实验1胰蛋白酶的米氏常数测定

实验1胰蛋白酶的米氏常数测定
实验1胰蛋白酶的米氏常数测定

表1 实验原始记录

试验号(酶解时间/min) 2min 4min 6min 8min 酪蛋白浓度NaOH消耗的体积/ mL

11.4g/L 2.00 2.25 2.43 2.55

15.0g/L 4.10 4.45 4.65 4.75

21.0g/L 4.90 5.05 5.40(舍) 5.90

35.0g/L 6.45 7.05 7.55 7.82

表2 求得的v0 与[s] 的值

酪蛋白浓度1/ [s] 初速度1/v0[s] /v0 [S] /(g/L)V0/(umol/min)

11.4 0.0877 9.15 0.1090 1.242 15.0 0.0667 10.75 0.0930 1.395 21.0 0.0476 17.32 0.0577 1.212 35.0 0.0286 23.05 0.0434 1.518

光电效应和普朗克常量的测定-实验报告

光电效应和普朗克常量的测定 创建人:系统管理员总分:100 实验目的 了解光电效应的基本规律,学会用光电效应法测普朗克常量;测定并画出光电管的光电特性曲线。 实验仪器 水银灯、滤光片、遮光片、光电管、光电效应参数测试仪。 实验原理 光电效应: 当光照射在物体上时,光子的能量一部分以热的形式被物体吸收,另一部分则转换为物体中一些电子的能量,是部分电子逃逸出物体表面。这种现象称为光电效应。爱因斯坦曾凭借其对光电效应的研究获得诺贝尔奖。在光电效应现象中,光展示其粒子性。 光电效应装置: S 为真空光电管。内有电极板,A 、K 极板分别为阳极和阴极。G 为检流计(或灵敏电流表)。 无光照时,光电管内部断路,G中没有电流通过。U 为电压表,测量光电管端电压。 由于光电管相当于阻值很大的“电阻”,与其相比之下检流计的内阻基本忽略。故检流计采用

“内接法”。 用一波长较短(光子能量较大)的单色光束照射阴极板,会逸出光电子。在电源产生的加速电场作用下向 A 级定向移动,形成光电流。显然,如按照图中连接方式,U越大时,光电流I 势必越大。于是,我们可以作出光电管的伏安特性曲线,U=I 曲线关系大致如下图: 随着U 的增大,I 逐渐增加到饱和电流值IH。 另一方面,随着U 的反向增大,当增大到一个遏制电位差Ua时,I 恰好为零。此时电子的动能在到达 A 板时恰好耗尽。 光电子在从阴极逸出时具有初动能1mv2,当U=Ua时,此初动能恰好等于其克服电场力 2 所做的功。即:1mv2=e|U a | 根据爱因斯坦的假设,每粒光子有能量= hv。式中h 为普朗克常量,v为入射光波频率。 物体表面的电子吸收了这个能量后,一部分消耗在克服物体固有的逸出功 A 上,另一部分

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

光电效应测普朗克常数-实验报告

综合、设计性实验报告 年级 ***** 学号********** 姓名 **** 时间********** 成绩 _________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中,为普朗克常数,它的公认值是 = 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中,为入射光的频率,为电子的质量,为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位被称为光电效应的截止电压。 显然,有 (2)代入(1)式,即有 (3)由上式可知,若光电子能量,则不能产生光电子。产生光电效应的最低频率是,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一

介电常数测试仪的设计与制作实验报告

实验题目: 简易介电常数测试仪的设计与制作 实验目的: 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法, 比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理: 介电体(又称电介质)最基本的物理性质是它的介电性,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构和激化机理的重要分析手段之一,探索高介电常数的电介质材料,对电子工业元器件的小型化有着重要的意义。介电常数(又称电容率)是反映材料特性的重要参量,电介质极化能力越强,其介电常数就越大。测量介电常数的方法很多,常用的有比较法,替代法,电桥法,谐振法,Q 表法,直流测量法和微波测量法等。各种方法各有特点和适用范围,因而要根据材料的性能,样品的形状和尺寸大小及所需测量的频率范围等选择适当的测量方法。 介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为 样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为kHz 1时的电容量C 。 一、替代法 替代法电路图如下所示,将待测电容X C (图中X R 是待测电容的介电损耗电

