冲压模具的寿命管理

冲压模具的寿命管理
冲压模具的寿命管理

随着模具工业的不断发展,模具的应用越来越广泛。目前国内大多数模具企业,模具的使用寿命还比较低,而且缺乏对模具寿命管理的理论认识和指导依据,这不仅会影响模具冲压生产的产品质量,而且会造成模具材料、加工工时等成本的巨大浪费,增加产品的成本并降低生产效率,严重影响模具企业产品市场的竞争力。

现从模具寿命的概念入手,说明了模具的失效形式及原理,通过对影响模具寿命的各方面因素进行分析,提供了模具寿命管理的有效方法和相关数据。一、模具寿命的概念原理

模具寿命是指在保证制件品质的前提下,模具所能达到的生产次数(冲压次数、成型次数)。它包括反复刃磨和更换易损件,直至模具的主要部分更换所成形的合格制件总数。

模具使用寿命:模具已经生产的次数。模具的失效分为非正常失效和正常失效。非正常失效(早期失效)是指模具未达到一定的工业水平下公认的寿命时就不能工作。早期失效的形式有塑性变形、断裂、局部严重磨损等。正常失效是指模具经大批量生产使用,因缓慢塑性变形或较均匀地磨损或疲劳断裂而不能继续工作。

1.模具正常寿命

模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。

2.模具失效形式及原理

模具种类繁多,工作状态差别很大,损坏部位也各异,但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。

①.磨损失效

模具在工作时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分以下几种:

a. 疲劳磨损

两接触表面相对运动时,在循环应力(机械应力与热应力)的作用下,使表面金属

疲劳脱落的现象称为疲劳磨损。

b. 气蚀磨损和冲蚀磨损

金属表面的气泡破裂,产生瞬间的冲击和高温,使模具表面形成微小麻点和凹坑的现象叫气蚀磨损。

液体和固体微小颗粒反复高速冲击模具表面,使模具表面局部材料流失,形成麻点和凹坑的现象叫冲蚀磨损。

c. 磨蚀磨损

在摩擦过程中,模具表面和周围介质发生化学或电化学反应,再加上摩擦力的机械作用,引起表面材料脱落的现象叫磨蚀磨损。

在模具与工件(或坯料)相对运动中,磨损往往是以多种形式并存,并相互影响。

②.断裂失效

模具出现大裂纹或分离为两部分和数部分丧失工作能力时,成为断裂失效。

断裂可分为塑性断裂和脆性断裂。模具材料多为中、高强度钢,断裂的形式多为脆性断裂。脆性断裂又可分为一次性断裂和疲劳断裂。

③.塑性变形失效

模具在工作时承受很大的应力,而且不均匀。当模具的某个部位的应力超过了当时温度下模具材料的屈服极限时,就会以晶格滑移、孪晶、晶界滑移等方式产生塑性变形,改变了几何形状或尺寸,而且不能修复再工作时,叫塑性变形失效。塑性变形的失效形式表现为镦粗、弯曲、形腔胀大、塌陷等。

模具的塑性变形是模具金属材料的屈服过程。是否产生塑性变形,起主导作用的是机械负荷以及模具的室温强度。在高温下工作的模具,是否产生塑性变形,主要取决于模具的工作温度和模具材料的高温强度。

二、影响冲压模具寿命的主要因素

研究表明:模具的使用寿命与模具结构设计、模具钢材选用、热处理、表面处理、机械加工研磨、线切割工艺,冲压设备、冲压材料及工艺,模具润滑、保养维修水平差等诸多因素有关。其中引起模具失效的各种因素中,模具结构不合理、选材不当约占25%,热处理不当约占45%,工艺问题约占10%;设备问题、滑润问题等因素约占20%。

1.合理的模具结构设计

模具结构对模具受力状态的影响很大,合理的模具结构能使模具工作时受力均匀,不易偏载,应力集中小。模具设计的原则是保证足够的强度、刚度、同心度、对中性和合理的冲裁间隙,并减少应力集中,以保证由模具生产出来零件符合设计要求。因此对模具的主要工作零作(如冲模的凸、凹模等)要求其导向精度高、同心度和中性好及冲裁的间隙合理。在进行模具设计时,应着重考虑的是:①.设计凸模时必须注意导向支撑和对中保护。特别是设计小孔凸模时采用导向装置结构,能保证模具零件相互位置的精度,增加模具抗弯曲、抗偏载的能力,避免模具不均匀磨损,从而延长模具寿命。

②. 对小孔、夹角、窄槽等薄弱部位进行补强,为了减少应力集中,要以圆弧过渡,圆弧半径R可取3~5mm。

③. 整体模具的凹圆角半径很易造成应力集中,并引起开裂,对于结构复杂的凹模采用镶拼结构,减少应力集中。

④. 冲模的凸、凹模圆角半径R不仅对冲压件成形有较大的影响,而且对于模具的磨损及寿命也影响很大。设计时应从保证成型零件充分接触的前提下尽可能放大,避免产生倒锥,影响冲件脱料出模,如圆角半径R过小且没有光滑过渡,则容易产生裂纹。

⑤.合理增大间隙,改善凸模工作部分的受力状态,使冲裁力、卸件力和推件力下降,凸、凹模刃口磨损减少。一般情况下,冲裁间隙放大可以延长切飞边模寿命。

⑥.模架应有良好的刚性,不要仅仅满足强度要求,模座厚度不宜太薄,至少应设计到45mm以上。浮动模柄可避免冲床对模具导向精度的不良影响。凸模应紧固牢靠,装配时要检查凸模或凹模的轴线对水平面的垂直度以及上下底面之间的平行度。

