固定管板式换热器设计

固定管板式换热器设计
固定管板式换热器设计

固定管板式换热器设计

摘要

在工业生产中,为了适现物料之间热量传递过程中的一种设备,统称为换热器,它是化工炼油,动力,原子能和其它许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工,炼油等工业生产来说,换热器尤为重要,换热器随着使用目的的不同可以把它分为:热交换器,加热器,冷却器,冷凝器,蒸发器和再沸器等。

本设计的主要任务是完成满足某一生产要求的管壳式换热器,它是属于列管式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。换热器的工艺设计计算有两种类型,即设计计算和校核计算,包括计算换热面积和造型两方面。设计计算的目的是根据给定的工作条件及热负荷,选择一种适当的换热器类型,确定所需的换热面积,进而确定换热器的具体尺寸。校核计算的目的则是对已有的换热器校核它是否满足预定要求,这是属于换热器性能计算问题。无论是设计计算还是校核计算,所需的数据包括结构数据、工艺数据和物性数据三大类。其中结构数据的选择在换热器设计中最为重要。对于列管式换热器的设计包括壳体型式、管程数、管子类型、管长、管制排列形式、折流板型式、冷热流体流动通道等方面的选择。工艺数据包括冷热流体的流量、进出口温度、进口压力、允许压力降及污垢系数。物性数据包括冷热流体在进出口温度或定性温度下的的密度、比热容、粘度、导热系数等。

本设计针对苯冷却的问题设计一换热器。本设计包括三个部分:说明部分;计算部分;绘图部分。本任务书主要是说明部分。说明部分主要是通过对兰州地区水资源情况、常年气温情况、水价、水质等综合考虑,最后确定冷却水的用量、进出口温差等及最后的产品说明书,说明了此换热器的工作环境,工作条件,适用范围及技术要求等。计算部分主要是针对说明部分的分析进行相应的计算,主要是对针对所选的换热器在满足生产要求的情况下进行工艺核算,最大可能的减小投入和增加收益,本设计就是为完成以上任务而进行的计算。绘图部分主要是遵照计算的要求在绘图纸上按照一定的比例要求把所设计的换热器反映到图纸上来,同时要反映出管口方位以及所使用的部件的材料,规格等。

关键词:换热器,工艺设计,核算;

目录

1.摘要…………………………………………………………………

2.综述 (6)

2.1换热器的分类与比较………………………………………………

2.2换热器设计时应注意的一般问题 (7)

2.3换热器的研究现状及发展趋势 (9)

3.设计任务书 (10)

3.1设计题目 (10)

3.2设计条件 (10)

3.3设计要求 (10)

3.4设计成果要求 (11)

3.5时间安排 (11)

4.设计计算 (11)

4.1确定设计方案 (11)

4.1.1选择换热器的类型 (11)

4.1.2确定流体流动空间及进出口温度 (11)

4.2查阅物性数据 (13)

4.3试算和初选换热器规格 (13)

4.3.1计算热负荷和冷却水流量 (13)

4.3.2计算两流体的平均温度差 (13)

4.3.3初选换热器规格 (13)

4.4核算压强降 (13)

4.4.1管程压强降 (13)

4.4.2壳程压强降 (14)

4.5核算总传热系数 (14)

4.5.1管程对流传热系数 (14)

4.5.2壳程对流传热系数 (15)

4.5.3污垢热阻 (16)

4.5.4总传热系数 (16)

4.5.5 设计裕度…………………………………………

4.6换热器主要附件的确定及技术要求………………………………………

4.6.1折流挡板

4.6.2缓冲板

4.6.3拉杆和定距管

4.6.4换热管和挡板

4.6.6法兰和管板

4.6.7垫片

4.6.8管箱和支座

4.7换热器主要结构尺寸和计算结果 (17)

5.换热器的安装与维护…………………………………………………………

5.1安装

5.2维护

6.符号说明 (18)

7.结束语 (19)

8.参考文献 (20)

2.综述

2.1换热器的分类与比较

根据冷、热流体热量交换的原理和方式,换热器基本上可分为三大类即间壁式混合式和蓄热式,其中间壁式换热器应用最多,所以主要讨论此类换热器。

【1】管式换热器

管式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。在管式换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提高管外流体给热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛.。流体在管内每通过管束一次称为一个管程,每通过壳体一次称为一个壳程。为提高管内流体的速度,可在两端封头内设置适当隔板,将全部管子平均分隔成若干组。这样,流体可每次只通过部分管子而往返管束多次,称为多管程。同样,为提高管外流速,可在壳体内安装纵向档板使流体多次通过壳体空间,称多壳程。在管式换热器内,由于管内外流体温度不同,壳体和管束的温度也不同。

管式换热器根据生产需要的不同还可分为蛇管换热器、套管式换热器、列管式换热器。

(1).蛇管换热器

这种换热器是将金属管弯绕成各种与容器想适应的形状并沉浸在容器内的液体中。蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀性材料制造;其缺点是容器内液体湍流程度低,管外对流传热系数小。(2).套管式换热器

套管式换热器是用两种尺寸不同的标准管连接称为同心圆的套管,外面的叫壳程内部的叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。

以同心套管中的内管作为传热元件的换热器。两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上(图中a)。热量通过内管管壁由一种流体传递给另一种流体。通常,热流体(A流体)由上部引入,而冷流体(B流体)则由下部引入。套管中外管的两端与内管用焊接或法兰连接。内管与U形肘管多用法兰连接,便于传热管的清洗和增减。每程传热管的有效长度取4~7米。这种换热器传热面积最高达18米2, 故适用于小容量换热。当内外管壁温差较大时,可在外管设置U形膨胀节(图中b)或内外管间采用填料函滑动密封(图中c),以减小温差应力。管子可用钢、铸铁、陶瓷和玻璃等制成,若选材得当,它可用于腐蚀性介质的换热。这种换热器具有若干突出的优点,所以至今仍被广泛用于石油、石油化工等工业部门。它的主要优点是:①结构简单,传热面积增减自如。因为它由标准构件组合而成,安装时无需另外加工。②传热效能高。它是一种纯逆流型换热器,同时还可以选取合适的截面尺寸,以提高流体速度,增大两侧流体的给热系数,因此它的传热效果好。液-液换热时,传热系数为870~1750W/(m 2·℃)。这一点特别适合于高压、小流量、低给热系数流体的换热。套管式换热器的缺点是占地面积大;单位传热面积金属耗量多,约为管壳式换热器的5倍;管接头多,易泄漏;流阻大。为增大传热面积、提高传热效果,可在内管外壁加设各种形式的翅片,并在内管中加设刮膜扰动装置,以适应高粘度流体的换热。

(3).列管式换热器

列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:

<1> 固定管板式换热器:

这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

<2> 浮头式换热器:

换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。

<3> 填料函式换热器:

这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

<4> U型管式换热器:

U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。优点是结构简单,质量轻,适用于高温高压条件。

【2】板式换热器

板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新

型高效换热器。各种板片之间形成薄矩形通道,通过半片进行热量交换。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多,在适用的范围内有取代管壳式换热器的趋势。板式换热器与管壳式有以下不同:

(1)传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般

Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。(2)对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃.