阻),限流电阻0R (取Ωk 1)、安培计与信号源组成一简单串联电路。合上开关1K ,调节信号源的频率和电压及限流电阻0R ,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数X I 。将开关2K 打到B 点,让标准电容箱S C 和交流电阻箱S R 替代X C ,调节S C 和S R 值,使S I 接近X I 。多次变换开关2K 的位置(A , B 位),反复调节S C 和S R ,使X S I I =。假定X C 上的介电损耗电阻X R 与标准电容箱的介电损耗电阻S R 相接近(S X R R ≈),则有S X C C =。 二、比较法 比较法的电路图如下所示,假定S C 上的S R 与X R 接近(S X R R ≈),则测量X C 和S C 上的电压比 X S V V 即可求得X C : X S S X V V C C ?=(此时X V 可以不等于S V ) 三、谐振法

光电效应测普朗克常量实验报告

三、实验原理 1.光电效应 当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。所产生的电子,称为光电子。光电效应是光的经典电磁理论所不能解释的。当金属中的电子吸收一个频率为v的光子时,便获得这光子的全部能量hv,如果这能量大于电子摆脱金属表面的约束所需要的脱出功W,电子就会从金属中逸出。按照能量守恒原理有: (1) 上式称为爱因斯坦方程,其中m和m 是光电子的质量和最大速度,是光电子逸出表面后所具有的最大动能。它说明光子能量hv小于W时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率v0=W/h,称为光电效应的极限频率(又称红限)。不同的金属材料有不同的脱出功,因而υ0也是不同的。由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极 电位被称为光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量,则不能产生光电子。产生光电效应的最低频率是 ,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而也不同。由于光 的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子ν的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压是入射光频率ν的线性函数,如图2,当入射光的频率时, 截止电压,没有光电子逸出。图中的直线的斜率是一个正的常数: (5)

介电常数的测量

《大学物理》实验报告 学院: 专业: 姓名: 学号: 实验题目:介电常数的测量 实验目的:1.掌握固体、液体电介质相对介电常数的测量原理及方法 2.学习减小系统误差的实验方法 3.学习用线性回归处理数据的方法。 实验原理:用两块平行放置的金属电极构成一个平行板电容器,其电容量为: D S C ε= D 为极板间距,S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0ε,m F /1085.8120-?=ε。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值r ε。 如能测出平行板电容器在真空里的电容量C 1及充满介质时的电容量C 2,则介质的相对介电常数即为 1 2 r C C ε= 然而C 1、C 2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1. 用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C 1和放入固体电介质后的电容C 2。 1101C C C C 分边++= 222C C C C 分边串++= 其中C 0是电极间以空气为介质、样品的面积为S 而计算出的电容量: D S C 00ε= C 边为样品面积以外电极间的电容量和边界电容之和,C 分为测量引线及测量系统等引起的分

布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串,根据电容串联公式有: (D-t) εt S εεt S εεt D S εt S ε εD-t S εC r r r r +=+-? =0 0000串 当两次测量中电极间距D 为一定值,系统状态保持不变,则有21C C 边边=、21C C 分分=。 得:012C C C C +-=串 最终得固体介质相对介电常数:t) (D C S εt C ε r --?= 串0串 该结果中不再包含分布电容和边缘电容,也就是说运用该实验方法消除了由分布电容和边缘效应引入的系统误差。 2. 线性回归法测真空介电常数0ε 上述测量装置在不考虑边界效应的情况下,系统的总电容为:分0 0C D S εC += 保持系统分布电容不变,改变电容器的极板间距D ,不同的D 值,对应测出两极板间充满空气时的电容量C 。与线性函数的标准式BX A Y +=对比可得:C Y =,分C A =, 00S B ε=,D 1 X = ,其中S 0为平行板电容极板面积。用最小二乘法进行线性回归,求得分布电容C 分和真空介电常数0ε(空εε≈0)。 3.用频率法测定液体电介质的相对介电常数 所用电极是两个容量不相等并组合在一起的空气电容,电极在空气中的电容量分别为C 01和C 02,通过一个开关与测试仪相连,可分别接入电路中。测试仪中的电感L 与电极电容和分布电容等构成LC 振荡回路。振荡频率为: LC 2π1 f =,或 22 2 241f k Lf C ==π 其中分C C C 0+=。测试仪中电感L 一定,即式中k 为常数,则频率仅随电容C 的变 化而变化。当电极在空气中时接入电容C 01,相应的振荡频率为f 01 ,得:2012 01f k C C =+分, 接入电容C 02,相应的振荡频率为f 02 ,得:202 2 02f k C C =+分