⑦.模具的导向机构精度。准确和可靠的导向,对于减少模具工作零件的磨损,避免凸、凹模啃伤影响极大,尤其是无间隙和小间隙冲裁模、复合模和连续模则更为有效。为提高模具寿命,必须根据工序性质和零件精度等要求,正确选择导向形式和确定导向机构的精度。一般情况下,导向机构的精度应高于凸、凹模配合精度。连续模具应设计4根导柱导向,这样导向性能好。因为增加了刚度,保

证了凸、凹模间隙均匀,确保凸模和凹模不会发生碰切现象。

⑧.排样方式与搭边值大小对模具寿命的影响很大,过小的搭边值,往往是造成模具急剧磨损和凸、凹模啃伤的主要原因。从节约材料出发,搭边值愈小愈好,但搭边值小于一定数值后,对模具寿命和剪切表面质量不利。在冲裁中有可能被拉入模具间隙中,使零件产生毛刺,甚至损坏模具刃口,降低模具寿命。因此在考虑提高材料利用率的同时,必须根据零件产量、质量和寿命,确定排样方法和搭边值。

2.合理选择模具材料

冲压模具工作时要承受冲击、振动、摩擦、高压和拉伸、弯扭等负荷,甚至在较高的温度下工作(如冷挤压),工作条件复杂,易发生磨损、疲劳、断裂、变形等现象。因此,模具材料的性能对模具的寿命影响较大,不同材质的模具寿命往往不同,对模具工作零件材料的要求比普通零件也高。

①.根据模具的工作条件、生产批量以及材料本身的强韧性能来选择模具用材,应尽可能选用品质好的钢材。

a.材料的使用性能应具有高硬度(58~64HRC)和高强度,并具有高的耐磨性和足够的韧性,热处理变形小,有一定的热硬性。

b.材料的工艺性能良好,具有可锻性、淬硬性、淬透性、淬火裂纹敏感性和磨削加工性、热稳定性和耐热疲劳性等。通常根据冲压件的材料特性、生产批量、精度要求等,选择性能优良的模具材料,同时兼顾其工艺性和经济性。

在大批量生产选用模具材料时,应选用长寿命的模具材料,如硬质合金,高强韧、高耐磨模具钢(如SKD11,SLD,DC53等);对小批量或新产品试制可采用国产的45#、Cr12等模具材料;对于易变形、易断裂失效的通用模具,需要选用高强度、高韧性的材料DF-2;热冲模则要选用具有良好的韧性、强度、耐磨性和抗冷热疲劳性能的材料(如DAC)。

②.对模具材料要进行质量检测,模板要符合供货协议要求,模板的化学成份要符合国际上的有关规定。只有在确信模具材料合格的情况下,才能使用。

③.模具钢材生产厂家采用电渣重熔钢H13时要确保内部质量,避免可能出现的成份偏析、杂质超标等内部缺陷,要采用超声波探伤等无损检测技术检查,确保钢材内部质量良好,避免可能出现的冶金缺陷,将废品及早剔除。根据碳化物偏

析对模具寿命的影响,必须限制碳化物的不均匀度,对精密模具和负荷大的细长凸模,必须选用韧性好强度高的模具钢,碳化物不均匀度应控制为不大于3级。Cr12钢碳化物不均匀度3级要比5级耐用度提高1倍以上。如果碳化物偏析严重,可能引起过热、过烧、开裂、崩刃、塌陷、拉断等早期失效现象。而对于直径小于或等于50mm的高合金钢,其碳化物不均匀性一般在4级以内,可满足一般模具使用要求。通过锻造能有效改善工具钢的碳化物偏析,一般锻造后可降低碳化物偏析2级,最多为3级。

3.合理选择热处理工艺

热处理不当是导致模具早期失效的重要原因,从模具失效分析得知,45%的模具失效是由于热处理不当造成的。模具热处理包括钢材锻造后的退火,粗加工以后高温回火或低温回火,精加工后的淬火与回火,电火花、线切割以后的去应力低温回火。只有冷热加工很好相互配合,才能保证良好的模具寿命。

①.模具型腔大而壁薄时需要采用正常淬火温度的上限,以使残留奥氏体量增加,使模具不致胀大。快速加热法由于加热时间短,氧化脱碳倾向减少,晶粒细小,对碳素工具钢大型模具淬火变形小。

②.对高速钢采用低淬、高回工艺比较好,淬火温度低,回火温度偏高,可大大提高韧性,尽管硬度有所降低,但对提高因折断或疲劳破坏的模具寿命极为有效。通常Cr12MoV钢淬火加热温度为1000℃,油冷,然后220℃回火。如能在这种热处理以前先行热处理一次,即加热至1100℃保温,油冷,700℃高温回火,则模具寿命能大幅度提高。

③.采用低温氮碳共渗工艺,表面硬度可达1200HV,也能大大提高模具寿命。低温电解渗硫可降低金属变形时的摩擦力,提高抗咬粘性能。使用6W6Mo5Cr4V钢制作冷挤压凸模,经低温氮碳共渗后,使用寿命平均提高1倍以上,再经低温电解渗硫处理可以进一步提高寿命50%。

