三相四线制供电线路中负载失衡可能产生的后果

三相四线制供电线路中负载失衡可能产生的后果
三相四线制供电线路中负载失衡可能产生的后果

三相四线制供电线路中负载失衡可能产生的后果

在三相四线制供电线路中,一般都力争使三相负载平衡,以确保供电线路安全可靠运行。但是,要做到完全平衡是很难的,尤其是在民用线路中,根本就做不到这一点。

三相负载失衡有以下两种可能:

(1) 某相或某两相负载过多,相电流较大,中性线电流也可能较大,如果长期运行,相线和中性线绝缘层易先老化。

(2) 负载看上去比较接近,各相电流也较相近,但中性线电流却很大,甚至超过最大相电流,这是一种较为严重的失衡现象。

在实验中,三相四线制供电线路原理如图1所示,测得相电压U

A =U

B

=U

C

=220V,

测得I

A =I

B

=4A,I

C

=3.2A,I

N

=4.2A。

图1 三相四线制实验线路图

图2 电流电压相量图

为什么三相输入电压对称,各相电流有效值也较接近的情况下,中性线电流却大于最大相电流?排除测量方法不当及测量仪表误差等因素,经过反复分析,得出的结论:三相负载的性质不同所引起的,通过测量各相负载的功率因数角可

得|Φ

A |=|Φ

B

|=40°,ΦC=0°,在Z

A

和Z

B

中必有一相为感性,一相为容性。

(1) 假设Z

A 为感性,Z

B

为容性。

向量图如图2所示。

|ì

A +ì

B

|=2cos20°ì

A

=7.5A;

ìN =|ì

A

B

C

|=4.3A。

理论分析计算和仪表测量结果基本吻合。

(2) 假设Z

A 为容性,Z

B

为感性。

向量图如图3所示。

图3 电流电压相量图

|ì

A +ì

B

|=2cos80°·ì

A

=1.4A

ìN =|ì

A

B

C

|=4.6A

由此可见,如果将A、B两相负载互换,中线电流会更大。所以在三相四线制供电线路中,三相负载是数值相等并不等于三相负载对称平衡。三相负载性质不同,将会引起中线电流过大,造成严重失衡。

以上是通过实验得到的结论,实际中,现代大楼办公设备上使用较多的单相净化稳压电源,这些负载往往呈容性,而传统的白炽灯、日光灯均呈阻性和感性,这样不同负载接成三相四线制,就会出现中性线电流过大的现象。

三相四线制概念

1.什么是三相五线制? 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。三相五线制包括三根相线、一根工作零线、一根保护零线。三相五线制的接线方式如下图1所示。 图1 三相五线制接线示意图 该接线的特点是:工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种接线能用于单相负载、没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N 是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 2.三相五线制与三相四线制的比较 (1)基本供电系统简介 常用的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN 系统、IT系统。其中TN系统又分为TN-C、TN-S系统。 TT式供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地, TN方式供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用TN表示。TN-C方式供电系统是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,即常用的三相四线制供电方式。TN-S式供电系统是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,即常用的三相五线制供电方式。 IT方式供电系统,其中I表示电源侧没有工作接地,或经过高阻抗接地。第二个字母T 表示负载侧电气设备进行接地保护。IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如连续生产装置、大医院的手术室、地下矿井等处。 (2)三相四线制(TN-C)与三相五线制(TN-S)系统的比较