光电效应测量普朗克常量实验报告

竭诚为您提供优质文档/双击可除光电效应测量普朗克常量实验报告 篇一:光电效应测普朗克常量实验报告 三、实验原理1.光电效应 当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。所产生的电子,称为光电子。光电效应是光的经典电磁理论所不能解释的。当金属中的电子吸收一个频率为v的光子时,便获得这光子的全部能量hv,如果这能量大于电子摆脱金属表面的约束所需要的脱出功w,电子就会从金属中逸出。按照能量守恒原理有: (1) 上式称为爱因斯坦方程,其中m和?m是光电子的质量和最大速度,是光电子逸出表面 后所具有的最大动能。它说明光子能量hv小于w时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率v0=w/h,称为光电效应的极限频率(又称红限)。不同的金属材料有不同的脱出功,因而υ0也

是不同的。由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位 被称为光电效应的截止电压。 显然,有 代入(1)式,即有 (3) 由上式可知,若光电子能量 ,则不能产生光电子。产生光电效应的最低频率是 (2) ,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子ν的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 是入射光频率ν的线性函数,如图2,当入射光的频率 时,

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

过氧化氢酶米氏常数的测定

过氧化氢酶米氏常数的测定 傅璐121140012 一、实验目的 1. 了解米氏常数的测定方法 2. 学习提取生物组织中的酶 二、实验原理 1.米氏反应动力学 (Michaelis-Menten Equation): 米氏方程 2.米氏常数的意义: ①反映酶的种类:Km是一种酶的特征常数,只与酶的种类有关,与酶浓度、 底物浓度无关。 ②米氏常数是酶促反应达到最大反应速度Vmax一半时的底物浓度。其数值大 小反映了酶与底物之间的亲和力:Km值越大,亲和力越弱,反之Km值越小,亲和能力越强。 ③Km可用来判断酶(多功能酶)的最适底物:Km值最小的酶促反应对应底物 就是该酶的最适底物。 3.米氏常数的求法: 该方法的缺点是难以确定最大 反应速度Vmax。

该作图法应用最广。但在低浓度是v值误差较大,在[S]等差值实验时作图点较集中于纵轴。因此在设计底物浓度时,最好将1/[S]配成等差数列,这样可使点距较为平均,再配以最小二乘回归法,就可以得到较为准确的结果。 此法优点是横轴上点分布均匀,缺点是1/v会放大误差,同时对底物浓度的选择有要求。[S]<>Km时直线将在原点附近与轴相交。 4.氧化酶:生物体内重要的三种氧化酶类,其作用均是消除体内自由基: ①POD:过氧化物酶 ②SOD:超氧化物歧化酶 ③CAT:;过氧化氢酶 5.过氧化氢酶的作用: 植物体内活性氧代谢加强而使过氧化氢发生积累。过氧化氢可进行一步生成氢氧自由基。氢氧自由基是化学性质最活泼的活性氧,可以直接或间接地氧化细胞内核酸、蛋白质等生物大分子,并且有非常高的速度常数,破坏性极强,可使细胞膜遭受损害,加速细胞的衰老和解体。过氧化氢酶(catalase,CAT)可以清除过氧化氢、分解氢氧自由基,保护机体细胞稳定的内环境及细胞的正常生活,因此CAT是植物体内重要的酶促防御系统之一,其活性高低与植物的抗逆性密切相关。 6.过氧化氢酶活力的测定方法:

碱性磷酸酶米氏常数测定

碱性磷酸酶米氏常数测定 P60 【实验原理】 在环境的温度、pH和酶的浓度一定时,酶促反应速度与底物浓度之间的关系表现在反应开始时,酶促反应的速度(V)随底物浓度(S)的增加而迅速增加。若继续增加底物浓度,反应速度的增加率将减少。当底物浓度增加到某种程度时,反应速度会达到一个极限值,即最大反应速度(V max),如图所示。 底物浓度与酶促反应速度的这种关系可用Michaelis-Menten方程式表示。 V = V max[S]/(K m+[S]) 上式中V max为最大反应速度,[S]为底物浓度,K m为米氏常数(Michaelis constant),而其中V则表示反应的起始速度。当V= V max/2时,K m=[S]。所以米氏常数是反应速度等于最大反应速度一半时底物的浓度。因此K m的单位以摩尔浓度(mol/L)表示。 K m是酶的最重要的特征性常数,测定K m值是研究酶动力学的一种重要方法,大多数酶的K m值在0.01-100(mmol/L)间。 酶促反应的最大速度V max实际上不易准确测定,K m值也就不易准确测出。林-贝(1ineweaver - Burk)根据Michaelis-Menten方程,推导出如下方程式,即:1/V = (K m +[S])/ V max[S]或1/V = K m/ V max·(1/[S])+1/ V max 此式为直线方程,以不同的底物浓度1/[S]为横坐标,以1/V为纵坐标,并将各点连成一直线,向纵轴方向延长,此线与横轴相交的负截距为-1/ K m,由此可以正确求得该酶的K m值,如图所示。

