分组码的k q 个码字的集合C ,便构成了有限域GF(q )上的n 维线性空间V 的一个k 维线性子空间,则称C 是一个q 进制[n ,k ]线性分组码。 2、循环码的编码原理 在编码时,首先需要根据给定循环码的参数确定生成多项式g (x ),也就是从 的因子中选一个 (n-k )次多项式作为g (x );然后,利用循环码的编码特点,即所有循环码多项式A (x )都可以被g (x )整除, 来定义生成多项式g (x )。 根据上述原理可以得到一个较简单的系统循环码编码方法:设要产生(n,k )循环码,m (x )表示信息多 项式,则其次数必小于k ,而·m (x )的次数必小于n ,用·m (x )除以g (x ),可得余数r (x ),r (x )的次 数必小于(n-k ),将r (x )加到信息位后作监督位,就得到了系统循环码。 下面就将以上各步处理加以解释: (1)用乘m (x )。这一运算实际上是把信息码后附加上(n-k )个“0”。例如, 信息码为110,它相 当于m (x )= +x 。当n-k =7-3=4时,·m (x )=+,它

完整版数字通信原理第五章纠错编码习题解答

第五章纠错编码习题解答 1、已知一纠错码的三个码组为(001010)、(101101)、(010001)。若用于检错,能检出几位错码?若用于纠错,能纠正几位错码?若纠检错结合,则能纠正几位错码同时检出几位错码? [解]该码的最小码距为d o=4,所以有: 若用于检错,由d o> e+1,可得e=3,即能检出3位错码;若用于纠错,由d o> 2t+1,可得t=1,即能检出1位错码;若纠检错结合,由d o> e+t+1 (e>t),可得t=1, e=2,即能 纠正1 位错码同时能检出2 位错码。 2、设某(n,k)线性分组码的生成矩阵为: 001011 G 1 0 0 1 0 1 010110 ①试确定该(n,k)码中的n和k; ②试求该码的典型监督矩阵H; ③试写出该码的监督方程; ④试列出该码的所有码字; ⑤试列出该码的错误图样表; ⑥试确定该码的最小码距。 [解]①由于生成矩阵G 是k 行n 列,所以k=3,n=6。 ②通过初等行变换,将生成矩阵G变换成典型生成矩阵 10 0 10 1

G 0 10 1 10 I k Q 0 0 10 11 1 0 1 1 1 0 由于Q 1 1 0 , P= Q T= 0 1 1,可知典型监督矩阵为 0 1 1 1 0 1 110 10 0 H = PI r 0 110 10 10 10 0 1 85 玄4 a? 0 ③监督方程为a。a3 q 0 a5 a3 a0 0 ④所有码字见下表 ⑤错误图样表即错误图样与校正子关系表,见下表

⑥线性码的最小码距为码字的最小重量(全零码除外) ,所 以该码的最小码距为 3。 3、已知一种(7,3)循环码的全部码组为: 0000000 0101110 1001011 1100101 0010111 0111001 1011100 1110010 试求该码的生成多项式 g(x)、典型生成矩阵G 和典型监督矩阵H ; [解]由循环码的原理知,生成多项式g(x)对应的码字为前k-1 位码元 均为“ 0”的码字,即“ 0010111”,所以有 g(x)=x 4+x 2+x+1 x 2 g(x) 6 4 x x 3 x 2 x 1 0 1 1 1 0 0 则生成矩阵为G xg(x) 5 3 x x 2 x x 0 1 0 1 1 1 0 g(x) 4 2 x x x 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1

ADSL编码调制基本原理 - For BaiDu

ADSL编码调制基本原理 1概述 数字用户线路,简称DSL。迄今为止,世界各国已相继开发出了HDSL(高比特率数字用户线)、SDSL(对称数字用户线)、VDSL(甚高速数字用户线)、ADSL(非对称数字用户线)与RADSL(速率自适应数字用户线)等多种不同类型的DSL接入技术。我们将它们统称为“xDSL”,xDSL接入技术的基础系统架构与原理基本上是相似的,所不同的只是这几种技术在信号传输速率与距离、具体实现方式及上、下行速率的对称性等方面有所区别而已。 xDSL是一种先进的传输技术,基本原理就是将模拟环路改造成数字用户线环路,在现有的铜质电话线路上采用较高的宽带和相应的调制技术,来获得高传输速率(理论上可达到100Mbps),正是为克服到用户“最后一公里”的传输瓶颈而产生的。其中ADSL是前景最好及竞争力最强的,也是电信公司占领宽带接入网市场的主要接入技术。它允许在一对双绞铜线上,不影响现有POTS电话业务的情况下,进行非对称高速数据传输。利用现有双绞线传输宽带业务,可保护投资、降低成本,特别适于大量分散的住宅用户,因此被广泛用于Internet接入、远端LAN接入、视频点播(VOD)、远程教学、多媒体检索等宽带业务的接入与传输。 编码调制技术是ADSL技术的核心,也是本文关注的重点。 2ADSL编码调制技术 我们知道,普通modem是工作在音频范围内,即300~3,400Hz的频段。根 据香农公式: 2(1) S C BLog N =+。 对于带宽3000Hz、信噪比((SNR)为30dB的信道,普通modem最大传输速率也只能达到30Kbit/s。与普通modem不同,ADSL modem是利用双绞线的远大于音频带宽的资源(接近2M带宽),采用现代数字信号处理技术和数字编码调制技术,通过动态的建立线路的信噪比模型来使线路利用率最佳。虽然话音只需要4KHz的带宽,但上行信道开始处频率越低,分离器的设计就越困难,所以一般都是选在25.875kHz。分离器实际上是由低通滤波器和高通滤波器合成的