④.模具淬火后存在很大的残留应力,它往往引起模具变形甚至开裂。为了减少残留应力,模具淬火后应趁热进行回火,回火应充分,回火不充分易产生磨前裂纹。对碳素工具钢,200℃回火1h,残留应力能消除约50%,回火2h残留应力能消除约75%~80%,而如果500~600℃回火1h,则残留应力能消除达90%。

⑤.回火后一般为空冷,在回火冷却过程中,材料内部可能会出现新的拉应力,应缓冷到100~120℃以后再出炉,或在高温回火后再加一次低温回火。

4. 合理的模具表面强化工艺

模具表面强化的主要目的的是提高模具表面的耐磨性、耐蚀性和润滑性能。表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD 法、CVD法、PVD法、激光表面强化法、离子注入法、等离子喷涂法等

①. 气体软氮化:使氮在氮化温度分解后产生活性氮原子,被金属表面吸收渗入钢中并且不断自表面向内扩散,形成氮化层。模具经氮化处理后,表面硬度可达HV950~1200,使模具具有很高的红硬度和高的疲劳强度,并提高模具表面光洁的度和抗咬合能力。

②. 离子氮化:将待处理的模具放在真空容器中,充以一定压力的含氮气体(如氮或氮、氢混合气),然后以被处理模具作阴极,以真空容器的罩壁作阳极,在阴阳极之间加400~600伏的直流电压,阴阳极间便产生辉光放电,容器里的气体被电离,在空间产生大量的电子与离子。在电场的作用下,正离子冲向阴极,以很高速度轰击模具表面,将模具加热。离能正离子冲入模具表面,获得电子,变成氮原子被模具表面吸收,并向内扩散形成氮化层。应用离子氮化法可提高模具的耐磨性和疲劳强度。

③. 点火化表面强化:这是一种直接利用电能的高能量密度对模具表面进行强化处理的工艺。它是通过火花放电的作用,把作为电极的导电材料溶渗进金属工件表层,从而形成合金化的表面强化层,使工作表面的物理、化学性能和机械性能得到改善。例如采用WC、TiC等硬质合金电极材料强化高速钢或合金工具钢表面,可形成显微硬度HV1100以上的耐磨、耐蚀和具有红硬性的强化层,使模具的使用寿命明显得到提高。点火花表面强化的优点是设备简单、操作方便,处理后的模具耐磨性提高显著;缺点是强化表面较粗糙,强化层厚度较薄,强化处理的效率低。

④. 渗硼:由于渗硼层具有良好的红硬性、耐磨性,通过渗硼能显著提高模具表面硬度(达到HV1300~2000)和耐磨性,可广泛用于模具表面强化,尤其适用于处理在磨粒磨损条件下的模具。但渗硼层往往存着较大的脆性,这也限制了它的应用。

⑤. TD热处理:在空气炉或盐槽中放入一个耐热钢制的坩埚,将硼砂放入坩埚加热熔化至800℃~1200℃,然后加入相应的碳化物形成粉末(如钛、钡、铌、铬),再将钢或硬质合金工件放入坩埚中浸渍保温1~2小时,加入元素将扩散至工件表面并与钢中的碳发生反应形成碳化物层,所得到的碳化物层具有很高的硬度和耐磨性。

⑥. CVD法(化学气相沉积):将模具放在氢气(或其它保护气体)中加热至900℃~1200℃后,以其为载气,把低温气化挥发金属的化合物气体如四氯化钛(TiCI4)和甲苯CH4(或其它碳氢化合物)蒸气带入炉中,使TiCI4中的钛和碳氢化合物中的碳(以及钢表面的碳分)在模具表面进行化学反应,从而生成一层所需金属化合物涂层(如碳化钛)。

⑦ PVD法(物理体相沉积):在真空室中使强化用的金属原子蒸发,或通过荷能粒子的轰击,在一个电流偏压的作用下,将其吸引并沉积到工件表面形成化层。利用PVD法可在工件表面沉积碳化钛、氮化钛、氧化铝等多种化合物。

⑧. 激光表面强化:当具有一定功率的激光束以一定的扫描速度照射到经过黑化处理的模具工作表面时,将使模具工作表面在很短时间内由于吸收激光的能量而急剧升温。当激光束移开时,模具工作表面由基材自身传导而迅速冷却,从而形成具有一定性能的表面强化层,其硬度可提高15~20%,此外还具有淬火组子细小、耐磨性高、节能效果显著以及可改善工作条件等优点。

⑨. 离子注入:利用小型低能离子加速器,将需要注入元素的原子,在加热器的离子源中电离成离子,然后通过离子加热器的高电压电场将其加热,成为高速离子流,再经过磁分析器提炼后,将离子束强行打入模具工作表面,从而改变模具表面的显微硬度和粗糙度,降低表面摩擦系数,最终提高工作的使用寿命。

5. 消除线切割产生的应力

线切割机加工前,原材料内部因为淬火呈拉应力状态,线切割时产生的热应力也是拉应力,两种应力叠加的结果很容易达到材料的强度极限而产生微裂纹,从而大大缩短冲压模具寿命,因此要提高冲压模具的寿命,需要消除线切割产生的应力。

①研磨去掉白层通常模具线切割后,经过研磨去掉表面硬度低的灰白层后便可进行装配使用。但这样做没有改变线切割造成的应力区的应力状态,即使增大线

切割后的研磨余量,但因高硬层硬度高(达70HRC) ,研磨困难,过大的研磨量容易破坏零件几何形状。

②.回火处理在线切割后,研磨去零件表面的白层,再在160℃~180℃回火2h ,则白层下面的高硬层可降低5HRC~6HRC,线切割产生的热应力亦有所下降,从而提高了冲模的韧性,延长了使用寿命。但是由于回火时间短,热应力消除不彻底,冲模寿命并不十分理想。