三相四线制配电系统-下载

三相四线制配电系统,适用于低电压用户。 三相说白了就是常说的三根火线,但是他们互相之间有个120度的角度差。 也就是说,在同一时间,三根火线上的电压,电流之和都等于零。 三相四线制配电,是由一般的供电变压器低压侧引出,变压器低压侧为星(Y)型接线,它一共有4根出线,每相的通过三个相同的负载后都要通过中性线(零线)回到变压器。 零线不带电。电路要畅通总得有电压高的和电压低的。这样才能从电压高的流向电压低的。零线0电压 没有零线可以 1,零线是单相电,电流回路线,电压通常是220伏,电流经过火线与零线之间的电器就作功了,没有作功的电就经过零线回电厂了。两根或三根火线也能组成回路,其电压就是380伏。 2,家庭用电是单相电,供电部门送来的是一根火线,一根零线,家里墙上插座的火线零线就是这么接过来的,另外还有个孔是接地线,以防电器漏电,也叫安全线 电压是两点之间的电势差,平时说的电压隐含了以大地为零电势面的前提。零线是三相供电制的相平衡(电势连)线,理论上对大地电压应是 0V,实际上相平衡不能时刻保证,所以零线会有微弱的电压。 为什么火线有电压而零线没有? 简单一点说,在两相电中不是电从火线流向零线的,而是在相互交替变化着来回的流,一秒钟变化50次,也就是我们说的频率是50赫兹,发电厂出来的电,其中一相输出的同时,进行接地连接,那么这一相就是零线了。而另一相则为火线,大地本身导电,两根线又是同相所以不存在电压差,因此也不会有电压。 远距离高压输电用三相三线制,三根都是火线,没有零线。到变压成我们用的380V或是220V工频电源时,在变电处将零线接地所以地线和零线在变压器处同点位,除非它的接地处发生故障,我们不应该感觉出零线带电。但由于大地的电阻比零线的大,所以当某处漏电时,就会发生零线带电的状况,还由于零线通过的电流比地线漏电流大的多,导致零线上的电压降低,使用户端零线电位与地不一致,也会造成零线带电。 现在我国是三相四线制,火线就是其中一个相线。零线就是中线,地线是保护线。

三相五线制供电的原理和接地

三相五线制供电的原理和接地 682人阅读| 0条评论发布于:2009-11-12 1:46:00 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。该结线的点是:工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种结线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。三相五线制供电的原理:在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。长期以来,零线与地线被人们混为一谈,有人认为零线就是地线,反之,地线也就是零线。其实这是一种错误的熟悉,那么零线与地线有什么区别呢?下面笔者谈一谈个人的观点。零线与地线并不是同一概念,零线是中线的俗称,是电力部门提供的工作线路。就是说我们每家每户使用的两线照明线路,一线称相线(火线),另一线则是中线(零线)。目前电力系统的供电方式绝大部分是采用三相四线制。为减小电能的损失,在输电过程中采用远距离高压输电,即三相输电,到城镇通过变压器降为市电单相220V和三相380V供给不同的用户,中线(零线)就是三相高压输入变压器变为四线低压供给用户的工作线路之一。 地线是接地装置的简称,地线又分为工作接地和安全性接地,其中安全性接地又可分为保护接地、防雷击接地和防电磁辐射接地。1 工作接地是用它完成回路使设备达到性能要求的接地线。如六、七十年代农村家家户户使用的广播有一根地线,而且接地处要经常用水淋湿。工作接地是把金属导体铜块埋在土壤

三相四线制照明电路

一、实习地点 行知楼13楼 二、实习目的 1、熟悉三相四线电度表的安装和使用。 2、掌握简单照明电路的基本接线方法。 3、了解三相四线制与三相三线制照明电路的区别。 三、实习内容 1、了解三相四线电度表的工作原理和接线要求。 2、利用三相四线电度表、漏电保护器(空气开关)、星三角启动器、三相异步电动机、 若干导线,模拟连接一个三相异步电动机电路。 3、利用三相四线电度表、漏电保护器、配电箱、双控开关、灯具座、单相插座,模拟 连接一个家用照明电路。 四、实习原理 1、电度表的工作原理 电度表是利用电压和电流在铝盘上产生的涡流与交变磁通相互作用产生电磁力,使铝盘转动,同时引入制动力矩,使铝盘转动与负载功率成正比,通过轴向齿轮转动,由电镀器计算出转盘转数而测出电能。电度表主要结构是电压线圈、电流线圈、转盘、转轴、制动磁铁、齿轮、计度器等组成。 图一、三相四线制电度表的接线图 2、三相异步电动机 当电动机的三项定子绕组(各相差120度电角度), 通入三项交流电后,将产生一个旋转磁场,该旋转磁场 切割转子绕组,从而在转子绕组中产生感应电流(转子 绕组是闭合通路),载流的转子导体在定子旋转磁场作用 下将产生电磁力,从而在电机转轴上形成电磁转矩,驱 动电动机旋转,并且电机旋转方向与旋转磁场方向相同。 3、星三角启动器 实现三相异步电动机“星型”连接与“三角形”连接之间的转换。