纠错编码的应用

移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。尤其是进几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素,3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。因此,人们对新的移动通信技术的研究的热情始终未减。 移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。 为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。本文将主要关注在几代移动通信系统中所使用的不同的纠错编码技术,以展示纠错编码在现代数字通信中的重要作用。 二、纠错编码基础知识 1948年,香农(Shannon)在他那篇著名的论文《通信的数学理论》中提出并证明了:对于一个信道容量为C的有扰信道,消息源产生信息的速率为R,只要R≤C,则总可以找到一种信道编码和译码方式使编码错误概率P随着码长n的增加,按指数下降到任意小的值,表示为,这里E( R )称为误差指数;若R>C,则不存在编译码方式来实现无误传输。这一结论为信道编码指出了方向,但它仅是一个存在性定理,并未给出怎样

几种常用纠错码的性能分析及应用研究

目录 设计总说明 ............................................................... I Introduction ........................................................... III 1 绪论 (1) 2 纠错码的基本概念 (3) 2.1数字通信系统 (3) 2.1.1 数字通信系统的组成 (3) 2.1.2 信道模型 (4) 2.2差错控制系统和纠错码分类 (7) 2.2.1 差错控制系统的分类 (7) 2.2.2 纠错码的分类 (9) 3 线性分组码 (11) 3.1线性分组码的基本概念 (11) 3.2线性分组码的编码 (11) 3.2.1 生成矩阵 (11) 3.2.2 校验矩阵 (15) 3.2.3 编码的实现 (15) 3.3线性分组码的译码 (16) 3.3.1 线性分组码的纠检错能力 (17) 3.3.2 伴随式解码 (1) 4 循环码 (20) 4.1循环码的一般概念 (20) 4.1.1 循环码的定义 (20) 4.1.2 循环码的生成多项式 (20) 4.2循环码的编码 (20) 4.3循环码的译码 (22) 4.4 BCH码 (24) 4.4.1BCH的编码算法 (24)

4.4.2 BCH的译码算法 (25) 4.5 RS码 (26) 4.5.1 RS编码算法 (26) 4.5.2RS的译码 (26) 5 卷积码 (28) 5.1卷积码的表示 (28) 5.2卷积码的编码原理 (29) 5.3卷积码的译码 (29) 6 纠错码在移动通信中的应用 (32) 6.1移动通信的概述 (32) 6.2移动通信中的差错控制 (32) 6.2.1 移动通信中的差错控制 (32) 6.2.2 移动通信中常用的纠错方式 (33) 6.2.3 编码方法 (34) 6.3移动通信中纠错码的应用和发展 (34) 6.3.1 模拟移动通信系统中数字信令的BCH编码 (34) 6.3.2 GSM的FEC编码 (35) 6.3.3 DMA系统(IS-95)中的FEC编码 (35) 6.3.4.3G中的Turbo码 (36) 7 MATLAB简介及卷积码的仿真 (37) 7.1MATLAB (37) 7.2MATLAB在通信仿真中的应用 (37) 7.3卷积码的仿真 (38) 8 总结 (37) 参考文献................................................ 错误!未定义书签。 附录 (44) 致谢 (46)

74汉明码编码原理

74汉明码编码 1. 线性分组码是一类重要的纠错码,应用很广泛。在(n ,k )分组码中,若 冗余 位是按线性关系模2相加而得到的,则称其为线性分组码。 现在以(7,4)分组码为例来说明线性分组码的特点。 其主要参数如下: 码长:21m n =- 信息位:21m k m =-- 校验位:m n k =-,且3m ≥ 最小距离:min 03d d == 其生成矩阵G (前四位为信息位,后三位为冗余位)如下: 系统码可分为消息部分和冗余部分两部分,根据生成矩阵,输出码字可按下 式计 算: 所以有 信息位 冗余位 由以上关系可以得到(7,4)汉明码的全部码字如下所示。 表2 (7,4)汉明码的全部码字 序号 信息码元 冗余元 序号 信息码元 冗余元 0 0000 000 8 1000 111 1 0001 011 9 1001 100 2 0010 101 10 1010 010 3 0011 110 11 1011 001 4 0100 110 12 1100 001 5 0101 101 13 1101 010 6 0110 011 14 1110 100 7 0111 000 15 1111 111 1000110010001100101110001101G ? ? ?? ?? =?? ???? 3210321010001100100011(,,,)(,,,)00101110001101b a a a a G a a a a ?? ?? ??=?=??? ???? 635241 30 b a b a b a b a ====2310 1321 0210b a a a b a a a b a a a =⊕ ⊕=⊕⊕=⊕⊕