③.磨削加工线切割后磨削加工,可去掉低硬度的白层和高硬层,提高冲模寿命。因为磨削时产生的热应力也是拉应力,与线切割产生的热应力叠加,无疑也会加剧冲模损坏。若在磨削后,再进行低温时效处理,则可消除应力影响,显著提高冲模韧性,使冲模寿命提高。因为几何形状复杂的冲模大多数是采用线切割加工,所以磨削形状复杂的冲模必须采用价格昂贵的坐标磨床和光学曲线磨床,而这两种设备一般厂家都不具备,故推广困难。

④.喷丸处理后再低温回火喷丸处理可使线切割切口的残余奥氏体转变为马氏体,提高冲模的强度和硬度,使表面层应力状态发生变化,拉应力降低,甚至变为压应力状态,使裂纹萌生和扩展困难,再结合低温回火,消除淬火层内拉应力,可使冲模寿命提高10~20倍。喷丸处理受设备条件和冲模零件形状(内表面) 限制,难以普遍应用。

⑤.研磨后再低温时效处理线切割表面经研磨后,高硬层已基本去掉,再进行120℃~150℃×5~10h低温时效处理(亦称低温回火处理) ,亦可经过160℃~180℃×4~6h 低温回火处理。这样可消除淬火层内部拉应力,而硬度降低甚微(后者硬度降低稍大),却大大提高了韧性,降低了脆性,冲模寿命可提高2倍以上。这一方法简便易行,效果十分明显,易于推广。

消除线切割加工产生的应力,提高韧性,最佳方法是喷丸+ 低温回火,其次是磨削后+ 研磨+ 低温回火,再次是研磨+ 低温时效处理,各单位可根据自己的具体情况选择。

某单位曾用材料为Cr12MoV的冲模,线切割后分别做如下试验,其寿命差异非常大。

a.直接用于冲裁,刃磨寿命10742次。

b.160℃回火2h,刃磨寿命11180次。

c.研磨去白层,刃磨寿命仅4860次。

d.研磨去白层,160℃×2h回火,刃磨寿命为7450次。

e.磨削,刃磨寿命28743次。

f.喷丸后经160℃×2h回火,刃磨寿命达到220000次。

6.合理的机械加工工艺和良好的加工精度

机械加工工艺要能消除加工后的加工变形与残留应力,尽量采用磨削、研磨和抛光等精加工和精细加工,获得较小的表面粗糙度值,提高模具使用寿命。

①.粗加工时表面粗糙度Ra<3.2μm,模具工作部分转角处要光滑过渡,减少热处理产生的热应力。

②.模具表面加工时留下的刀痕、磨痕都是应力集中的部位,也是早期裂纹和疲劳裂纹源,因此在冲模加工时一定要刃磨好刀具。平面刀具两端一定要刃磨好圆角R,圆弧刀具刃磨时要用R规测量,绝不允许出现尖点。

③.在精加工时走刀量要小,不允许出现刀痕。对于复杂零件要留一定的打磨余量,即使加工后没有刀痕,也要再由模具钳工用风动砂轮打磨抛光,但要注意防止打磨时局部出现过热、烧伤表面和降低表面硬度。

④.模具电加工表面有硬化层,厚10μm左右,硬化层脆而有残留应力,直接使用往往引起早期开裂,这种硬化层在对其进行180℃左右的低温回火时可消除其残留应力。磨削时若磨削热过大会引起肉眼看不见的与磨削方向垂直的微小裂纹,在拉应力作用下,裂纹会扩展。对Cr12MoV钢冷冲压凹模采用干磨,磨削深度为0.04~0.05mm时,使用中100%开裂;采用湿磨,磨削深度0.005~0.01mm 时,使用性能良好。消除磨削应力也可将模具在260~315℃的盐浴中浸1.5min,然后在30℃油中冷却,这样硬度可下降1HRC,残留应力降低40%~65%。对于精密模具的精密磨削要注意环境温度的影响,要求恒温磨削。

⑤.冲模粗加工时要为精加工保留合理的加工余量,因为所留的余量过小,可能因热处理变形造成余量不够,必须对新制冲模进行补焊,若留的余量过大,则增加了淬火后的加工难度。

⑥.冲模滑块或浮块的平行度超过要求时,会使冲模锁扣啃坏或打裂,重者会打断顶杆甚至损坏模具,所以在冲模加工中除对模腔尺寸按图纸要求加工外,对其它各部分外形尺寸、位置度、平行度、垂直度都要按要求加工并严格检验。

⑦.冲模模腔的粗糙度直接影响冲模寿命,粗糙度高会使冲件不易脱模,特别是中间带凸起部位,冲件越深,脱料越困难,最后只能卸下冲模用机加工或气割的方法破坏冲件。由于粗糙度值高会使金属流动阻力增加,严重时会将模壁磨损成沟槽,既影响冲件成形,也易使冲模早期失效。工作表面粗糙度值低的模具不但摩擦阻力小,而且抗咬合和抗疲劳能力强,表面粗糙度一般要求Ra=0.4~0.8μm。