(3).占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/8。

(4).容易改变换热面积或流程组合,只要增加或减少几张板,即可达到增加或减少换热面积的目的;改变板片排列或更换几张板片,即可达到所要求的流程组合,适应新的换热工况,而管壳式换热器的传热面积几乎不可能增加。

(5).重量轻板式换热器的板片厚度仅为0.4~0.8mm,而管壳式换热器的换热管的厚度为2.0~2.5mm,管壳式的壳体比板式换热器的框架重得多,板式换热器一般只有管壳式重量的1/5左右。

(6)价格低采用相同材料,在相同换热面积下,板式换热器价格比管壳式约低40%~60%。

(7)制作方便板式换热器的传热板是采用冲压加工,标准化程度高,并可大批生产,管壳式换热器一般采用手工制作。

(8)容易清洗框架式板式换热器只要松动压紧螺栓,即可松开板束,卸下板片进行机械清洗,这对需要经常清洗设备的换热过程十分方便。(9)热损失小板式换热器只有传热板的外壳板暴露在大气中,因此散热损失可以忽略不计,也不需要保温措施。而管壳式换热器热损失大,需要隔热层。

(10). 容量较小是管壳式换热器的10%~20%。

(11). 单位长度的压力损失大由于传热面之间的间隙较小,传热面上有凹凸,因此比传统的光滑管的压力损失大。

(12). 不易结垢由于内部充分湍动,所以不易结垢,其结垢系数仅为管壳式换热器的1/3~1/10.

(13). 工作压力不宜过大,介质温度不宜过高,有可能泄露板式换热器采用密封垫密封,工作压力一般不宜超过2.5MPa,介质温度应在低于250℃以下,否则有可能泄露。

(14)易堵塞由于板片间通道很窄,一般只有2~5mm,当换热介质含有较大颗粒或纤维物质时,容易堵塞板间通道。

2.2换热器设计时应注意的一般问题

【1】冷热流体流动通道的选择

在列管式换热器内,冷热流体流动通道可根据以下原则进行选择:

(1)不洁净和易结垢的的液体宜走管程,因管内清洗方便;

(2)腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀;

(3)压强高的宜走管程,以免壳体承受压力;

(4)饱和蒸汽宜走壳程,因饱和蒸汽比较清洁,对流传热系数与流速无关而且冷凝液容易排出;

(5)被冷却的流体宜走壳程,便于散热;

(6)若两流体温差较大,对于刚性结构的换热器,宜将对流传热系数大的流体通过壳程,可减少热应力;

(7)流量小而粘度大的流体宜走壳程;

【2】流体进出口温度的确定

如果换热器以冷却为目的热流体的进出口温度已由工艺条件确定,而冷却介质的出口温度则需要选择。若选择较高的出口温度,可选小换热器,但冷却介质的流量要加大;反之要选择低的出口温度,冷却介质流量减少了,但要选大的换热器,因此冷却介质的出口温度要权衡二者的投资大小来确定。

2.3换热器的研究现状及发展趋势

20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型,高效换热器的相继开发与应用带来了巨大的社会经济效益,随着市场经济的发展,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。

【1】研究机构及研究现状

美国传热研究公司(Heat Transfer Research Inc.)即是HTRI,是1962年发起组建的一个国际性,非盈利的合作研究机构,会员数百家,遍及全球,取得了大量的研究成果,积累了换热器设计的丰富经验,在传热机理,两相流,振动无垢模拟及测试技术方面做出了巨大贡献。近年来,该公司在计算机应用软件开发上发展很快,所开发的网络优化软件,各种换热器工艺设计软件计算精度准确,不仅节省了人力,提高了效率,而且提高了技术经济性能。目前国内近20家企业成为HTRI会员。

国内各研究机构和各类院校研究不断推陈出新,在强化传热元件方面华南理工大学相继开发出表面多孔管,螺旋槽管,波纹管,纵横管等;天津大学在流路分析法,振动等方面研究成果显著;清华大学在板面传热方面有深入的研究,西

安交大在板翅式换热器研究方面已取得初步成果;重庆建工学院开发出翅管换热器;在强度软件方面化工设备设计研究中心开发出SW6;在液压胀管方面,江苏化工学院开发出液压胀管器;以换热器起家的兰州石油机械研究所率先开发出板式换热器,板式冷凝器,板式蒸发器,螺旋板换热器,板壳式换热器,螺纹管换热器,折流杆换热器,外导流筒换热器,高效重沸器,板式空冷器等一批实用价值的系列高效换热器,近年来又在强化软件上开发Lansys PV,在CAD软件上开发出浮头式换热器Lansys HF,U形管换热器LansysHU等系列CAD软件,含标准图2000多套;中国石化工程建筑公司与兰州石油化工机械厂联合开发出螺纹锁紧环换热器;西安交大,兰州五院,宁夏化工厂合作开发出螺旋绕管式换热器,这些技术成果为国民经济的快速发展,为中国炼油,化工工业的发展起到了决定作用,也是中国的传热技术水平步入国际先进水平。

【2】换热器研究及发展动向

换热器传热与流体流动计算的准确性,取决于物性模拟的准确性,因此,物性模拟一直为传热界重点研究课题之一,特别是两相流无形的模拟。两相流的无形基础来源于实验室实际工况的模拟。这恰恰是与实际工况差别的体现。实验室模拟实际工况很复杂,为此,要求物性模拟在试验手段上更加先进,测试的准确率更高。从而使换热器计算更精确,材料更节省。物性模拟将代表换热器的经济技术水平。

【3】分析设计的研究

分析设计是近代发展的一门新兴学科,美国ANSYS软件技术一直处于国际领先水平,通过分析设计可以得到流体的流动分布场,也可将温度场模拟出来,这无疑给流路分析法技术带来发展,同时也给常规强度计算带来更准确,更便捷的的手段。在超常规设计强度计算中,可模拟出应力的分布图,是常规无法得到的计算结果能方便,快捷,准确的得到,使换热器更加安全可靠。这一技术随着计算机应用的发展,逐渐带来技术水平的飞跃。将会逐步取代强度试验,摆脱实验室繁重的劳动强度。