本实验以碱性磷酸酶为例,测定不同底物浓度的酶活性,再根据Lineweaver-Burk法作图,计算其K m值。 可以作为碱性磷酸酶底物的物质很多,底物反应的酶对于不同的底物有不同的K m值。本实验以磷酸苯二钠为底物,由碱性磷酸酶催化水解,生成游离酚和磷酸盐。酚在碱性条件下与4-氨基安替比林作用,经铁氰化钾氧化,生成红色的醌衍生物,颜色深浅和酚的含量成正比。故可以从标准曲线上查知酚的含量,从而计算化学反应速度。反应式如下: 【实验方法】 一.底物浓度对酶促反应速度的影响 (1) 取6支试管,作好标记,按下表操作。 管号123456 0.04mol/L 基质液/mL0.10 0.20 0.30 0.40 0.80 0.0 0.1mol/L碳酸盐缓冲液/mL0.70 0.70 0.70 0.70 0.70 0.70 蒸馏水/mL 1.10 1.00 0.90 0.80 0.40 1.20 37℃水浴5min 血清/mL0.10 0.10 0.10 0.10 0.10 0.10 最终基质浓度/mmol?L-1 2.00 4.00 6.00 8.00 16.00 0.00 (2) 加入血清后,各管混匀并且立即记录时间,将上述各管置37℃水浴中准确保温15 分钟。 (3) 保温结束,立即加碱性溶液1.1mL终止反应。 (4) 各管分别加入0.3%4-氨基安替比林1.0mL,0.5%铁氰化钾2.0mL,充分混匀,放置10分钟,以6号空白管作对照,于510nm波长处比色测定,根据酚标准曲线计算酚含量。 (5) 以各管基质浓度的倒数1/[S]为横坐标,以各管反应速度的倒数1/V(μmol.L-1.min-1为单位)作纵坐标,作图求出K m值。 二.酚标准曲线的绘制 (1) 取洁净干燥试管6支,按下表依次加入试剂。

3.静电实验研究 实验报告

静电实验研究实验报告 【实验目的】 1、掌握静电的特点分析静电演示实验成功的关键。 2、掌握静电学的主要实验的演示方法掌握韦氏起电机和范德格拉夫起电机的构 造及使用方法。 3、加深对静电现象及其原理的理解。 【实验器材】静电计 韦氏起电机、范德格拉夫起电机、验电器、验电羽、金属网、尖形布电器、平行板电容器、枕形导体、球形导体、起点盘及静电除尘装置、绝缘体等。 【仪器介绍】一、验电器 验电器是用来检验物质是否带电的仪器。验 电器的结构如图1所示 验电器的工作原理是当带电物质接触金属球 时就会有很少的带电粒子传到验电器上面金属箔 就会张开。验电器金属箔张开的角度和物质带电 量的大小成正比。 利用验电器判断物质所带电量正负的方法很简单先将一个物体与球接触再将另一个物体与 球接触张角变大表明两物体带同种电荷张角变小或张角先变小后变大表明两物体带异号电荷。 二、静电计 将验电器装上刻度盘与金属底座就构成了一个静电计静电计的示意图如右图 静电计可以测量

带点物质的电势。将带点物质连接到小球上显示的就是对于地面的电势。将两个物体分别接于金属球和底座测得的就是两物体的电势差。 三、 起电机 1、 韦氏起电机韦氏起电机是实验室常用的起电 机示意图如下 图 1 验电器示意图 图 2 静电计 图 3 韦氏起电机示意图