⑧.模具的制造装配精度对模具寿命的影响也很大,装配精度高,底面平直,平行度好,凸模与凹模垂直度高,间隙均匀,亦可获得相当高的寿命。

7.冲压原材料的选用

①冲压件的材料有金属和非金属。一般来讲,非金属材料的强度低,所需的成形力小,模具受力小,模具寿命高。因此,金属件成形模比非金属成形模的寿命低。

②.实际生产中,由于冲压原材料厚度公差超差、材料性能波动、表面质量较差(如锈迹)或不干净(如油污)等,会造成模具工作零件磨损加剧、易崩刃等不良后果。为此,应当注意:

a.尽可能采用冲压工艺性好的原材料,以减少冲压变形力;

b.冲压前应严格检查原材料的牌号、厚度及表面质量等,并将原材料擦拭干净,必要时应清除表面氧化物和锈迹;③根据冲压工序和原材料种类,必要时可安排软化处理和表面处理,以及选择合适的润滑剂和润滑工序。

8.针对工作温度的良好润滑

冲压模具的工作温度可分为低温、常温或交变温度等几种状态,温度对钢的耐磨性有相当大的影响。通常在250度以下时主要为氧化磨损,即冲压模具对接件或冲压模具与工件之间相对摩擦,形成氧化膜并反复形成和剥落,磨损量较小;250度到300度之间时转变为粘着磨损,磨损量达到最大值;高于300度又转化为氧化磨损为主,磨损量趋向减小,但温度过高时,冲压模具硬度明显下降,粘着现象加重,甚至形成较大面积烧结和熔融磨损。

冲压工作时,模具因受热而升温,随着温度的上升,模具的强度下降,易产生塑性变形。同时,模具同工件接触的表面与非接触表面温度有差别,在模具中造成温度应力。润滑模具与坯料的相对运动表面,可减少模具与坯料的直接接触,减少磨损,降低成形力。同时,润滑剂还能在一定程度上阻碍坯料向模具传热,降

低模具温度,对提高模具寿命都是有利的。

9.冲压设备的选择与安装运行

冲压设备的精度与刚度,结构特征,安装环境以及冲压速度都有将对模具寿命有很大的影响。

①.设备的精度与刚度冲压设备的精度与刚性对冲压模具寿命的影响极为重要。冲压设备的精度高、刚性好,冲模寿命大为提高。模具成形工件的力是由设备提供的,在成形过程中,设备因受力将产生弹性变形。复杂硅钢片冲模材料为Crl2MoV,在普通开式压力机上使用,平均复磨寿命为1-3万次,而新式精密压力机上使用,冲模的复磨寿命可达6~12万次。尤其是小间隙或无间隙冲模、硬质合金冲模及精密冲模必须选择精度高、刚性好的压力机,否则,将会降低模具寿命,严重者还会损坏模具。

②.冲床本身坚固的框架结构和地基隔离带可以分解冲压过程中的冲击力。在冲床地基周围设置高湿度的隔离带,使用地基可以保持冲床的水平度,而水平度影响模具的寿命。

③.控制滑块的导向精度。大多数冲床只靠导轨来控制滑块的垂直运动,导轨不但控制驱动轮的运动而且承载机构产生的力。滑轨必须定期更换,但如果安装一个导向套,将延长滑块和导轨的寿命。这种带导向套的滑块吸收偏心轮产生的侧向力,并将其分解。在双重导向的冲程中,导轨的作用是引导承受模具反作用力的滑块,因此必须充分利用导轨的全部长度,使滑块在整个行程中被充分导向。这种导向套与导轨的组合导向比单独由导轨导向的导向面积要大1倍多。使用导向套再加上润滑油(而不是脂润滑),可使导轨间隙(0.0015英寸)比无导向套更小(0.008-0.015英寸)。使用小间隙导向可精确的控制滑块运动,尽管这种结构比无导向套初期的成本要高,但它可以使模具的寿命延长30%。

④.降低落料时或冲裁力很大时的冲击力。当切刃剪切至板料厚度的20%-30%时,板料开始断裂,并释放能量,促使滑块高速下行。在行程末端滑块速度的突然增大会对冲床和模具产生巨大的冲击,滑块在材料断裂点的速度与生成的反作用力直接相关。为减小这种冲击,在相同的生产节拍下使用一种驱动连杆将滑块在行程末端的速度减小到用曲柄冲床的40%。滑块对于模具的接触速度和冲击力也将降为曲柄冲床的60%。这种速度降低意味着减小了上下模的冲击,从而延长

了模具的寿命。

⑤.冲压速度冲压速度愈高,模具在单位时间内受的冲击力愈大(冲量大);时间愈短,冲击能量来不及传递和释放,易集中在局部,造成局部应力超过模具材料的屈服应力或断裂强度。因此,冲压速度越高,模具越易断裂或塑性变形失效。

10.日常保养与刃磨维修

为了保护正常生产,提高冲压件质量,降低成本,延长冲压模具寿命,必须对模具进行日常保养,确保正确使用和刃磨维修。

①.做好冲模的日常保养、维护工作, 注意保持棋具的清洁和合理的润滑,严格执行冲模“三检查”制度(使用前检查,使用过程中检查与使用后检查)。

②.模具的正确安装与调试: 严格控制凸模进入凹模深度;控制校正弯曲、冷挤、整形等工序上模的下止点。

③.冲模刃磨修理: 凸、凹模表面粗糙度值越低,耐疲劳强度越高,粗糙度值每降低1级,寿命可提高1倍。板料在冲裁时,随着凸模进入板料深度的增加,材料向凸、凹模刃口流动,直到凸模刃口和凹模刃口之间产生的裂纹重合时为止。在材料流动时,凸、凹模端面产生很大的摩擦力,摩擦力大小在很大程度上取决于凸、凹模端面粗糙度的高低,因此,研磨凸、凹模端面有利于提高冲模寿命,特别是形状复杂而精度要求高的中小型冲模。因此,研磨凸、凹模时,必须研磨侧面后再研磨端面磨削后。