【4】大型化及能耗研究

换热器将随装置的大型化而大型化,直径将超过5m,传热面积将达到单位1000平米,紧凑型换热器将越来越受欢迎。板壳式换热器,折流杆换热器,板

翅式换热器,板式空冷凝器将得到发展,振动损失将得到克服,高温,高压,安全,可靠的换热器结构将朝着结构简单,制造方便,重量轻发展。随着全球水资源的紧缺,循环水将被新的冷却介质取代,循环将被新型,高效的冷空气取代。保温绝热技术的发展,热量损失将减少到目前的50%一下。

【5】强化技术研究

各种新型,高效换热器将逐步取代现有常规产品。电厂动力效应强化传热技术将会在新的世纪得到研究和发展。同心管换热器,高温喷流式换热器,印刷板线路器,穿孔板换热器,微尺度换热器,流化床换热器,新能源换热器将在工业领域及其他领域得到研究和应用。

材料的研究

材料将朝着强度高,制造工艺简单,防腐效果好,重量轻等方向发展,随着稀有金属价格的下降,钛,锆等稀有金属使用量将扩大,CrMo钢材料将实现不预热和后热的方向发展。

控制结构及腐蚀的研究

国内污垢数据基本上是20世纪60-70年代从国外照搬而来,污垢研究技术发展缓慢。随着节能,增效要求的提高,污垢研究将会受到国家的重视和投入。通过对污垢的形成机理,生长速度,影响因素的研究,预测污垢曲线,从而控制结垢,这对传热效率的提高将是中德的突破。保证装置低能耗,常周期运转,超声防垢技术将得到大力发展。腐蚀技术的研究将会有所突破,低成本的防腐涂层特别是金属防腐涂层技术将得到发展,电化学防腐技术将会成为主导。

3.设计任务书

3.1设计题目:粗苯冷却器的设计

3.2设计条件

(1)生产能力:15万吨每年粗苯。

(2)设备型式:列管换热器。

(3)操作压力:常压。

(4)粗苯进出口温度:进口80℃,出口35℃。

(5)换热器热损失为冷流体热负荷的3.5﹪。

(6)每年按300天计,每天按24小时连续生产。

(7)建厂地址:兰州地区。

3.3设计要求

(1)选择冷却剂的类型和进出口温度并查阅定性温度下的物理性质。

(2)选择列管换热器的类型。

(3)选择冷热流体流动的空间及流速。

(4)选择列管换热器换热管的规格。

(5)选择列管换热器折流挡板的形式。

(6)选择缓冲板、拉杆和定距管。

(7)估算换热器的传热面积。

(8)确定管程数和换热管根数。

(9)确定壳程数和换热管排列方式。

(10)确定挡板、隔板规格和数量。

(11)确定壳体和各管口的内径并圆整。

(12)核算壳体的管长L和直径D的比为6-10。

(13)核算换热器的传热面积,要求设计裕度不大于25%不小于10% 。(14)核算管程和壳程的流体阻力损失,要求管程和壳程的阻力都不大于50000Pa。

(15)将计算结果列表。

3.4设计成果

(1)设计说明书(A4纸)。

(2)换热器工艺条件图(2号图纸)。

3.5时间安排

(1)6月28日-6月29日借阅或查阅有关设计资料并写出文献综述部分(字数不超过5000字)。

(2)6月30日-7月5日设计计算。

(3)7月6日-7月7日绘制图纸整理打印设计说明书。

(4)7月9日17:00之前交设计成果。

4.设计计算

4.1确定设计方案

4.1.1选择换热器的类型

固定管板式换热器的结构比较简单、紧凑、造价便宜。此种换热器管束连接在管板上两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,应用广泛,所以对于本设计选择固定管板式换热器。

4.1.2确定流体流动空间及进出口温度

对于本设计而言建厂地点是兰州地区,查阅当地的年最高气温为35℃左右,确定使用自来水作为冷却介质,按照设计保证完成任务的原则及水温一般低于气温10℃,设冷却水的进口温度为25℃,出口温度选比进口温度高5℃为30℃。而粗苯的进口温度为80℃,出口温度为35℃,冬季操作时进口温度会降低,该换热器的管壁温和壳体壁温之差满足T m -t m ={(80+35)/2}-{(25+30)/2}=30o C <50o C ,符合管壳式换热器的要求。

由于兰州地区水质较硬易结垢,并且考虑到苯可通过壳体向外界散热增加冷却效果,确定为水走管程而粗苯走壳程,管材选普通mm 5.2mm 25?φ的碳钢管。

4.2查阅物性

水的定性温度 t=

5.27

3025=+o C ,查得在此温度下水的物性数据为

壳程流体粗苯的定性温度为 T=

5.572=o C ,查得在此温度下苯的物性数据为

4.3试算和初选换热器规格

4.3.1计算热负荷和冷流体流量

W h =33.2083324

30010157

=?? kg/h 12()O h ph Q W C T T =-==÷-??36003585180033.20833)(468750w

h kg 34.77990510176.43600%5.31468750t -t C Q w 312pi i i =???-?==)()

( 4.3.2计算两流体的平均温差,

暂按单壳程多管程进行计算。逆流时平均温差为

85.241050ln 1050ln t 1

2

12'=-=???-?=?t t t t ℃ 而计算 P=09.055

525802530t T t t 1112==--=-- R=

954525303580t t T T 1221==--=-- 于是由附表查得修正系数为: 9256.0t =??

所以 ℃0054.2385.249256.0't t m t m =?=?=???