五、实习步骤 ㈠导线连接练习 这一项目里,我们首先学的是剥线,塑料护套线绝缘层分为外层的公共护套层和内部每根芯线的绝缘层。公共护套层一般用电工刀剖削,先按线头所需长度,将刀尖对准两股芯线的中缝划开护套层,并将护套层向后扳翻,然后用电工刀齐根切去。切去护套后,露出的每根芯线绝缘层可用钢丝钳或电工刀按照剖削塑料硬线绝缘层的方法分别除去。其次是缠绕,单股芯线有绞接和缠绕两种方法,绞接法是先将已剖除绝缘层并去掉氧化层的两根线头呈“×”形相交,互相绞合2-3圈,接着扳直两个线头的自由端,将每根线自由端在对边的线芯上紧密缠绕到线芯直径的6-8倍长,将多余的线头剪去,修理好切口毛刺即可。 缠绕法是将已去除绝缘层和氧化层的线头相对交叠,再用直径为1.6mm的裸铜线做缠绕线在其上进行缠绕,其中线头直径在5mm及以下的缠绕长度为60mm,直径大于5mm的,缠绕长度为90mm。 1、单股芯线T形连接时可用绞接法和缠绕法。绞接法是先将除去绝缘层和氧化层的线头与干线剖削处的芯线十字相交,注意在支路芯线根部留出3-5mm裸线,接着顺时针方向将支路芯线在干中芯线上紧密缠绕6-8圈。剪去多余线头,修整好毛刺。 2、多股铜导线的直接连接。多股铜导线的直接连接,首先将剥去绝缘层的多股芯线拉直,将其靠近绝缘层的约1/3芯线绞合拧紧,而将其余2/3芯线成伞状散开,另一根需连接的导线芯线也如此处理。接着将两伞状芯线相对着互相插入后捏平芯线,然后将每一边的芯线线头分作3组,先将某一边的第1组线头翘起并紧密缠绕在芯线上,再将第2组线头翘起并紧密缠绕在芯线上,最后将第3组线头翘起并紧密缠绕在芯线上。以同样方法缠绕另一边的线头。