三、冲压模具的寿命管理

为了确保模具的使用处于受控状态,防止报废模具被使用,并根据需要申请备用模具,模具公司对模具的使用寿命要进行有效的管理。

冲压模具寿命影响因素

冲压模具寿命影响因素 冲模失效形式主要为磨损失效、变形失效、断裂失效和啃伤失效等。然而,由于冲压工序不同,工作条件不同,影响冲模寿命的因素是多方面的。下面就冲模的设计、制造及使用等方面综合分析冲模寿命的影响因素,并捉出相应的改善措施。 1 冲压设备 冲压设备(如压力机)的精度与刚性对冲模寿命的影响极为重要。冲压设备的精度高、刚性好,冲模寿命大为提高。例如:复杂硅钢片冲模材料为Crl2MoV,在普通开式压力机上使用,平均复磨寿命为1-3万次,而新式精密压力机上使用,冲模的复磨寿命可达6~12万次。尤其足小间隙或无间隙冲模、硬质合金冲模及精密冲模必须选择精度高、刚性好的压力机,否则,将会降低模具寿命,严重者还会损坏棋具。 2 模具设计 (1)模具的导向机构精度。准确和可靠的导向,对于减少模具工作零件的磨损,避免凸、凹模啃伤影响极大,尤其是无间隙和小间隙冲裁模、复合模和多工位级进模则更为有效。为提高模具寿命,必须根据工序性质和零件精度等要求,正确选择导向形式和确定导向机构的精度。一般情况下,导向机构的精度应高于凸、凹模配合梢度。 (2)模具(凸、凹模)刃口几何参数。凸、凹模的形状、配合间隙和圆角半径不仅对冲压件成形有较大的影响,而且对于模具的磨损及寿命也影响很大。如模具的配合间隙直接影响冲裁件质量和模具寿命。精度要求较高的,宜选较小的间隙值;反之则可适当加大间隙,以提高模具寿命。 3 冲压工艺 (1)冲压零件的原材料。 实际生产中,由于外压零件的原材料厚度公差超差、材料性能波动、表面质量较差(如锈迹)或不干净(如油污)等,会造成模具工作零件磨损加剧、易崩刃等不良后果。为此,应当注意:①尽可能采用冲压工艺性好的原材料,以减少冲压变形力;②冲压前应严格检查原材料的牌号、厚度及表面质量等,并将原材料擦拭干净,必要时应清除表面氧化物和锈迹;③根据冲压工序和原材料种类,必要时可安排软化处理和表面处理,以及选择合适的润滑剂和润滑工序。 (2)排样与搭边。 不合理的往复送料排样法以及过小的搭边值往往会造成模具急剧磨损或凸、凹模啃伤。因此,在考虑提高材判利用毕的同时,必须根据零件的加工批量、质量要求和模具配合间隙,合理选择排样方法和搭边值,以提高模具寿命。 4 模具材料 模具材料对模具寿命的影响是材料种类、化学成分、组织结构、硬度和冶金质量等诸冈索的综合反映。不同材质的模具寿命往往不同。为此,对于冲模工作零件材料提出两项基本要求:①材料的使用性能应具有高硬度(58~64HRC)和高强度,并具有高的耐磨性和足够的韧性,热处理变形小,有一定的热硬性;②工艺性能良好。冲模工作零件加工制造过程一般较为复杂.因而必须具有对各种加工工艺的适应性,如可锻性、可切削加工性、淬硬性、淬透性、淬火裂纹敏感性和磨削加工性等。通常根据冲压件的材料特性、生产批量、精度要求等,选择性能优良的模具材料,同时兼顾其工艺性和经济性。 5 热加工工艺