4.3.3 初选换热器规格

根据冷流体热负荷及两流体的情况,初步选定换热器型号为

实际传热面积为:0S =n πd 0(L-0.1)=234?3.14?0.025?(4.5-0.1)=61.73m 2 则利用此换热器要求总传热系:K 0=

0054

.2373.61452344t S Q m 0i ?=??=318.5)℃(2m w 4.4核算压强降

4.4.1管程压强降

12()i t p s p p p F N N ?=?+?∑

其中:12,p p ??—分别为直管弯道中因摩擦阻力引起的压强降

t F — 结垢校正因数,对于25 2.5mm φ?的换热管 1.4t F =

p N — 壳程数,此处为1

S N — 管程数,此处为2

22m 0367.02

23402.04S =??=πi m 5924.03600

4.9960367.034.77990S V u i s i =??== 1386010

18.854.9965924.002.0u d R 5i i ei =???==-μρ

(湍流) 设管壁粗糙度mm 1.0=ε,则005.020

1.0d i ==ε

查得035.0=λ pa 84.13762

5924.04.99602.05.4035.02u d L p 2

2i i 1=???==?ρλ pa 5.524205924.04.99632u 3p 2

2

i 2=??==?ρ 12()i t p s p p p F N N ?=?+?∑=(1376.84+524.5)?1.4?2=5323.76 pa < 410

4.4.2 壳程压强降

''012 ()s S p p p F N ?=?+?∑

式中 12,p p ??—分别为流体横过管束的压强降和通过折柳挡板缺口的压强降 S F —壳程压强降的结垢后校正因数,此处取为1.15

2'

0010(1)2c B u p Ff n N ρ?=+

式中 F —管子排列方式对压强降的校正因数, 由于此处为正三角形排列,所以取0.5

0f —壳程流体的摩擦系数,0Re 500>时0.228005.0Re f -=

B N —折流挡板数

h —折流挡板间距,根据文献此处取0.25D ,即取150mm 0u —按壳程流通截面积计算的流速

c n —横过管束中心线的管数 n 1.1n c = 此处(n 为总管数) 即 172341.1n c ≈=(根)

挡板的个数 29115.05.41L N B =-=-=h (个)

壳程流通截面积 200m 019688.0032.0/025.016.015.0t d 1hD S =-??=-=)()(

则 s /m 35.03600019688.05.839/33.20833S V u 0s 0=??==

当量直径

0202e d /4/t 4d ππ)(d -==027.0025.014.3/4/025.014.3032.0422=??-?)(m =???==-400101.4/5.83935.0027.0/μρu d R e e 19357

5267.0R 0.5f 228.0e00==-

故pa 9.45562/35.05.839)129(175267.05.0p 2'1

=??+???=? pa p 9.29302/35.05.839)6.0/15.025.3(292'2=???-?=?

''012 ()s S p p p F N ?=?+?∑=(4556.9+2930.9)?1.15=8610.975 pa < 410

故由以上计算结果表明管程和壳程压强降都能满足生产要求。

4.5 核算总传热系数

4.5.1管程对流传热系数i α

13860R ei =

普朗特准数 8.51029.61/1018.8510176.4/C P 253p ri =????==--λμ 则 293002.0/8.5138601029.61023.04.08.02=???=-i α)℃(2m w

4.5.2壳程对流传热系数0α

0.551/30.140000000000.36()()()()e e w

d u cp d λρμμαμλμ=?? 雷诺准数 193570=

e R

普朗特准数387.5137.0/101.4108.1/430=???==-λμp r C P

由于壳程中的苯被冷却,所以取95.0)/(14.00=w μμ

3.69395.0378.519357

)027.0/137.0(36.03

155.00=????=α)℃(2m w 4.5.3 污垢热阻 根据流体的实际情况查得

管内侧污垢热阻 si R = 0.0003420/(.)w m C

管外侧污垢热阻 =s0R 0.00017 20/(.)w m C

4.5.4 总传热系数(由于管壁热阻相比较流体热阻非常小,可以忽略)则: '001

11o o so si i i i K d d R R d d αα=+++=93

.39520293025202500034.000017.03.69311=?+++20/()w m C ?

4.5.5 设计裕度

由上述计算可知该换热器的实际传热面积为=0S 61.73 m 2 而计算的传热面积为2m 00m 66.490054

.2393.395452344t K'Q S'=?=?= 则设计裕度为 %3.24%10066

.4966.4973.61%1000'00=?-=?-S S S 并且 15% < 24.3% < 25% 符合一般要求。

4.6换热器主要附件的确定

4.6.1折流挡板

1.本设计折流挡板选择为圆缺形,切去部分为挡板直径的1/4,挡板间距确定为150mm ,则挡板个数为4.5/0.15-1=29个。

2.由于本设计中两相全为液相故选择挡板为上下缺边形,无支撑长度<300mm ,故折流板厚度确定为5mm 。

3.管孔直径25.8mm ,许差+0.4mm

4.管孔中心距 32mm ,管孔排列为正三角形。

5.管孔加工两端必须倒角0.5?45

4.6.2缓冲板

由于壳体内径大于273mm小于等于600mm,缓冲板选择焊接在壳体上,缓冲板在壳体内的位置,应使防冲板周边与壳体内壁所形成的流通截面积为壳程进口截面积的1-1.25倍,缓冲板厚度为4.5mm。

4.6.3拉杆和定距管

拉杆和定距管采用拉杆定距管结构,定距管长度按实际需要确定,拉杆直径取10mm,数量6个。

4.6.4换热管和挡板

1.换热管材料选择碳钢,标准号YB 231-70,规格25mm?

2.5mm,外径公差

.0

±上偏差+12%,下偏差-10% 。

20

mm

2.本设计中的挡板可用钢板或扁钢制成,嵌入折流板的槽内,并点焊在每块折流板上。相邻挡板间距一般为100mm-200mm。

4.6.5法兰和管板

本设计选取标准JB1158-82甲型平焊法兰,密封面采用凹面。开孔补强圈采用标准JB1207-73。螺柱规格M20,数量28个

管板与法兰连接密封面为凸面,分程隔板槽拐角处倒角10?45 ,隔板槽宽度为12mm,管板与换热器连接处采用胀接。

4.6.6垫片

垫片厚度,本设计确定为3mm,隔板槽部分垫片厚度取10mm,圆角尺寸取R=8mm,D和d按JB1160-82压力容器法兰用垫片标准选取。

4.6.7管箱和支座

1.管箱的分程隔板厚度为12mm。

2.支座采用固定型和滑动型鞍式支座各一个,按JB1167-81鞍式支座的B型带垫板,高度为200mm的尺寸选取。位置尺寸为两支座间距离为换热管束长度的0.6倍,且与两端相等。

4.7换热器的主要结构和尺寸

kg/h

5.换热器的安装与维护

5.1安装

1.安装位置:根据该换热器的结构形式,在换热器的两端留有足够的空间来满足拆装,维修的需要。

2.基础:必须使换热器不发生下沉,在活动支座的一端应予埋滑板。

3.地脚螺栓和垫铁

1)活动支座的地脚螺栓应装有两个紧锁的螺母,螺母与底板间应留有1-3mm的间隙。

2)地脚螺栓两侧均有垫铁。设备找平后,斜垫铁,可与设备支座底板焊牢,但不得与下面的平垫铁或滑板焊死。

3)垫铁的安装不应妨碍换热器的热膨胀。

5.2维护

换热器不得在超过规定的条件下进行。要经常对管壳程介质的温度和压降进行监管,分析换热器的泄露和结构情况。在压降增大和传热系数降低超过一定数值时,应根据介质和换热器的结构,选择有效地方法进行清洗。应经常监视管束的振动情况。