纠错输出编码(ECOC)综述和基本原理

纠错输出编码(ECOC )综述和基本原理 目录 <机器学习导论> (1) 《Solving Multiclass Learning Problems via Error-Correcting Output Codes 》 (2) A Subspace to ECOC (3) 中文参考文献 (5) <机器学习导论> 在纠错输出编码中,主要的分类任务通过由基学习器实现的一组子任务来定义。其思想是:将一个类从其他类区分开来的原始任务可能是一个困难的问题。作为替代,我们定义一组简单的分类问题,每个专注于原始任务的一个方面,并通过组合这些简单的分类器来得到最终的分类器。 这时,基分类器是输出为-1/+1的二元分类器,并且有一个K*L 的编码矩阵W ,其K 行是关于L 个基学习器dj 类的二元编码。例如,(2, )[ 1 1 1 1]M =-++-表示若一个样本属于第2类(C 2),则该样本应在h 1和h 4上取负值,在h 2和h 3上取正值;(, 3)[ 1 1 1]T M =-++可理解为第三个基分类器h 3的任务是将属于C 1类的样本与属于C 2和C 3类的样本区分开。同时(, 3)M 也决定了如何构造基分类器h 3的训练样本集T 3:所有标记为C 2类及C 3类的样本形成正样本3χ+,而标记为C 1类的实例构成负样本3χ-,对h 3的训练应使得3T ?∈i x ,当3χ+∈i x 时,3()1h =+i x ;当3χ-∈i x 时,3()1h =-i x 。 这样,编码矩阵使得我们可以用二分类问题定义多分类问题,并且这是一种适用于任意可以实现二分基学习器的学习算法的方法,例如,线性或多层感知器,决策树或初始定义的两类问题的SVM 。 典型的每类一个判别式的情况对应于对角矩阵,其中L=K ,例如,对于K=4,我们有 W=【】 这里的问题是:如果某一个基学习器存在错误,就会有误分类,因为类的码

RS纠错编码原理

RS 基本概念 GF(2m )域 域在RS 编码理论中起着至关重要的作用。 简单点说域m GF(2)有m 2(设m 2= q )个符号 且具有以下性质: 域中的每个元素都可以用a 0,a 1,a 2,a m-1 的和来表示。除0、1外其余所有元素由本原多项式 P (x )生成。本原多项式的特性是得到的余式等于0。 在纠错编码运算过程中,加、减、乘和除的运算是在伽罗华域中进行 在GF 域上的加、减、乘、除运算定义如下(GF(4 2)为例): 1、 加、减运算均定义为元素的二进制表示方式进行异或运算。如:a 8 +a 10 ,先查表, 将其化为二进制表示方式得0101+0111,经过异或运算得0010,再查表得a 1,即:a 8+a 10= a 1 。 减运算与加运算相同,即:a 8-a 10= a 1 。 2、 乘运算定义为元素的指数相加后进行模15运算后所得的新元素,但若有一个元素 为0,则相乘结果为0。如:a 7*a 13,(7+13)mod 15=5,即a 7*a 13= a 5 。 3、 除运算定义为元素的指数相减后进行模15运算后所得的新元素(指数为正数)。若 被除数为0,则结果为0。如:a 5/a 9,(5-9)mod 15=11,即a 5/a 9= a 11 。 下面以一个较简单例子说明域的构造。 GF (42) 的所有元素 例:m=4,本原多项式 4p(x)=x +x+1求GF (4 2) 的所有元素: 因为α为p (x )的根得到4 ++1αα=0 或4 =+1αα (根据运算规则)

符号(n,k)RS GF(2)域中,符号(n,k)RS的含义如下: 在介绍之前需要说明一些符号。在4 m表示符号的大小,如m = 8表示符号由8位二进制数组成 n表示码块长度, k表示码块中的信息长度 K=n-k = 2t表示校验码的符号数 t表示能够纠正的错误数目 RS的编码算法 GF(2)域上的RS(15,11)码,码长n=15字符,码元长k=11本项目RS纠错算法选择在4 字符,码距d=5,纠错能力t=2字符,每字符为4bits,即一个码组合7.5字节。每11个有效字节加4个纠错字节。每一帧报文分成若干组,以11个字节为一组,对这11个字节作纠错,生成4字节里德-所罗门码纠错码,和前11个字节一起共15个字节构成纠错后的一组报文。一帧报文以每11个字节分组后,若最后一组字节数不满11个字节,剩余字节填77H,凑满11个字节再进行纠错。 对一个信息码符多项式,RS校验码生成多项式的一般形式为 (13-2) 式中,m0是偏移量,通常取K0 = 0或K0 = 1,而(n-k)≥2t (t为要校正的错误符号数)。 x+a x+a x+a x+a 对于R(15,11)对应生成多项式为g(x)=413362310 信息码符多项式为