韦氏起电机是利用静电感应原理制作的它靠莱顿瓶积累电荷。当积累的电荷达到一定的数量两个金属球就会放电。 2、范德格拉夫起电机 图4 范德格拉夫起电机 范德格拉夫起电机是利用橡胶皮带将负电荷从内部不断的运送到电极上使电机所带的电荷越来越多电势也越来越高。理论上对地电位可以达到无穷大。 【实验内容】 实验一演示感应起电 1、摩擦起电 两种物质相互摩擦电子在力的作用下会从一个物体转移到另一个物体两个物体就会带异号电荷。 丝绸摩擦玻璃棒带正电。毛皮摩擦橡胶棒带负电。 带电玻璃棒接触验电器验电器有张角。带电橡胶棒接触验电器张角闭合。 可见两个带异号电荷。 2、感应起电 将带电物体靠近导体由于同性相斥异性相吸导体靠近带点物质的部分会带异号电荷远离的部分带同种电荷。 将带电玻璃棒靠近验电器验电器有张角可见感应起电。将一个接地的导线接触验电器验电器的张角闭合。将导线离开验电器玻璃棒也远离验电器验电器又有张角表明验电器带电。接地的导线使验电器上与玻璃棒同号的电荷传到地上验电器上就只有与玻璃棒异号的电荷。这时拿带电橡胶棒接触验电器验电器张角闭合。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告 以下是为大家整理的光电效应测普朗克常量实验报告的相关范文,本文关键词为光电效应,普朗克,常量,实验,报告,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:光电效应测普朗克常量实验报告 广东第二师范学院学生实验报告 1 2 3 4 5 篇二:光电效应测普朗克常数-实验报告 普朗克常量的测定 【摘要】 本文介绍了大学物理实验中常用的光电效应测普朗克常量实验的基本原理及实验操作过程,验证了爱因斯坦光电效应方程并精确测

量了普朗克常量,通过对实验得出的数据仔细分析比较,探讨了误差现象及其产生的原因,根据实验过程中得到的体会和思索,提出了一些改进实验仪器和条件的设想。 【关键字】 爱因斯坦光电方程;光电流;普朗克常量 【引言】 在文艺复兴和工业革命后,物理学得到了迅猛的发展,在实际应用中也发挥了巨大的作用。此刻人们感觉物理学的大厦已经建成,剩下只是一些补充。直到19世纪末,物理学领域出现了四大危机:光电效应、固体比热、黑体辐射、原子光谱,其实验现象用经典物理学的理论难以解释,尤其对光电效应现象的解释与理论大相径庭。 光电效应最初是赫兹在1886年12月进行电磁波实验研究中偶然发现的,虽然是偶然发现,但他立即意识到它的重要性,因此在以后的几个月中他暂时放下了手头的研究,对这一现象进行了专门的研究。虽然赫兹没能给出光电效应以合理的解释,但赫兹的论文发表后,光电效应成了19世纪末物理学中一个非常活跃的研究课题。勒纳是赫兹的学生和助手,很早就对光电效应产生了兴趣。1920年他发表论文介绍了他的研究成果,勒纳得出,发射的电子数正比于入射光所带的能量,电子的速度和动能与发射的电子数目完全无关,而只与波长有关,波长减少动能增加,每种金属对应一特定频率,当入射光小于这一频率时,不发生光电效应。虽然勒纳对光电效应的规律认识很清楚,但其解释却是错误的。

碱性磷酸酶米氏常数的测定

碱性磷酸酶米氏常数的测定 [目的与要求] 通过碱性磷酸酶米氏常数的测定,了解其测定方法及意义。学会运用标准曲线测定酶的活性,加深对酶促反应动力学的理解。 [原理] 在环境的温度、pH和酶的浓度一定时。酶促反应速度与底物浓度之间的关系表现在反应开始时。酶促反应的速度(V)随底物浓度(S)的增加而迅速增加。若继续增加底物浓度,反应速度的增加率将减少。当底物浓度增加到某种程度时,反应速度会达到一个极限值,即最大反应速度(V max),如图37所示。 底物浓度与酶促反应速度的这种关系可用Michaelis-Menten方程式表示。 V = V max[S]/(K m+[S]) 上式中V max为最大反应速度,[S]为底物浓度,K m为米氏常数(Michaelis constant),而其中V则表示反应的起始速度。当V= V max/2时,K m =[S]。所以米氏常数是反应速度等于最大反应速度一半时底物的浓度。因此K m的单位以摩尔浓度(mol/L)表示。 K m是酶的最重要的特征性常数,测定K m值是研究酶动力学的一种重要方法,大多数酶的K m值在0.01-100(mmol/L)间。 酶促反应的最大速度V max实际上不易准确测定,K m值也就不易准确测出。林-贝(1ineweaver - Burk)根据Michaelis-Menten方程,推导出如下方程式,即: 1/V = (K m +[S])/ V max[S]或1/V = K m/ V max·(1/[S])+1/ V max 此式为直线方程,以不同的底物浓度1/[S]为横坐标,以1/V为纵坐标,并将各点连成 一直线,向纵轴方向延长,此线与横轴相交的负截距为-1/ K m,由此可以正确求得该酶的K m 值,如图38所示。 图37 底物浓度对反应速度的影响图38 Lineweaver-Burk作图法 本实验以碱性磷酸酶为例,测定不同底物浓度的酶活性,再根据Lineweaver-Burk法作图,计算其K m值。 可以作为碱性磷酸酶底物的物质很多,底物反应的酶对于不同的底物有不同的K m值。本实验以磷酸苯二钠为底物,由碱性磷酸酶催化水解,生成游离酚和磷酸盐。酚在碱性条件下与4-氨基安替比林作用,经铁氰化钾氧化,生成红色的醌衍生物,颜色深浅和酚的含量成正比。根据吸光度的大小可以计算出酶的活性,也可以从标准曲线上查知酚的含量,进而算出酶活性的大小。反应式如下:

大学物理实验-介电常数的测量

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较 法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样 品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为样 品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有

s x C C =。 另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若s x R R ≈,则有 s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到 X S V V =,所以用比较法只能部分修正电压差带来的误 差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号 源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小 误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

光电效应测普朗克常数实验报告

综合、设计性实验报告 年级***** 学号********** 姓名**** 时间********** 成绩_________

一、 实验题目 光电效应测普朗克常数 二、 实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY —GD —3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、 实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为 的光波,每个光子的能量为 式中, 为普朗克常数,它的公认值是 = 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1) 式中, 为入射光的频率,m 为电子的质量,v 为光电子逸出金属表面的初 速度, 为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最 大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子

都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为 光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 0γγ=时,截止电压00=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的 γ -0U 曲线,并求出此曲线的 斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电 量。

米氏常数的测定

底物浓度对酶促反应速度的影响 ——米氏常数的测定 一.目的要求 1.1了解底物浓度对酶促反应的影响。 1.2掌握测定米氏常数K m 的原理和方法。 二.实验原理 酶促反应速度与底物浓度的关系可用米氏方程来表示: 式中: v ——反应初速度(微摩尔浓度变化/min ); V ——最大反应速度(微摩尔浓度变化/min ); [s]——底物浓度(mol/L ); K m ——米氏常数(mol/L )。 这个方程表明当已知K m 及V 时,酶促反应速度与底物浓度之间的定量关系。K m 值等于酶促反应速度达到最大反应速度一半时所对应的底物浓度,是酶的特征常数之一。不同的酶,K m 值不同,同一种酶与不同底物反应K m 值也不同,K m 值可以近似地反应酶与底物的亲和力大小:K m 值越大,表明亲和力小;K m 值小,表明亲和力大。则测K m 值是酶学研究的一个重要方法。大多数纯酶的K m 值在0.01~100mmol/L 。 Linewaeaver-Burk 作图法(双倒数作图法)是用实验方法测K m 值的最常用的简便方法: 实验时可选择不同的[s],测定对应的v ,以 对 作图,得到一个斜率为V K m 的直线,其截距 ][1s 则为m K 1,由此可求出K m 的值(截距的负倒数)。 本实验以胰蛋白酶消化酪蛋白为例,采用Linewaeaver-Burk 双倒数作图法测定双倒数作图法。胰蛋白酶催化蛋白质中碱性氨基酸(L-精氨酸和L-赖氨酸)的羧基所形成的肽键水解。水解时有自由氨基生成,可用甲醛滴定法判断自由氨基增加的数量而跟踪反应,求得初速度。 ] [][s K s V v m += V s V K v m 1 ][1.1+ =v 1][1s

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比 较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量 样品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数, m F /1085.8120-?=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测 样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有s x C C =。

另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若 s x R R ≈,则有s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到X S V V =,所以用比较法只能部分修正电压差带来的误差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取 1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出:L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

光电效应法测普朗克常量 实验报告

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 实验题目:光电效应法测普朗克常量 实验目的:1.了解光电效应的基本规律; 2.用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理:当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。 光电效应实验原理如图8.2.1-1所示。 1.光电流与入射光强度的关系 光电流随加速电位差U的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H,饱和电流与光强成正比,而与入射光的频率无关。当U= U A-U K变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a存在,当电位差达到这个值时,光电流为零。 2.光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A极运动。当U=U a时,光电子不再能达到A极,光电流为零。所以电子的初动

能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子。每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv +=2 2 1 (2) 式(2)称为爱因斯坦光电效应方程。 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得:A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。

相关文档
最新文档