固定管板式换热器使用中的注意事项及工作原理

固定管板式换热器的注意事项及工作原理 固定管板式换热器在运行中应注意事项有: (1)换热器在新安装或检修完之后必须进行试压后才能使用。 (2)换热器在开工时要先通冷流后通热流,在停工时要先停热流后停冷流。以防止不均匀的热胀冷缩引起泄漏或损坏。 (3)固定管板式换热器不允许单向受热,浮动式换热器管、壳两侧也不允许温差过大。 (4)启动过程中,排气阀应保持打开状态,以便排出全部空气,启动结束后应关闭。 (5)如果使用碳氢化合物,在装入碳氢化合物之前要用惰性气体驱除换热器中的空气,以免发生爆炸。 (6)停工吹扫时,引汽前必须放净冷凝水,并缓慢通气,防止水击。换热器一侧通气时,必须把另一侧的放空阀打开,以免弊压损坏,关闭换热器时,应打开排气阀及疏水阀,防止冷却形成真空损坏设备。 (7)空冷器使用时要注意部分流量均匀,确保冷却效果。 (8)经常注意监视防止泄漏。 固定管板式换热器的工作原理:

图1 [固定管板式换热器]为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

固定板管式换热器设计说明书

固定板管式换热器 设 计 说 明 书 系别: 班级: 姓名: 学号:

一、 设计任务和设计条件 某炼油厂拟用原有在列管式换热器中回收柴油的热量。已知原油 流量为40000kg/h ,进口温度70℃,要求其出口温度不高于110℃;柴油流量为30000kg/h ,进口温度为175℃。设计一适当型号的换热器,已知物性数据: 二、 确定设计方案 ① 初选换热器的规格 当不计热损失时,换热器的热负荷为: Q=W )(12t t c pc C =40000/3600×2.2×103×(110-70)=9.8×105W 逆流过程如图所示: T 2125℃ T 1175℃ t 170℃ t 2110℃ 逆流平均温度差: m t = 8.5970 125110175ln ) 70125()110175( ℃ 初估 值 R= 25.170110125 175 P= 381.070 17570 110 初步决定采用单壳程,偶数管程的固定板管式换热器。经查表得校

正系数 =0.9>0.8,可行。 ∴ 53.859.80.9 逆m m t t ℃ 初步估计传热系数K 估=200W/(㎡·℃), 则 A m 07.918 .53200108.9t 5 m 估估K Q ∴所设计换热器(固定板管式)的参数选择如下表: ② 计算(管、壳程的对流传热系数和压降): a. 管程: 流通面积 220175.04 222 002.044m N N d S P T i i 柴油流速 s m S W u i i h i /666.00175.0715360030000 3600 Re 4 3 1049.11064.0715666.002.0 i i i i du 柴油被冷却,所以 ) /(701)133 .01064.01048.2(1490002.0133.0023.0Pr Re 023 .023.0338 .03 .0C m W d i i i i i ?

固定管板式换热器课设

江汉大学 课题名称: 固定管板式换热器设计 系别: 化学与环境工程学院 专业: 过控121班 学号: 122209104119 姓名: 库勇智 指导教师: 杨继军 时间: 2016年元月 课程设计任务书 设计题目:固定管板式换热器设计 一、设计目得: 1.实用国家最新压力容器标准、规范进行设计,掌握典型得过程装备 设计得全过程、 2.掌握查阅与综合分析文献资料得能力,进行设计方法与设计方案得 可行性研究与论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠,正 确掌握计算机操作与专业软件得实用。 4.掌握图纸得计算机绘图。 二、设计条件: 设计条件单

管口表 三、设计要求: 1。换热器机械设计计算及整体结构设计 2、绘制固定管板式换热器装配图(一张一号图纸) 3。管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150—2011《压力容器》,中国标

准出版社,2011。 2。国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009、 3.国家质量监督检验检疫总局,GB151—1999《管壳式换热器》,中国标准出版社,1999、 4、天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012、 5、郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010。 6。赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006、 8。E.U、施林德尔主编,《换热器设计手册》第四卷,机械工业出版社,1989。 前言 换热设备就是用于两种或两种以上流体间、一种流体一种固体间、固体粒子间或者热接触且具有不同温度得同一种流体间热量(或焓)传递得装置。 换热器就是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确得设置,性能得改善关系各部门有关工艺得合理性、经济性以及能源得有效利用与节约,对国民经济有着十分重要得影响。在炼油、化工装置中换热器占总设备数量得40%左右,

固定管板式换热器

固定管板式换热器的设计 学生:库勇智,化学与环境工程学院 指导教师:王小雨,江汉大学 摘要 换热器是用来在流体间交换热量的装置,在化学专业中具有非常重要的地位,被使用于化工各行业中。由于其中固定管板式换热器管板和壳体是一体构造,具有结构简单、造价十分便宜的优点,所以被普遍的使用。 这篇设计说明书上面着重说明了换热器的换热面积、各个设计压力和设计温度以及接管等数据参数。根据上面所给的数据和换热器类型来对换热器的各个零部件,即换热管根数,尺寸、排列方式,壳体和管箱、封头等等,最后校核、压力试验,根据工艺结构选出材料,最后作图。 本设计说明书的每一部分都是完全参照GB150-2011《压力容器》和GB151-2014《热交换器》中固定管板式换热器的有关标准来计算、校核和选型的。 关键词 管壳式换热器;固定管板式换热器;加热器

Abstract Heat exchanger is a device for exchanging heat between the fluids and in chemistry has a very important position, is used in the chemical industry. Because of the fixed tube plate heat exchanger tube plate and the shell is an integral structure, with has the advantages of simple structure, low cost advantages, so be widely use. The design specification above illustrates the change of the heat exchange area of the heat exchanger, each design pressure and temperature and over data parameters. According to the data given above and the heat exchanger type heat exchanger parts, i.e. the heat exchange tube number, size, arrangement, shell and tube box, head, and so on, finally checking, pressure test, selected according to process structure materials. Finally, drawing. The design specification is strictly according to GB150-2011< pressure container > and heat GB151-2014< exchanger is > fixed tube plate heat exchanger of the relevant provisions of the calculation, selection and checking. Key words Shell and tube heat exchanger ;fixed tube heat exchanger ;heater