低压供电系统中三相四线制和三相五线制有何区别

低压供电系统中三相四线制和三相五线制有何区别 三相四线制就是动力负载和照明负载共用-根零线。三相五线是动力照明分开。 三相四线制:相线A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;三相五线制:相线A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流); 前者属于TN-C接地系统,后者属于TN-S接地系统。如今我国民用建筑的配电方式采用后者。 三相四线制分两种情况: TN-S:L1L2L3+PE(保护线)+N(中性线) TN-C:L1L2L3+PEN(二者合一) 三相五线制有一种情况: TN-C-S:L1L2L3+前半部PEN,后半部PE+N 具体如下: 低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下: 1、第一个字母表示配电系统的对地关系: T:电源端有一点直接接地; I:电源端所有带电部分与地绝缘,或有一点经阻抗接地。 2、第二个字母表示电气装置的外露导电部分与地的关系: T:外露导电部分对地直接做电气连接,与配电系统的任何接地点无关; N:外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点) 在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。这个接地点通常是配电系统的中性点。如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。保护线应在每个变电所附近接地。配电系统引入建筑物时,保护线在其入口处接地。为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。 根据中性线N与保护线PE是否合并的情况,TN系统又分为TN-C、TN-S及TN-C-S。 1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:在1、10区爆炸危险环境中不能采用TN-C系统。同时由于PEN线在同一建筑物内往往相互有电气连接,当PEN线断线或相线直接与大地短路时,都将呈现相当高的对地故障电压,这时可能扩大事故范围。 2、在TN-S系统中,保护线与中性线分开,具有TN-C系统的优点,但价格较贵。由于正常情况下PE线不通过负荷电流,与PE线相连的电气设备金属外壳不带电位,所以适用于数据处理和精密电子仪器设备的供电,也可用于有爆炸危险的环境中。在民用建筑中,家用电器大都有单独接地极的插头,采用TN-S供电,既方便又安全。但TN-S系统仍不能解决相线对大地适中引起电压升高和对地故障电压的蔓延问题。 3、在TN-C-S系统中,PEN线自A点起分为保护线和中性线,分开以后,N线应对地绝缘。为了防止分开后的PE线与N线混淆,应按国标GB7947-87的规定,给PE线和PEN线涂以黄绿相间的色标,给N线涂以浅蓝色色标。PEN自分开后,PE线与N线不能再合并,否则将丧失分开后形成的TN-S系统的特点。 TN-C-S是广泛采用的配电系统,在工矿企业中,对电位敏感的电气设备往往设置在线路未端,而线路前端大多数为固定设备,因此,到了线咱未端改为TN-S系统十分不利。在民用建筑中,电源线咱采用TN-C系统,进入建筑物内改为TN-S系统。这种系统,线路结构简单又能保证一定的安全水平。在电源侧的PEN线上难免有一定的电压降,但对工矿企业的固定设备及作为民用建筑的电源线都没有影响,PEN分开后即有专用的保护线,可以确保TN-S所具有的特点。

IEC三相五线制供电学习材料

1.什么是三相五线制? 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图1 所示. 图1 三相五线制接线示意图 该接线的特点是:工作零线N与保护零线PE 除在变压器中性点共同接地外,两线不再有任何的电气连接.由于该种接线能用于单相负载、没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用.在三相负载不完全平衡的运行情况下,工作零线 N是有电流通过且是带电的,而保护零线 PE 不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位. 2.三相五线制与三相四线制的比较 (1)基本供电系统简介常用的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格.国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统.其中TN系统又分为TN-C、TN-S系统. TT 式供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统.第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关.在TT 系统中负载的所有接地均称为保护接地。 TN 方式供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用 TN 表示.TN-C 方式供电系统是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE 表示,即常用的三相四线制供电方式.TN-S 式供电系统是把工

电气供电系统的分类

电气供电系统的分类 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制,三相五线制等,但这些名词术语内涵不是十分严格。国际电工委员会( IEC )对此作了统一规定,称为 TT 系统、 TN 系统、 IT 系统。其中TN 系统又分为 TN-C 、TN-S 、 TN-C-S 系统。下面内容就是对各种供电系统做一个扼要的介绍。 TT 系统 TN-C 供电系统→ TN 系统→ TN-S IT 系统 TN-C-S (一)工程供电的基本方式 根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。 ( 1 ) TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。第一个符号 T 表示电力系统中性点直接接地;第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在 TT 系统中负载的所有接地均称为保护接地,如图 1-1 所示。这种供电系统的特点如下。

1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此 TT 系统难以推广。 3 ) TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图 1-2 所示。 图中点画线框内是施工用电总配电箱,把新增加的专用保护线 PE 线和工作零线 N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线(N)可以有电流,而专用保护线(PE)没有电流;③ TT 系统适用于接地保护占很分散的地方。—— TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统 ( 2 ) TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用 TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是 TT 系统的 5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 ) TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比 TT 系统优点多。 TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为 TN-C 和 TN-S 等两种。