冲压模具间隙对模具寿命的影响

冲压模具间隙对模具寿命的影响 【摘要】利用一轴对称冲裁模形,研究了冲裁变形过程和的各个阶段,间隙变化对冲 裁力的影响规以及在不同的间隙条件下,凸模的预期磨损使用寿命的计算方法。 关键词:模具;冲压;影响 【Abstract】Basedon as ymmetry blanking model,it interprets the blankingprocess andits deforma-.Discussing val'ioll2 clearance leads tothetrend ofpunchforce.Mlast by the meQll,$oftool weal"c口20配一 the life ofpunchfor normoluse beforesharpening to restore its ongincashape. Key words:Die;Stamping;Influence 1引言 当前由于产品变化更新较快,同时,大部分技术人员为了保证模具的寿命对模具的选材尽量沿着高端走,模具寿命的问题在冲压类模具企业没有显得特别突出,因而模具寿命在许多冲压类模具企业并没有受到太大的重视。对于产品批量要求大、模具寿命要求长时,大多生产商为了保证其正常生产节奏,要么采用快换凸模的模具结构形式,要么干脆备用—套模具。 由于对模具没有合理的寿命估算,模具的成本在这个生产过程中就显得特别高。影响模具寿命的因素有很多,模具材料、模具润滑形式、板材性能、零件表面粗糙度、模具材料热处理工艺、模具几何形状、冲裁间隙都是不可忽略的因素,但实际生产中,板材因产品限定无法更改的,而模具一旦加工出来,就只有润滑形式、模具装配间隙是可调的。相对于成型类模具,润滑形式对冲裁类模具寿命影响不如间隙影响大,间隙因素为越来越多的技术人员所重视。目前参考文献关于间隙对模具寿命的影响大多是定性分析,能够定量分析并给出工程技术人员以直接指导的并不多见。 模型建立,如图1所示,一轴对称冲裁模型,为了防止板料在冲压过程中发生翘曲影响冲件平整度,一般需要配置压料板。算例凸凹模选材均为AISI—D2COLD,凹模内孔直径D凹为lOmm,单边间隙为O.1mm,凸模外径D凸为9.8mm。为防止刚度矩阵的奇异,凸凹模圆角分别取0.05、0.08ram。板料为不锈钢AISI304,厚度lmm,杨氏模量E为2.IE5MPa,屈服极限以为365MPa,泊松比7为0.29,为统一计算比较,所有速度按lmm /s(主要便于观察各个细分的计算步,同时防止过大的速度导致板料工具相互嵌入过大,网格重新划分的工作量过大111)。金属剪切摩擦按o.08计。 2冲裁模间隙对模具寿命的影响 在冲裁模的设计中,凸凹模间隙的合理选取,是保证模具正常工作、提高冲片质量、延长模具寿命的一个关键因素。理想的间隙应该是板料冲裁断裂时,凸凹模刃口边所产生的裂纹在一条直线上,否则冲片边缘将出现不允许的毛刺,使得刃口粘结严重,磨损加快,进而影响模具的寿命。所以,如何选取合理的凸凹模间隙,是模具设计时不容忽视的问题。 通常情况下,模具设计中间隙一般都按设计手册推荐的间隙值选取。例如,我厂电机定、转子片为0. 5mm 的硅钢片, 手册推荐的间隙为0 . 0 4 ~0. 07mm ,约为材料厚度的8 %~14 %。按照这个间隙,冲出的定、转子片毛刺虽能控制在规定范围内。但由于间隙

冲压模具的寿命管理(doc 15页)(完美版)

提高模具寿命应用技术实例的评论 5 编者按: 随着模具工业的不断发展,模具的应用越来越广泛。目前国内大多数模具企业,模具的使用寿命还比较低,而且缺乏对模具寿命管理的理论认识和指导依据,这不仅会影响模具冲压生产的产品质量,而且会造成模具材料、加工工时等成本的巨大浪费,增加产品的成本并降低生产效率,严重影响模具企业产品市场的竞争力。 摘要: 本文从模具寿命的概念入手,说明了模具的失效形式及原理,通过对影响模具寿命的各方面因素进行分析,提供了模具寿命管理的有效方法和可靠数据。 关键词: 模具寿命模具使用寿命模具失效模具维修寿命管理 一、模具寿命的概念原理 模具寿命是指在保证制件品质的前提下,模具所能达到的生产次数(冲压次数、成型次数)。它包括反复刃磨和更换易损件,直至模具的主要部分更换所成形的合格制件总数。 模具使用寿命:模具已经生产的次数。模具的失效分为非正常失效和正常失效。非正常失效(早期失效)是指模具未达到一定的工业水平下公认的寿命时就不能工作。早期失效的形式有塑性变形、断裂、局部严重磨损等。正常失效是指模具经大批量生产使用,因缓慢塑性变形或较均匀地磨损或疲劳断裂而不能继续工作。 1.模具正常寿命 模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。 2.模具失效形式及原理 模具种类繁多,工作状态差别很大,损坏部位也各异,但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。 ①.磨损失效 模具在工作时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分以下几种: a. 疲劳磨损 两接触表面相对运动时,在循环应力(机械应力与热应力)的作用下,使表面金属疲劳脱落的现象称为疲劳磨损。 b. 气蚀磨损和冲蚀磨损 金属表面的气泡破裂,产生瞬间的冲击和高温,使模具表面形成微小麻点和凹坑的现象叫气蚀磨损。 液体和固体微小颗粒反复高速冲击模具表面,使模具表面局部材料流失,形成麻点和凹坑的现象叫冲蚀磨损。 c. 磨蚀磨损 在摩擦过程中,模具表面和周围介质发生化学或电化学反应,再加上摩擦力的机械作用,引起表面材料脱落的现象叫磨蚀磨损。 在模具与工件(或坯料)相对运动中,磨损往往是以多种形式并存,并相互影响。 ②.断裂失效