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

浅谈换热器管板与换热管胀焊并用连接的制造工艺

浅谈换热器管板与换热管胀焊并用连接的制造工艺 GB151-1999标准中规定,强度胀接适用于设计压力≤4MPa、设计温度≤300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。 1 先胀后焊 管子与管板胀接后,在管端应留有15mm长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15mm的未胀管段与管板孔之间存在一个间隙。在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。据国外资料介绍,间隙腔内压力在焊接收口时可达到200~300MPa的超高压状态。间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。只有这样对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。 2 先焊后胀 在制造过程中,一台换热器中有相当数量的换热管,其外径与管板管孔孔径之间存在着较大的间隙,且每根换热管其外径与管板管孔间隙沿轴向是不均匀的。当焊接完成后胀接时,管子中心线必须与管板管孔中心线相重合。当间隙很小时,上端15mm的未胀管段将可以减轻胀接变形对焊接的影响。当间隙较大时,由于管子的刚性较大,过大的胀接变形将越过15mm未胀区的缓冲而对焊接接头产生损伤,甚至造成焊口脱焊。所以对于先焊后胀工艺,控制管子与管板孔的精度及其配合为首要的问题。当管子与管板腔的间隙小到一定值后,胀接过程将不至于损伤到焊接接头的质量。有关资料显示,管口的焊接接头承受轴向力的能力是相当大的,即使是密封焊,焊接接头在做静态拉脱试验时,管子拉断了,焊口将不会拉脱。然而焊口承受切向剪力的能力相对较差,所以强度焊后,由于控制达不到要求,可能造成过胀失效或胀接对焊接接头的损伤。 3 合理的制造工艺 3.1 管子与管孔的公差控制 (1)换热管 在采购换热管时要求每台换热器所使用的换热管在冷拔加工时应采用同一坯料(炉批次)的原料,并在同一台经校验试验合格的拉管机上生产,这样才能保证每根换热管具有相同的材质、规格与精度。换热管外径的均匀一致能保证管子与管板管孔的间隙,内径的均匀一致能保证与液袋式胀管机胀头的匹配性,从而延长胀头的使用寿命。一般管子与管板管孔间隙要求控制在(0.3±0.05)mm范围内,而液袋式胀管机胀头外径与管子内径的公差也应控制在 (0.3±0.05)mm范围内。 (2)管板 为使换热器管板管孔与管子外径在同一公差范围内,首先必须根据到货换热管外径的实际精度尺寸决定管板管孔的加工精度,如上所述,管板管孔与已到货换热管实际均匀外径间隙仍应控制在(0.3土0.05)mm范围内。 3.2换热管与管板的加工及验收

换热器设计

换热器设计: 一:确定设计方案: 1、选择换热器的类型 两流体温度变化情况,热流体进口温度130°C,出口温度80°C;冷流体进口温度40°C,出口温度65°C。该换热器用自来水冷却柴油,油品压力0.9MP,考虑到流体温差较大以及壳程压强0.9MP,初步确定为浮头式的列管式换热器。2、流动空间及流速的确定 由于冷却水容易结垢,为便于清洗,应使水走管程,柴油走壳程。从热交换角度,柴油走壳程可以与空气进行热交换,增大传热强度。选用Φ25×2.5 mm 的10号碳钢管。 二、确定物性数据 定性温度:可取流体进口温度的平均值。 壳程柴油的定性温度为 T1=130°C,T2=80°C,t1=40°C,t2=65°C T=(130+80)/2=105(°C) 管程水的定性温度为 t=(40+65)/2=52.5(°C) 已知壳程和管程流体的有关物性数据 柴油105°C下的有关物性数据如下: ρ=840 kg/m3 密度 定压比热容C o=2.15 kJ/(kg·k) 导热系数λo=0.122 W/(m·k) 粘度μo=6.7×10-4N·s/m2 水52.5°C的有关物性数据如下: ρ=988 kg/m3 密度 i C=4.175 kJ/(kg·k) 定压比热容 i λ=0.65 W/(m·k) 导热系数 i

粘度 μi =4.9×10-4 N·s/m 2 三、计算总传热系数 1.热流量 m 0=95000(kg/h) Q 0= m 0C o Δt o =95000×2.15×(130-80)=10212500kJ/h=2836.8(kw) 2.平均传热温差 m t '?=(Δt 1-Δt 2 )/ln(Δt 1/Δt 2)=[(130-65)-(80-40)]/ln[(130-65)/(80-40)]=51.5(°C) 其中Δt 1=T 1-t 2,Δt 2=T 2-t 1。 3.水用量 W c =Q 0/(C i Δt i )=10212500/[4.175×(65-40)]=97844.3kg/h=27.18kg/s 平均温差 1 221t t T T R --= =406580 130--=2 1112t T t t P --= =40 1304065--=0.28 选择卧式冷凝器,冷凝在壳程,为一壳程四管程,查图可得t ??=0.88。 m t m t t '??=???=0.88×51.5=45.32°C 管子规格5.225?φ,L=3m 。 管束排列方式:正三角形排列。 一壳程四管程三角形管束排列方式285.2175.011==n K ,。 四、传热面积初值计算 取总传热系数K=335W/(m 2.°C) 18632 .45335108.28363 =??=?=m t K Q F m 2 一管子面积 3102031???==-ππL d F i =0.1884m 2 管子数 9871884 .01861=== F F N t 管子中心距 o d t 25.1==1.25×25=31.25mm ,取t=32mm

固定管板式换热器

固定管板式换热器 一 换热管 1换热管外径 取换热管外径为25*2.5。 2换热管数量及长度 *(0.1)A n d L π=- A 换热面积 D 换热管外径 l 换热管长度 A=402m 取安全系数1.125,1*1.12546A A == 140*1.125 248*(0.1) 3.14*0.02*(30.1)A n d L π==≈-- n=248 L=3

3布管 (1)换热管排列方式 采用正三角形排列 (2)换热管中心距 查阅课本139页表5-3确定换热管中心距是32mm 。 二换热器壳体 1换热器内径计算 0*(1)(2~3)*D t b d =-+ t 管心距 d 0 换热管外径 D 壳体内径 17.32281b === 0*(1)(2~3)*D t b d =-+ t=32mm 32*(17.322811)2*25572.32992 D =-+= 取D=600mm