基于纠错码的冗余技术的研究——EVENODD码的设计与实现

基于纠错码的容错技术的研究 ——EVENODD码的设计与实现 论文作者姓名: 申请学位专业:网络工程申请学位类别:工学学士指导教师姓名(职称): 论文提交日期:

基于纠错码的容错技术的研究 ——EVENODD码的设计与实现 摘要 由于网络技术的迅猛发展,存储系统的规模变得越来越庞大。因此它对系统的可靠性提出了严峻的挑战。而采用EVENODD编码算法的布局策略可以同时容许两个数据块同时出错,可以很好的保证系统的稳定性。它已经被广泛应用在RAID (Redundant Arrays of Independent Disks)等技术中。本论文从EVENODD 编码原理出发,详细介绍了EVENODD的编码和译码过程,以及从理论上对该译码的算法进行了分析证明,同时使用java编译技术实现了该编码过程的仿真。在本论文中还对该仿真软件的设计思路、开发过程、以及主要功能模块的实现都进行了详细的介绍。EVENODD码仿真软件的实现是理论运用于实际的又一典范。通过对其编码和译码核心算法的调用,可以实现图片、二进制文件等格式的备份和恢复。 关键词: EVENODD编码;容错技术;系统稳定性; java编译技术

Research of Fault Tolerance Technology based on Error Correcting Code ——The Design and Implementation of EVENODD Codes Abstract With the fast development of network technique, the scale of storage system becomes bigger and bigger. So, it is an austere challenge to the system. But the data placement strategy of EVENODD which has the ability to simultaneously correct two error data blocks can ensure the stability of the system. It has been extensively used in the RAID( Redundant Arrays of Independent Disks) technology. In the thesis encoding and decoding algorithms of EVENODD codes are introduced. Moreover decoding algorithms are analyzed and proven. At the same time, the software of EVENODD emulator is developed by java technology .The idea of design, the process of development and the design of main function blocks are proposed. It is an apotheosis which uses theory in the real world. Pictures and binary files can be backed up and recovered by EVENODD codes. Key words:EVENODD; Fault-tolerant; Stability of system; Java technology

实验九 (2,1,5)卷积码编码译码技术

实验九 (2,1,5)卷积码编码译码技术 一、实验目的 1、掌握(2,1,5)卷积码编码译码技术 2、了解纠错编码原理。 二、实验内容 1、(2,1,5)卷积码编码。 2、(2,1,5)卷积码译码。 三、预备知识 1、纠错编码原理。 2、(2,1,5)卷积码的工作原理。 四、实验原理 卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。通常卷积码的编码器由K级(每级K比特)的移位寄存器和n个线性代数函数发生器(这里是模2加法器)组成。 若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n 为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。卷积码将k 元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。在编码器复杂性相同的情况下,卷积码的性能优于分组码。 编码器 随着信息序列不断输入,编码器就不断从一个状态转移到另一个状态并同时输出相应的码序列,所以图3所示状态图可以简单直观的描述编码器的编码过程。因此通过状态图很容易给出输入信息序列的编码结果,假定输入序列为110100,首先从零状态开始即图示a状态,由于输入信息为“1”,所以下一状态为b并输出“11”,继续输入信息“1”,由图知下一状态为d、输出“01”……其它输入信息依次类推,按照状态转移路径a->b->d->c->b->c->a输出其对应的编码结果“110101001011”。 译码方法 ⒈代数 代数译码是将卷积码的一个编码约束长度的码段看作是[n0(m+1),k0(m+1)]线性分组码,每次根据(m+1)分支长接收数字,对相应的最早的那个分支上的信息数字进行估计,然后向前推进一个分支。上例中信息序列 =(10111),相应的码序列 c=(11100001100111)。若接收序列R=(10100001110111),先根据R 的前三个分支(101000)和码树中前三个分支长的所有可能的 8条路径(000000…)、(000011…)、(001110…)、(001101…)、(111011…)、(111000…)、(110101…)和(110110…)进行比较,可知(111001)与接收