关于三相四线制、三相五线制 电源的产生,线路概念

企业、车间及居民区等地的机电设备常用到三相四线制供电、三相五线制供电,其意义是什么?发电、变电、配电和输电的意义是什么?工业一次供电、二次供电是什么?线路的标识符号如何?本文理实一体化讲解清楚。 二.任务论述 (一)发电厂分类 发电厂是把其他形式的能量转换成电能的企业,有常规电能和绿色电能企业两类: 1. 比较常规的电能 比较常规的发电厂,主要有如下4种: (1)火力发电厂 是指利用煤、石油、天然气或其他燃料的化学能来生产电能的发电厂,其发电过程是:化学能→热能→机械能→电能。 (2)水力发电厂 是指利用水流的动能和势能来生产电能的发电厂,水流量的大小和水头的高低,决定了水流能量的大小。水力发电厂发电其过程为:水能→机械能→电能。 (3)原子能发电厂 是指利用核能来生产电能的发电厂,又称核电厂(核电站),原子核各个核子(中子与质子)之间具有强大的结合力,重核分裂和轻核聚合时,都会放出巨大的能量,称为核能。目前技术比较成熟,形成规模投入运营的只是重核裂变释放出的核能生产电能的原子能发电厂。从能量转换的观点分析,是由重核裂变核能→热能→机械能→电能的转换过程。 (4)垃圾发电厂 垃圾发电是把各种垃圾收集后,进行分类处理,其中:一是对燃烧值较高的进行高温焚烧产生热能转化为高温蒸气,推动涡轮机转动发出电能。二是对不能燃烧的有机物进行发酵、厌氧处理、最后干燥脱硫产生沼气。再经燃烧,把热能转化为蒸气推动涡轮机转动发出电能。 2. 绿色电能企业 绿色电能是指用特定的发电设备发电,在发电过程中不排放或很少排放对环境有害的废气、废水和废物,具有环保性质的能源,主要有以下4种: (1)地热发电厂 地热能是指贮存在地球内部的可再生热能 (2)风能发电厂 是指利用风能来生产电能的发电厂 (3)太阳能发电厂 太阳能是指太阳光的辐射能量 (4)海洋能发电厂 海洋能是海水流动动能、海洋热能、潮汐能和波浪能等能源的总称。 (5)生物质能发电 生物质能就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,

三相三线制与三相四线制

三相三线制 三相三线制(three-phase three-wire system )不引出中性线的星型接法和三角形接法。电力系统高压架空线路一般采用三相三线制,三条线路分别代表a,b,c 三相,我们 在野外看到的输电线路,一回即有三根线(即三相),三根线可能水平排列,也可能是三角 形排列的;对每一相可能是单独的一根线(一般为钢芯铝绞线),也有可能是分裂线(电压 等级很高的架空线路中,为了减小电晕损耗和线路电抗,采用分裂导线,多根线组成一相线, 一般2-4 分裂,在特高压交直流工程中可能用到6-8 分裂),没有中性线,故称三相三线制。 三相交流发电机的三个定子绕组的末端联结在一起,从三个绕组的始端引出三根火线 向外供电、没有中线的三相制叫三相三线制。 电晕:曲率半径小的导体电极对空气放电,便产生了电晕。 (电晕产生热效应和臭氧、氮的氧化物,使线圈内局部温度升高,导致胶粘剂变 质、碳化,股线绝缘和云母变白,进而使股线松散、短路,绝缘老化。) 三相四线制 概述 在低压配电网中,输电线路一般采用三相四线制,其中 三相四线制 三条线路分别代表A,B,C 三相,另一条是中性线N(如果该回路电源侧的中性点接地,则中性线也称为零线,如果不接地,则从严格意义上来说,中性线不能称为零线)。在进入 用户的单相输电线路中,有两条线,一条我们称为火线,另一条我们称为零线,零线正常情 况下要通过电流以构成单相线路中电流的回路。而三相系统中,三相平衡时,中性线(零线)是无电流的,故称三相四线制;在380V 低压配电网中为了从380V 线间电压中获得220V 相间电压而设N 线,有的场合也可以用来进行零序电流检测,以便进行三相供电平衡的监控。