2筒体壁厚计算 水蒸气工作压力1.27Mpa ,脱盐水工作压力1.28Mpa 。 材料选16MnR 工作温度T=150/170℃ 查阅课本32页确定设计设计温度T W =170/190℃ 脱盐水走壳程,水蒸气走管程。 *2*[]*c i t c p D p δσφ=- δ 圆筒的计算壁厚 c p 圆筒的计算压力 []t σ 许用应力 φ 焊接接头系数 []t σ 156 查阅课本32页确定c p =1.28+0.18=1.46Mpa GB150规定焊接接头系数容器受压元件焊接接头的工艺特点以及无损检测的抽查率确定,查阅课本38页确定φ=0.85。 * 1.46*600 3.322*[]*2*156*0.86 1.46 c i t c p D mm p δσφ==≈-- d C δδ=+ 查阅课本40也确定C 2=1.5mm 。 查阅课本39页确定C 1=0.3mm C= C 1 + C 2=1.8mm 3.321 1.8 5.121d C mm δδ=+=+= 元整后6n mm δ= (3)布管限定圆 查阅GB15132*L i D D b =-

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

固定管板式换热器课程设计

固定管板式换热器设计

目录 第一章绪论 (3) 1.1什么是管壳式换热器······································3 1.2管壳式换热器的分类········································3 第二章总体结构设 计·············································4 2.1固定管板式换热器结构 (4) 第三章机械设计 (4) 3.1工艺条件··················································4 3.2设计计算 (4) (1)管子数 n···············································5 (2)换热管排列形式········································5(3)管间距的确定···········································5 (4)壳程选择···············································5 3.3 筒体 (6) (1)换热器壳体内径的确定··································6 (2)换热器封头的选择 (6) 3.4 折流板 (6) (1)折流板切口高度的确定 (6) (2)确定折流板间距........................................6(3)折流板的排列方式.. (7) (4)折流板外径的选择······································7(5)折流板厚度的确定······································7 (6)折流板的管孔确定 (7) 3.5 拉杆、定距管 (7) (1)拉杆的直径和数量 (7) (2)拉杆的尺寸 (8) (3)拉杆的布置············································9 (4)定距管 (9) 3.6、防冲

换热器管板孔沟槽刀的简易设计

换热器管板孔沟槽刀的简易设计 在换热器管束制造过程中,管板与换热管的连接方式主要有胀接、焊接、胀焊并用等方式。为了保证换热管与管板连接的密封性及抗拉脱强度,提高换热管与管板的胀接质量,通常采用在管孔上开槽的形式。原有管板挖槽依靠镗床利用手工摆动装有挖刀的芯轴来控制挖刀挖槽的深度,准确性差,造成槽的深度不一样,且挖槽后圆孔内壁出现很多毛剌难以消除,使管子胀接在管板的圆孔内后连接牢度低,密封性差。这种方式已不能完全满足批量管板沟槽的加工所以根据生产的实际需要我们设计了结构简单、经济耐用的沟槽刀具。 标签:换热管管板开槽沟槽刀简易设计 目前,管壳式热交换器(冷却器、加热器)广泛应用于石油、化工、轻工、制药能源等工业生产中。为了提高换热器的密封性能和增加拉脱力,越来越多的换热器采用了胀接(贴胀或强度胀)的密封形式,即在两端的管板孔内增加密封槽。其中对于薄管板(厚度小于25mm)一般开单槽,对于厚度大于25mm的一般设置两个沟槽,在一些有特殊要求的情况下有些设置三个沟槽。如图一。 其中δ为管板的厚度;K为槽的深度。 1 目前存在的问题 随着换热器的发展,换热器的换热面积及直径越来越大,一台管壳式换热器可能有几百根乃至上千根换热管,相应管板上就有成百上千个管孔。在每个管孔上加工两个沟槽,对机械加工带来很大的挑战。 1.1 用镗床加工如果采用在镗床上加工的方法,加工费用、加工精度以及进度都无法保证。 1.2 使用成型刀具加工如果采用外购的成型刀具,购买刀具的费用大巨大、且这种成型刀具不耐用,对中小型企业是一笔不小的开支。随着生产的换热器数量的增加,这种矛盾则更为突出。我们经过反复研究、试验、实践,设计了一款管板孔开沟槽刀具。该款刀具结构简单,并能保证沟槽的加工质量;操作过程简单,且价格低廉,适用于各种企业。目前我公司已成功用于批量生产。 2 设计原理 使用普通钻床,利用定位装置安装一活动刀头,运用钻床的上、下移动及转动来完成开槽工序。 该沟槽刀如图二所示,其组成分为刀头、刀杆、定心套、定位轴、调整螺栓、锥柄、刀体、限位螺栓、连接套等20个组件。其特点是,首先将刀杆与衬套及刀体三者利用定位轴固定为一体,工作时三者可同时转动;接着穿入定心套、轴

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数 曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得 快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和 压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度* A3 F7 y& G7 S+ Q T2 = 热侧出口温度3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度& L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

固定管板式换热器的设计

固定管板式换热器的设计 第一章.设计方案概述和简介 一、概述 在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。化工生产中换热器的使用十分普遍,由于物料的性质、要求各不相同,换热器的种类很多。了解各种换热器的特点,根据工艺要求正确选用适当类型的换热器是非常重要的。 按照热量交换的方法不同,分为间壁式换热器、直接接触式换热器、蓄热式换热器三种。化工生产中绝大多数情况下不允许冷、热两流体在传热过程中发生混合,所以,间壁式换热器的应用最广泛。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量:另一种流体温度较低,吸收热量。换热器在化工、石油、动力、制冷、食品等行业中都有广泛应用,且它们是上述这些行业的通用设备,并占有十分重要的地位 二、列管式换热器的分类 1、 U型管换热器 U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。 2、固定管板式换热器 固定管板式换热器主要是由筒体、封头、管板、换热管、管箱、折流板及法兰等组成,管束两端固定在管板上,管板和筒体之间是刚性连接在一起,相互之间无相对移动,换热器结构简单、制造方便、造价较低;在相同直径的壳体内可排列较多的换热管,而且每根换热管都可单独进行更换和管内清洗;但管外壁清洗较困难。当两种流体的温差较大时,会在壳壁和管壁中产生温差应力,一般当温差大于50摄氏度时就应考虑在壳体上设置膨胀节以减小温差应力。但当管、壳温差大于70摄氏度时,壳程压力超过0.6Mpa时,导致膨胀节过厚失去温差补偿作用。因此,固定管板式换热器适用于壳程流体清洁,不易结垢,管程常用要清洗,冷热流体温差不太大的场合。

列管式固定管板换热器设计.