纠错编码技术的研究

纠错编码技术的研究 xxxxx 指导教师:xxxxx 1 引言 在移动无线信道中由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多种不利因素的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。 鉴于这些问题的存在,我们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。信道编码的最终目的是提高信号传输的可靠性,而纠错编码正是作为提高传输可靠性的最主要措施之一。本文将主要关注几种重要的纠错编码技术以及它们在实际当中的应用,以展示纠错编码在现代数字通信中的是如何提高通信质量的。 2 纠错编码简介 2.1 纠错码原理 用于检测的信道编码被称作检错编码,而既可检错又可纠错的信道编码被称作纠错编码。但现在,无论是具有检错功能还是纠错功能的编码,我们都统称为纠错编码。可见纠错编码的范围已经扩大了。 纠错编码,就像它的字面解释的那样,是当消息经过有噪信道传输或要恢复储存的数据时用来纠错的。因为纠错编码试图克服和恢复信道中噪声或其他因素造成的损害,其编码过程又称为信道编码。 纠错码的基本思想是在消息通过一个有噪信道伟输前以多余符号的形式在消息中增添冗余度,这种冗余度是在控制下添加的。编码后的消息在传输时可能还会遭到信道中噪声的损害。在接收端,如果错误数在该码所设计的限度内,原始消息可以从受损的消息中恢复。图1显示了数字通信系统的框图。注意图中最重要的部分就是噪声部分,如果没有了它就用不着信道编码器了。

图1 数字通信系统框图 一种编码的纠检错能力决定于最小码距d 0的值。下面用几何关系来说明纠/检错 能力和最小码距的关系,有三种情况[10]。 (1) 检错e 个错码,则要求: 10+≥e d (1) 上式表明,若一种编码的最小码距为d0,则它能检测出(d0-1)个错码;反之,若要求检测e 个错码,则d0应小于(e+1)。 (2) 纠正t 个错码,则要求: 120+≥t d (2) (3) 为了能纠正t 个错码,同时检测e 个错码,则要求: 10++≥e t d (3) 这种情况是纠错和检错结合的工作方式,在这种情况下,当错码数量少时,系统按前向纠错方式工作,以节省重发时间,提高传输效率;当错码数量多时,系统就按反馈重发的纠错方式工作,以降低系统的总误码率。所以,它适用于大多数时间中错码数量很少,少数时间中错码数量多的情况。 2.2 纠错编码的优缺点 由纠错编码原理,我们知道为了减少错码,需要在信息码元序列中加入监督码元。但这样做的结果是:序列增长,冗余度增大。在这种情况下,我们只能增大系统的带宽来解决问题,但另一方面,系统带宽的增大又会引起系统中噪声功率增大,

实验四纠错码Hamming码编译码(新)

实验四纠错码Hamming码编译码 一、实验原理 差错控制编码的基本作法是:在发送端被传输的信息序列上附加一些监督码元,这些多余的码元与信息之间以某种确定的规则建立校验关系。接收端按照既定的规则检验信息码元与监督码元之间的关系,一旦传输过程中发生差错,则信息码元与监督码元之间的校验关系将受到破坏,从而可以发现错误,乃至纠正错误。 通信原理综合实验系统中的纠错码系统采用汉明码(7,4)。所谓汉明码是能纠正单个错误的线性分组码。它有以下特点: 码长n=2m-1 最小码距d=3 信息码位k=2n-m-1 纠错能力t=1 监督码位r=n-k 这里m位≥2的正整数,给定m后,既可构造出具体的汉明码(n,k)。 汉明码的监督矩阵有n列m行,它的n列分别由除了全0之外的m位码组构成,每个码组只在某列中出现一次。系统中的监督矩阵如下图所示: 1110100 H=0111010 1101001 其相应的生成矩阵为: 1000101 0100111 G= 0010110 0001011 汉明译码的方法,可以采用计算校正子,然后确定错误图样并加以纠正的方法。 表3.4.1 (7,4)汉明编码输入数据与监督码元生成表

二、实验仪器 1、1 JH5001通信原理综合实验系统一台 2、20MHz双踪示波器一台 三、实验目的 1、通过纠错编解码实验,加深对纠错编解码理论的理解; 四、实验内容 准备工作 (1)将汉明编码模块内工作方式选择开关SWC01中,编码使能开关插入(H_EN);; 设置m序列方式为(M_SEL1拔除、M_SEL0接入),此时m序列输出为全1码。 (2)将汉明译码模块内输入信号和时钟选择开关KW01、KW02设置在(右端),输入信号直接来自汉明编码模块;将译码器使能开关KW03设置在工作位置0N(左端)。 1.编码规则验证 (1)用示波器同时观测编码输入信号TPC03波形和编码输出波形TPC05,观测是否符合汉明编码规则(参见表3.4.1所示)。 (2)设置m序列方式为(10:M_SEL1插入、M_SEL0拔下),此时m序列输出为16进制码0000~1111(参见表3.4.2所示)。通过接入M-PAUSE跳线,选择某一静态 码。用示波器同时观测编码输入信号TPC01波形和编码输出波形TPC05,观测时 以TPC01同步,观测是否符合汉明编码规则。 (3)设置其它m序列方式,重复上述测量步骤。 注:m序列周期因非4bit的倍数,所以输入的4bit数据为其周期内的某一段截取码字。 2.译码数据输出测量 (1)用示波器同时观测汉明编码模块的编码输入信号TPC03波形和汉明译码模块译码输出m序列波形TPW06,测量译码输出数据与发端信号是否保持一致,以及 延时。 (2)设置不同的m序列方式,重复上述实验,验证汉明编译码的正确性。