三相五线制供电方式

三相五线制供电方式 一、概述 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线 (该接线的是: 工 作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种接线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 二、三相五线制供电的原理 众所周知,在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处

在“地”电位,从而消除了设备产生危险电压的隐患。 三、对三相五线制敷设的要求 (1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。 (2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。 (3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。 (4) 采用低压电缆供电时应选用五芯低压电力电缆。 (5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。 (6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做保护零线。 四、三相五线制供电的应用范围 凡是采用保护接零的低压供电系统,均是三相五线制供电的应用

详解三相四线制系统中零线的重要作用

三相四线制系统中零线的重要作用 在低压供电系统中,大多数采用三相四线制方式供电,因为这种方式能够提供两种不同的电压——线电压(380V)和相电压(220V),可以适应用户不同的需要。 在三相四线制系统中,如果三相负载是完全对称的(阻抗的性质和大小完全相同,即阻抗三角形是全等三角形),则零线可有可无,例如三相异步电动机,三相绕组完全对称,连接成星形后,即使没有零线,三相绕组也能得到三相对称的电压,电动机能照常工作。但是对于宅楼、学校、机关和商场等以单相负荷为主的用户来说,零线就起着举足轻重的作用了。尽管这些地方在设计、安装供电线路时都尽可能使三相负荷接近平衡,但是这种平衡只是相对的,不平衡则是绝对的,而且每时每刻都在变化。在这种情况下,如果零线中断了,三相负荷中性点电位就要发生位移了。中性点电位位移的直接后果就是三相电压不平衡了,有的相电压可能大大超过电器的额定电压(在极端情况下会接近380V),轻则烧毁电器,重则引起火灾等重大事故;而有的相电压大大低于电器的额定电压(在极端情况下会接近0V),轻则使电器无法工作,重则也会烧毁电器(因为电压过低,空调、冰箱和洗衣机等设备中的电动机无法起动,时间长了也会烧毁)。由于三相负荷是随机变化的,所以电压不平衡的情况也是随机变化的。 对于没有零线时中性点电位发生位移这个问题,很多同学甚至一些电工无法理解,而理论计算又涉及到较深的电工基础知识(如电动势和阻抗的复数表示法以及复数的四则运算等),特别是当负载不是纯电阻时,计算相当繁琐,学生也难以弄懂,在大多数情况下也没有必要去计算。下面仅举个特例来帮助同学们理解没有零线时各相负载两端电压的变化。 现在我们假定某住宅楼为三层,三相电源分别送入一楼、二楼和三楼住户。

三相四线主要应用和联接方法

三相四线 主要应用 在低压配电网中,输电线路一般采用三相四线制,其中三条线路分别代表A,B,C三相,不分裂,另一条是中性线N,故称三相四线制。 不论N线还是PE线,在用户侧都要采用重复接地,以提高可靠性。但是,重复接地只是重复接地,它只能在接地点或靠近接地的位置接到一起,但绝不表明可以在任意位置特别是户内可以接到一起。 应用中最好使用标准/规范的导线颜色:A线用黄色,B线用绿色,C线用红色,N线用褐色,PE线用黄绿色。 联接方法 三相交流电机的电枢有三组线圈,其联接有星形接法及三角形接法两种,一般采用星形接法。 星形联接方法 三相交流发电机向外供电时,把三组线圈的末端X、Y、Z联在一起,从联接点引出一条线,这条线叫零线,也叫中性线。再从线圈绕组另一端A、B、C各引出一条线,这三条线叫相线或火线,这种联接方法叫星形联接法。 发电机的这种向外输电方法构成三相四线制。若不引出中线,用三条线向外供电则称三相三线制。 因为三相四线制供电能同时供出220V、380v两种不同的电压,因而得到广泛应用。星形接法用Y表示,也叫Y接法。 采用星形接法时。线电压与相电压的关系如何? 星形接法时,线电压与相电压之间的关系是:U线≈1.732U相