目 录 第1章 工艺概述 (1) 1.1装置概况 (1) 1.2工艺原理(催化裂化) (1) 1.3工艺流程说明(吸收稳定部分) (2) 第2章 工艺设计 (3) 2.1设计概述 (3) 2.2设计课题 (3) 2.3设计参数的确定 (4) 2.4初算换热器的传热面积0S (4) 2.4.1 换热器的热流量(忽略热损失) (4) 2.4.2 水蒸气的消耗量(忽略热损失) (4) 2.4.3平均传热温差 (5) 2.4.4计算传热面积 (5) 2.5主要工艺及结构基本参数的计算 (5) 2.5.1换热管选择 (5) 2.5.2计算壳体内直径i D (6) 2.5.3画出排管图 (6) 2.5.4计算实际传热面积0S 及过程的总传热系数0()K 选 (7) 2.5.5折流板直径c D 数量及有关尺寸的确定 (7) 2.5.6拉杆的直径和数量与定居管的选定 (7) 2.6换热器核算 (7)

2.6.1换热器内流体的压力降 (7) 2.6.2热流量核算 (8) 第3章结构设计 (10) 3.1折流挡板 (10) 3.2 法兰 (10) 3.3换热管 (11) 3.4支座 (11) 3.5压力容器选材原则 (11) 3.6垫片 (12) 第4章强度计算 (13) 4.1筒体壁厚计算 (13) 4.2流体进、出口接管直径 (13) 4.3其他结构尺寸 (14) 4.4支座反力 (14) 4.5筒体弯矩 (15) 4.5.1圆筒中间处截面上的弯矩 (15) 4.5.2支座处横截面间弯距 (16) 4.6系数计算 (16) 4.7筒体轴向应力 (16) 4.7.1轴向应力 (16) 4.7.2应力校核 (17) 4.8鞍座处圆筒周向应力 (18) 4.9鞍座应力 (18) 第5章设计结果汇总 (19) 参考文献 (20)

固定管板式换热器设计-过程设备设计课程设计报告书

目录 1.换热器选型和工艺设计 (3) 1.1设计条件 (3) 1.2换热器选型 (3) 1.3工艺设计 (3) 1.3.1传热管根数的确定 (4) 1.3.2传热管排列和分程方法 (4) 1.3.3壳体径 (4) 2 换热器结构设计与强度校核 (4) 2.1 管板设计 (4) 2.1.1管板材料和选型 (5) 2.1.2管板结构尺寸 (5) 2.1.3管板质量计算 (6) 2.2法兰与垫片 (6) 2.2.1管箱法兰与管箱垫片 (7) 2.3 接管 (8) 2.3.1接管的外伸长度 (9) 2.3.2 接管位置设计 (9) 2.3.3 接管法兰 (10) 2.4管箱设计 (12) 2.4.1管箱结构形式选择 (12) 2.4.2管箱最小长度 (12) 2.5 换热管 (13) 2.5.1 布管限定圆 (13) 2.5.2 换热管与管板的连接 (13) 2.6 拉杆与定距管 (14) 2.6.1 拉杆的结构形式 (14) 2.6.2 拉杆的直径、数量及布置 (14) 2.6.3 定距管 (15)

2.7防冲板 (15) 2.7.1防冲板选型 (15) 2.7.2防冲板尺寸 (16) 2.8 折流板 (16) 2.8.1 折流板的型式和尺寸 (16) 2.8.2 折流板的布置 (17) 2.8.3 折流板重量计算 (17) 3.强度计算 (18) 3.1壳体和管箱厚度计算 (18) 3.1.1 壳体、管箱和换热管材料的选择 (18) 3.1.2 圆筒壳体厚度的计算 (18) 3.1.3 管箱厚度计算 (19) 3.2 开孔补强计算 (20) 3.2.1 壳体上开孔补强计算 (20) 3.3 水压试验 (20) 3.4支座 (21) 3.4.1支反力计算如下: (21) 3.4.2 鞍座的型号及尺寸 (22) 4焊接工艺设计 (23) 4.1.壳体与焊接 (23) 4.1 .1壳体焊接顺序 (23) 4.1.2 壳体的纵环焊缝 (24) 4.2 换热管与管板的焊接 (24) 4.2.1 焊接工艺 (24) 4.2.2 法兰与短节的焊接 (25) 4.2.3管板与壳体、封头的焊接 (26) 4.2.4接管与壳体焊接 (26) 总结 (28) 参考文献 (28)

固定管板式换热器压力容器计算书

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN 工程名: PROJECT 设备位号: ITEM 设备名称: 021000 EQUIPMENT 图号: 00000000000001 DWG NO。 设计单位:神雕是的发放神雕爱疯阿斯蒂芬艾丝凡 DESIGNER

设计计算条件 壳程管程 设计压力p 4 MPa设计压力p t 1 MPa s 设计温度t 120 ?C设计温度t t70 ?C s 壳程圆筒外径Do 325 mm 管箱圆筒外径Do 325 mm 材料名称20(GB8163) 材料名称20(GB8163) 简图 计算内容 壳程圆筒校核计算 前端管箱圆筒校核计算 前端管箱封头(平盖)校核计算 后端管箱圆筒校核计算 后端管箱封头(平盖)校核计算 管箱法兰校核计算 开孔补强设计计算 管板校核计算

计算所依据的标准 GB 150.3-2011 计算条件 椭圆封头简图 计算压力 P c 1.00 MPa 设计温度 t 70.00 ? C 外径 D o 325.00 mm 曲面深度 h o 83.00 mm 材料 Q235-B (板材) 设计温度许用应力 [σ]t 114.12 MPa 试验温度许用应力 [σ] 116.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 1.00 mm 焊接接头系数 φ 1.00 压力试验时应力校核 压力试验类型 液压试验 试验压力值 P T = 1.25P c t ] [][σσ= 1.0000 (或由用户输入) MPa 压力试验允许通过的应力[σ]t [σ]T ≤ 0.90 σs = 211.50 MPa 试验压力下封头的应力 σT = φδδ.2))5.02(.(e e o T K KD p --= 24.45 MPa 校核条件 σT ≤ [σ]T 校核结果 合格 厚度及重量计算 形状系数 K = ??? ? ???????? ? ?--+2 o )(22261nh o h n h D δδ = 1.0406 计算厚度 δh = ()c t o c 5.02][2P K D KP -+φσ = 1.47 mm 有效厚度 δeh =δn - C 1- C 2= 6.70 mm 最小厚度 δmin = 3.00 mm 名义厚度 δnh = 8.00 mm 结论 满足最小厚度要求 重量 8.16 Kg 压 力 计 算 最大允许工作压力 [P w ]= ()e o e t 5.02][2δφδσ--K KD = 4.66810 MPa 结论 合格

相关文档
最新文档