纠错编码

在通信系统中,为提高信息传输可靠性,广泛使用了具有一定纠错能力的信道编码技术, 如奇偶校验码、行列监督码、恒比码、汉明码、循环码(CRC)等编码技术。这些编码技术因 其编码方式比较简单,其检错、纠错能力都不是很强,无法满足数字通信系统中高可靠传输的性能要求,必须采用高性能的强纠错编码技术。 下面介绍几种高性能强纠错编码技术: 1里德- 索罗门码(Read - Solomon) 里德-索罗门码,简称RS码,是一种重要的线性分组编码方式,对突发性错误有较强的纠错能力。该编码技术是利用伽罗华创造的伽罗华域(Galois Field)中的数学关系来把传送数据包的每个 字节映射成伽罗华域中的一个元素(又称符号) ,每个数据包都按码生成多项式为若干个字节 的监督校验字节,组成RS的误码保护包,接收端则按校验矩阵来校验接收到的误码保护包是 否有错,有错时则在错误允许的范围内纠错。RS纠错编码具有很强的纠正突发误码的能力。为了纠正一个错误,要2个符号的检测码,一个用来确定位置,一个用来纠错。一般来说纠t个错误需要2t个检验符,这时要计算2t个等式,确定t个位置和纠t个错。能纠t个符号的RS 码生成多项式为: g ( x) = ( x + a0 ) ( x + a1 ) ( x + a2) …( x + a2t - 1 ) 。 2卷积码(Convolution codes) 卷积码是一种非分组编码,适用于前向纠错法。在许多实际情况下,卷积码的性能常优于分组式编码。卷积编码是将信息序列以k个码元分段,通过编码器输出长为n的一个码段。卷积 码的监督码元并不实行分组监督,每一个监督码元都要对前后的信息单元起监督作用,整个编解码过程也是一环扣一环,连锁地进行下去。卷积编码后的n个码元不仅与本段的信息元有关,而且也与其前N - 1段信息有关,故也称连环码,编码过程中互相关联的码元个数为nN。卷积编码的结构是:“信息码元、监督码元、信息码元、监督码元…”。在解码过程中,首先将接收到的信息码与监督码分离,由接收到的信息码再生监督码,这个过程与编码器相同;再将此再 生监督码与接收到的监督码比较,判断有无差错,并纠正这些差错。 3交织编码 交织编码,其基本思路是将i个能纠t个错的分组码( n, k)中的码元比特排列成i行n列的方阵,每个码元比特记作B ( i, n) 。交织前如果遇到连续j个比特的突发错误,且j >> t,对其中的连续2个码组而言,错误数已远远大于纠错能力t,因而无法正确对出错码组进行纠错。交织后, 总的比特数不变,传输次序由原来的B (1, 1) , B (1, 2) , B (1, 3). . . B (1, n) , B (2, 1) , B (2, 2) , B (2, 3). . . B (2,n) , . . . . . . B ( i, 1) , B ( i, 2) , B ( i, 3). . . B ( i, n)转变为B (1, 1) , B (2, 1) , B (3, 1). . . B ( i, 1) , B (1, 2) , B (2, 2) , B(3, 2). . . B ( i, 2). . . . . . . . . B (1, n) , B (2, n) , B (3, n) , . . . B ( i, n)的次序。此时因干扰或衰落引起的突发错误图样正好落在分组码的纠错能力范围内,可以正确纠正这些 被分解开的差错。通常把码组数i称为交织度,用这种方法构造的码称为交织码。 使用交织编码的好处是提高了纠正突发错误的能力但又不增加新的监督码元,从而不会降低 编码效率。理论上交织度i越大,抗突发错误的能力就越强。 4格状编码调制