三相交流电如何产生旋转磁场? 在三相异步电动机的每相定子绕组中,流过正弦交流电流时,每相定子绕组都产生脉动磁场。由于三相绕组在铁心中摆放的空间位置互差120°电角度空间相位,绕组中分别流过三相交流电流,而各相电流在时间上又互差120°,使它们同时产生的三个脉动磁场在空间所合成的总磁场,成为一个旋转磁场。 三相五线制是指A、B、C、N和PE线,其中,PE线是保护地线,也叫安全线,是专门用于接到诸如设备外壳等保证用电安全之用的。PE线在供电变压器侧和N线接到一起,但进入用户侧后均不能当作零线使用,否则,发生混乱后就与三相四线制无异了。但是,由于这种混乱容易让人丧失警惕,可能在实际中更加容易发生触电事故。现在民用住宅供电已经规定要使用三相五线制,如果你的不是,可以要求整改。为了安全,要斩钉截铁地要求!

“三相五线制”在标准里的标准解释是什么

“三相五线制”在标准里的标准解释是什么? 国家标准:三相五线制系统(TN-S系统),又称保护接地系统,国际电工委员会IEC的编号为TN-S,见[图-1]。这种供电方式是把三相供电的零线N接地,与仪器设备外壳相连的保护地PE也接地,零线N和保护地PE可以连接在同一地线上,或将保护地线PE单独接地,视工作环境要求而定。电源变压器输出三相,加上零线N和保护接地线PE共五条线从配电柜输出,故称三相五线制。 一、概述 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。 该结线的点是: 工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种结线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 二、三相五线制供电的原理 众所周知,在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 三、对三相五线制敷设的要求 (1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。(2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。 (3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。 (4) 采用低压电缆供电时应选用五芯低压电力电缆。 (5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。 (6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做

三相四线与三相五线

三相四线制与三相五线制 三相四线制的漏电保护器严格地讲,在输入端必须是按照规定四根线都接入,而输出端可以是只接一相线一零线(单相)或两相(比如电焊机的380V两相)或三相(比如电动机)或三相四线都接(比如电机加照明)。(1)如果零线不经漏电保护器而直接和用电设备连接,那从相线出来的电流(指单相)在“回路”到电源时就不经过漏电保护器了,此时漏电保护器就检测到这个电流(相当于漏电流),所以就引起漏电保护器跳闸。(2)还有当三相电路中由于负载不平衡而引起中性点不是零电位,导致零线有电流,所以零线经过保护器的话也会引起跳闸。(3)但是不管接什么设备,输出端的零线都不得接地,否则将无法正常供电,如需对设备接保护接地线必须从设备外壳直接接线至大地。(4)三相四线制用漏电保护器一定用四极的.如果用三极的,在三相负载不平衡时由于没有零线电流的返回,漏电保护器就判断线路是在漏电,所以一合闸就会跳闸。 不过这次没有像上次那样直接对焊,而是用更为可靠的接线端子,还因此专门买了液压钳;不过此次重点的发现不在于如何接线,而在于用户的地沟中的两根电源线,粗的一根是三相五线,细的一根是独立地线。而我们的控制柜的三相电一直是采用三相四线制,且除火线外的零线与外壳相连;地沟中的地线与零线也是相通的。由于控制柜中使用的三相电其实是用于为三个220V的整流滤波电源供电(因为220V线路的电流不够大),因此须保证零线与任一根火线的线电 压为220V。最后接法是将火线直接对接,而控制柜的零线与地沟中的零线对接。回到宾馆上网才发现关于三相四线制与三相五线制还有很多的知识点的,特别是其中的一些名词让我想到了Paker驱动器手册中的名词。现将关于此方面的知识点整理如下(整理自网络): 国际电工委员会(IEC)对基本供电系统的名称做了统一规定,即TT系统,TN 系统,IT系统。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。其中,TN系统又分为TN-C、TN-S、TN-C-S,详情见下图:

低压供电系统中三相四线制和三相五线制有何区别

三相四线制就是动力负载和照明负载共用-根零线。三相五线是动力照明分开。 三相四线制: 相线 A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;三相五线制: 相线 A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流); 前者属于TN-C接地系统,后者属于TN-S接地系统。如今我国民用建筑的配电方式采用后者。 三相四线制分两种情况: TN-S: L1L2L3+PE(保护线)+N(中性线) TN-C: L1L2L3+PEN(二者合一) 三相五线制有一种情况: TN-C-S: L1L2L3+前半部PEN,后半部PE+N 具体如下: 低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下:

1、第一个字母表示配电系统的对地关系: T: 电源端有一点直接接地; I: 电源端所有带电部分与地绝缘,或有一点经阻抗接地。 2、第二个字母表示电气装置的外露导电部分与地的关系: T: 外露导电部分对地直接做电气连接,与配电系统的任何接地点无关; N: 外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点)在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。这个接地点通常是配电系统的中性点。如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。保护线应在每个变电所附近接地。配电系统引入建筑物时,保护线在其入口处接地。为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。 根据中性线N与保护线PE是否合并的情况,TN系统又分为TN- C、TN-S及TN-C-S。 1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:

三相五线制供电方式

三相五线制供电方式 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。 一、概述 三相五线制即在三相四线制的供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。 该结线的特点是: 工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种结线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 二、三相五线制供电的原理

众所周知,在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 三、对三相五线制敷设的要求 (1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。(2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。 (3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。 (4) 采用低压电缆供电时应选用五芯低压电力电缆。 (5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。 (6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做保护零线。 四、三相五线制供电的应用范围 关部门规定:凡是新建、扩建、企事业、商业、居民住宅、智能建筑、基建施工现场及临时线路,一律实行三相五线制供电方式,做到保护零线和工作零线单独

tns三相五线制电路布线详解审批稿

t n s三相五线制电路布 线详解 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

施工现场用电大全 定义:三级配电系统 总配电箱为一级,分配电箱为二级,末级配电箱为三级 定义:三相电的概念 我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。工业用电采用三相电,如三相交流电动机等。相与相之间的电压是线电压,电压为380V。相与中心线之间称为相电压,电压是220V。 什么是电源中性点 中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。 定义:三相五线制 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示. 为什么不是“五相”“六相” 你先要明白“相”在电中的含义,相是指相位角,比如常说的三相电,是指相位角在空间互成120°交流电。如果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°

三相四线制和三相五线制的区别

三相四线制和三相五线制的区别_三相四线制和三相五线制哪种好? 一、三相四线制和三相五线制符号含义解答: (R 黄、S绿、T红、N蓝或黑、地黄加绿双色线)三相五线制(R 黄、S绿、T红、N蓝或黑色线、)三相四线制 (R 黄、S绿、T红、地黄加绿双色线)三相四线制 三相四线制:相线A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;属于TN-C接地系统. 三相五线制:相线A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流);我国民用建筑的配电方式采用TN-S接地系统。 二、三相四线制为何三相五线制多一根线

输电线路三相电源电气连接图 低压配电网电缆中,输电线路一般采用三相四线制,其中三相四线制 三条线路分别代表A,B,C三相,另一条是中性线N称三相四线制,三相五线制包括三相电的三个相线(A、B、C线)、中性线(N线);以及地线(PE线),因此区别为多了一条地线。 三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。 三相五线制的学问就在于这两跟"零线"上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是0电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险. 零线和地线的根本差别在于一个构成工作回路,一个起保护作用叫做保护接地,一个回电网,一个回大地,在电子电路中这两个概念是要区别开来的,在正规公司里,这两根线规定要分开接. 现在实际中还有一种三相六线的接法,除工作零线,保护接地外,还专门另配一路接地线,这根线跟设备地线分开来接,不与其他任何线相接,用做对仪器设备的保护,因为电气件的损坏往往只几微秒的时间,所以要将误动作电流更快的引回大地,需要仪器直接接地.

相关文档
最新文档