网络纠错编码—渊源与进展

课程基本信息 课程名称:通信前沿技术——网络纠错编码:渊源和进展 课程时数:6学时(2单元) 开课单位:抗干扰通信技术国家重点实验室 开课教师:周亮教授 电子邮箱:lzhou@https://www.360docs.net/doc/918243152.html, 课程教材:美国南加州大学(USC)张箴教授系列论文 Zhen Zhang,Theory and Applications of Network Error Correction Coding,unpublished 2009 Xuan Guang, Fang-Wei Fu, Zhen Zhang,Construction of Network Error Correction Codes in Packet Networks,unpublished 2010 Zhen Zhang,Some Recent Progresses in Network Error Correction Coding Theory,Fourth Workshop on Network Coding, Theory and Applications, 2008. Zhen Zhang, Linear Network Error Correction Codes in Packet Networks,IEEE Trans. Info. Theory, V 54, No. 1, Jan 2008 课程要求:阅读原始文献1至2篇;参与听课和课堂讨论 课程考核:写出一篇不少于1500字的课程学习注记(Comments或者Notes) 提交时间:2010年1月15日前 提交方式:电子邮件 对原始文献阅读、研讨以及撰写注记的要点要求: 9该文的主要贡献是什么?这一贡献重要吗?为什么? 9该文导致成果获取的主要洞察力(insight)在哪里? 9提出对该文某个或某些思想点的一个扩展方向和其思路。(不需立即 得到达到这种扩展的具体途径) 9根据该文的特点或内容,建议至少一个在课堂上应予讨论的议题。 9该文的应用背景或场景是什么?该文中的核心假设适合相应的应用背 景或场景吗?

第七章 差错控制编码 习题解答

8-1 某码字的集合为 00000000 1000111 0101011 0011101 1101100 1011010 0110110 1110001 求:(1)该码字集合的最小汉明距离;(2)根据最小汉明距离确定其检错和纠错能力。 解: (1)通过两两比较每个码字,可知该码字集的最小汉明距离为4; (2)因为检错能力与最小码距的关系为:1min +=e d ,所以检错能力为 3141min =-=-=d e 又因为纠错能力与最小码距的关系为:12min +=t d ,所以纠错能力为 5.12 1 421min =-=-= d t 取整后可得,纠错能力为1=t 。 8-2 已知二进制对称信道的差错率为2 10-=P 。(1)(5,1)重复码通过此信道传输,不可纠正错误的出现概率是多少?(2)(4,3)偶校验码通过此信道传输,不可检出错误的出现概率是多少? 解: (1)当(5,1)重复码发生3个或3个以上的错误时不可纠正,此时不可纠正的错误出现的概率为 ( )()()60 5 551 4452 3351085.9111-?≈-+-+-=P P C P P C P P C P e (2)当(4,3)偶校验码发生偶数个错误时这些错误不可检出,这些错误出现的概率 为 ( )()40 4 442 2241088.511-?≈-+-=P P C P P C P e 8-3 等重码是一种所有码字具有相同汉明重量的码,请分析等重码是否线性码? 解: 因为该码字集中所有的码字均有相同的码重,因此全零码字不包括在内,而线性码在输入信息位均为零时,输出也全为零,因此一定包含全零码。因此等重码不是线性码。 8-4 对于一个码长为15,可纠正2个随机错误的线性分组码,需要多少个不同的校正子?至少需要多少位监督码元? 解:对于一个码长为15的线性码,1个及2个随机错误的图样数为 120215115=+C C

基于循环码的差错控制编码建模与仿真程序

基于循环码的差错控制编码系统建模与仿真 一、设计目的及要求 设计目标:通过利用MATLAB/simulink系统仿真功能,设计一个基于循环码的差错控制编码系统。 实验知识要求:循环码的编、译码原理,差错控制编码系统的特点。MATLAB/simulin系统仿真知识。 实验软件平台:MATLAB 7.0软件。 二、课程设计的任务 2.1循环码及差错控制编码的概念及理论基础 2.1.1循环码的概念及生成多项式 在实际应用中,数据传输一般采用系统码的编码方式,即在发送的信息序列之后附加上特定位数的冗余位,该冗余位称为所发送信息序列的监督位。监督位一般是由所发送的信息序列经过恰当的变化而生成的。若监督位由信息位经线性组合而得到,则称得到的系统码为线性分组码。 在线性分组码中有一类重要的码,称为循环码。这种码的编码和解码设备都不太复杂,而且检错和纠错的能力都较强。循环码除了具有线性码的一般性质外,还具有循环性,即任一码组循环一位后仍然是该编码中的一个码组。(n,k )循环码表示其中信息位为k,监督位为n-k。 如果一种码的所有码多项式都是多项式g(x)的倍式,则称g(x)为该码的生成多项式。在循环码中,次数最低的非0首多项式就是生成多项式g(x),其他码多项式都是其倍数。(n,k)循环码的生成多项式g(x) 一定是n x+1的因式:n x+1=g(x)h(x);反之,若g(x)为n-k次,且能被n x+1 整除,则此g(x)一定生成一个(n,k)循环码。 2.1.2差错控制编码的基本概念 信道编码的目的是提高信号传输的可靠性,信道编码是在经过信源编码的码元序列中增加一些多余的比特,目的在于利用这种特殊的多余信息去发现或纠正传输中发生的错误。在信道编码只有发现错码能力而无纠正错码能力时,必须结合其他措施来纠正错码,避免删除错码带来的负面影响。上诉手段称为差错控制。 在对乘性干扰和加性干扰进行处理后仍不能达到误码率要求时,就需要采用差错控制措施。差错控制技术有以下4种: (1)检错重发:在发送码元中加入差错控制码元,当检测到有错码时,利用反向信道通知发送端重发。 (2)前向纠错(FEC):接收端通过发送码元中的差错控制码元,不但能发现错码,而且还能纠正错码。 (3)反馈校验:不需要在发送序列中加入差错控制码元,而是将接收到的码元全部转回发送端,在发送端逐一比较,如发现有不同,则发送端重发。

100G技术革命:纠错编码技术

100G技术革命:纠错编码技术 基于数字相干接收PM-QPSK调制的100G光传输技术在长距离光传输技术史上具有里程碑意义。在调制、检测、均衡以及复用技术无法满足系统传输性能要求的情况下,可采用纠错编码技术进一步改善系统性能。要在现有线路上达到目前10G OOK的传输误码率性能,100G收发机至少需要提高10dB 增益,而相干检测PM-QPSK调制结合目前的电均衡补偿技术最多能提供7dB增益,额外3dB增益需借助FEC提供。这要求100G传输系统的FEC编码净增益(NCG: Net Coding Gain)达到11dB以上。 1. 纠错编码技术纠错编码是按照一定编码规则人为增加冗余比特信息以便于在接收端检错纠错的信道编码。准确地说,就是把原码字按某种规则变换成有一定剩余度的码字,并使每个码字的码元间有一定的对应关系。关系的建立过程称为编码。码字到达接收端后,用编码时所用的规则去检验。如果没有错误,则原规则一定满足,否则就不满足;由此足以判定传输或存取过程有无错误。当不能满足时,在可纠错能力之内按一定的规则确定错误所在的位置,并予以纠正。纠错编码的性能评价指标包括①编码增益:单位为dB,一般用打开和关闭纠错算法时背靠背无误码传输时最小信噪比之差来描述,该差值即是纠错编码处理增益对传输信噪比要求的改善;②编码开销:也称冗余比,即所增加的冗余码长与编码前码字长度之比,通常以百分比来表示。例如RS(255,239)的编码开销为(255-239)/239=6.69%;③实现复杂度:通常用物理实现的逻辑门数或软件加乘运算的次数来描述;④处理时延:与所采用的算法以及算法实现的结构相关,算法的并行能力越强,处理时延越低。光传输常用的纠错编码经历了三代:第一代是以RS、BCH为代表的基础编码,其编码增益在6dB左右,编码开销约为7%;第二代为以RS、BCH 为基础两级链接而成的链接编码,其编码增益在9dB左右,详见G.975.1;第三代为以LDPC、Turbo为代表的软判决迭代编码,其编码增益约在12dB左右,编码开销在15%以上。LDPC 码即低密度奇偶校验码(Low Density Parity Check Code),它由Robert G.Gallager博士于1963年提出的一类具有稀疏校验矩阵的线性分组码,不仅有逼近Shannon限的编码增益,而且译码复杂度低、处理时延短、结构灵活,是近年信道编码领域的研究热点,目前已广泛应用于深空通信、光纤通信、卫星数字视频和音频广播等领域。未来的第四代纠错编码将是调制技术与LDPC技术的融合产物。纠错编码技术可以跳出传输物理层的限制,在逻辑层对一切物理传输损伤进行补偿,特别是对非线性效应影响的补偿。纠错编码的编码增益越大,相同传输距离下对入纤光功率的要求越低,接收机OSNR要求越小。另一方面,光信号在传输过程中OSNR越小,纤芯光功率强度的变化越小,纤芯折射率的波动越小,非线性效应的影响就越不明显。 2. 100G软判决纠错技术除了采用新的编码算法外,采用软判决也可以提高FEC编码增益。软判决是相对于硬判决而言的,与具体的纠错编码或后续算法没有必然关联。软硬判决的区别在于其对信号量化所采用的比特位数。硬判决以阈值为准绳,武断地对输入信号进行判定;软判决以阈值为参考,对输入信号进行猜测,并声明猜测的可信度。软判决并未判决,仅提供猜测信息和可信度信息,便于后续算法(如Viterbi)结合其他信息进一步处理、综合判定。图1:QPSK调制软判决示意图对于一般的单比特判决而言,判决软硬判决的不同在物理实现上表现为其对信号量化所采用的比特位数。硬判决对信号量化的比特数为1位,其判决结果非“0”即“1”,没有回旋余地。软判决则采用多个比特对信号进行量化,一个比特为猜测信息,额外的比特提供该猜测的可信度信息。以QPSK调制的符号判决为例:由于QPSK调制包含了四个相位状态(体现为4个点的星座图),每个载波符号承载2bit信息,I(In-phase)、Q(Quadrature-phase)两个维度分别承载1bit进行,每个维度上硬判决仅根据“判决阈值”进行“0”或“1”的判定;而软判决在硬判决的“判决阈值”基础上还提供了一组“置信度阈值”,图中“置信度阈值”中3个参

相关文档
最新文档