如何实施冲压模具的寿命管理

专家视点:如何实施冲压模具的寿命管理 编者按: 随着模具工业的不断发展,模具的应用越来越广泛。目前国内大多数模具企业,模具的使用寿命还比较低,而且缺乏对模具寿命管理的理论认识和指导依据,这不仅会影响模具冲压生产的产品质量,而且会造成模具材料、加工工时等成本的巨大浪费,增加产品的成本并降低生产效率,严重影响模具企业产品市场的竞争力。 摘要: 本文从模具寿命的概念入手,说明了模具的失效形式及原理,通过对影响模具寿命的各方面因素进行分析,提供了模具寿命管理的有效方法和可靠数据。 关键词: 模具寿命模具使用寿命模具失效模具□□□寿命管理 一、模具寿命的概念原理 模具寿命是指在保证制件品质的前提下,模具所能达到的生产次数(冲压次数、成型次数)。它包括反复刃磨和更换易损件,直至模具的主要部分更换所成形的合格制件总数。 模具使用寿命:模具已经生产的次数。模具的失效分为非正常失效和正常失效。非正常失效(早期失效)是指模具未达到一定的工业水平下公认的寿命时就不能工作。早期失效的形式有塑性变形、断裂、局部严重磨损等。正常失效是指模具经大批量生产使用,因缓慢塑性变形或较均匀地磨损或疲劳断裂而不能继续工作。 1.模具正常寿命 模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。 2.模具失效形式及原理 模具种类繁多,工作状态差别很大,损坏部位也各异,但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。 ①.磨损失效 模具在工作时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分以下几种: a. 疲劳磨损 两接触表面相对运动时,在循环应力(机械应力与热应力)的作用下,使表面金属疲劳脱落的现象称为疲劳磨损。 b. 气蚀磨损和冲蚀磨损 金属表面的气泡破裂,产生瞬间的冲击和高温,使模具表面形成微小麻点和凹坑的现象叫气蚀磨损。 液体和固体微小颗粒反复高速冲击模具表面,使模具表面局部材料流失,形成麻点和凹坑的现象叫冲蚀磨损。 c. 磨蚀磨损 在摩擦过程中,模具表面和周围介质发生化学或电化学反应,再加上摩擦力的机械作用,引起表面材料脱落的现象叫磨蚀磨损。 在模具与工件(或坯料)相对运动中,磨损往往是以多种形式并存,并相互影响。 ②.断裂失效 模具出现大裂纹或分离为两部分和数部分丧失工作能力时,成为断裂失效。 断裂可分为塑性断裂和脆性断裂。模具材料多为中、高强度钢,断裂的形式多为脆性断裂。脆性断

模具寿命与失效

模具寿命与失效作业 ⒈模具成型工艺有哪些? 答:(一)根据不同的工作条件可以分为以下几种: ⑴普通模锻 普通模锻是将加热后或不加热的金属坯料放在模具型腔内,在冲击力或压力作用下,使金属的几何形状发生变化而获得与型腔一致的锻件。 普通模锻包括镦锻和热锻。镦锻又分为冷镦、温镦和热镦。 ⑵挤压成型 挤压是将金属材料放在挤压型腔内,一端施加强大压力,材料在三向受力状态下变形,从而一端的模孔中流出,获得不同零件。 挤压按凸模与材料相对运动方向分类,可分为正挤压、反挤压、复合挤压和径向挤压。按坯料温度可分为冷挤压、温挤压和热挤压。 ⑶拉拔成型 在拉拔时,材料两向受力,一向受压,通过模具的模孔而成型,获得所需形状尺寸的型材、毛坯或零件。拉拔可分为拉丝、拔管。 拉拔所获得的产品具有较高的精度和较低的表面粗糙度,常用于对轧制的棒料、管料的再加工,以提高质量。 ⑷冲压成型 冲压是利用冲模使材料发生分离或变形,从而获得零件的加工方法。冲压可获得形状复杂、精度高和表面质量好的零件,同时生产率很高、成本低。 冲压主要可分为分离工序和成型工序。分离工序包括冲孔、落料、切边、修整等方法。成型工序包括拉深、弯曲、胀形、翻边和校平等。 ⑸压铸成型 压铸是以一定的压力将熔融金属高速压射充填到压铸模型腔内,在压力下凝固而成形铸件的工艺方法。 ⑹塑料成型 塑料成型是在压力的作用下,将粉末状或黏流状的塑料在模具中成型,获得所需形状尺寸的塑料制品。 塑料成型种类﹕模压成型、射出成型﹑注射成型、压铸成型﹑吸塑成型﹑吹塑成型﹑发泡成型﹑中空成型、挤压成型等工艺方法。 (7)其他特殊成型 ①玻璃钢船模具制作工艺 ②全新的模具成型方法(新型模具材料(陶瓷粉)取代石墨材料制造无压浸渍法制造金刚石钻头工艺)是针对无压浸渍法制造金刚石钻头存在模具费用高、模具加工周期长等缺点,研究了一种新型模具材料(陶瓷粉)取代石墨材料,并研究了一种全新的模具成型方法,简化了模具制造工序,降低了成本。 ③烧结式PDC钻头模具成型工艺是针对烧结式PDC钻头底模手工成型困难、生产效率低的问题,采用冷压成型法制作底模,并在实验的基础上,确定了底模的原材料配比和成型压力,为底模加工提供了一种可行的新工艺。 ④注吹塑料中空容器的模具成型工艺方法其具体步骤包括:注塑机的注塑过程及吹塑机的吹塑过程;所述注塑过程包括:a注塑机中的定模具和动模具闭合

冲压模具寿命的分析及提高

【摘要】:随着机械产品零部件的批量化生产,冷冲压模具已经越来越被企业广泛的应用,各企业为了确保机械产品的加工质量,提高产品的加工效率,降低制造成本,已经把提高冷冲压模具的使用寿命作为企业研发的一项重要课题来研究。文章从工作中的实际经验着手,从影响冷冲压模具使用寿命的几种形式,影响冷冲压模具使用寿命的原因,提高冷冲压模具使用寿命的措施与途径等几方面进行了探讨。通过对冷作模具常见失效形式的分析,找出造成模具提前失效、影响其正常生产寿命的原因[1]。从模具设计制造、制作材料的选择、热处理工艺和维护保养几方面入手,采取相应的措施,就能够有效地提高冷作模具的寿命。 【关键词】:冷作模具;失效形式;模具寿命;失效分析 引言 模具寿命是指模具在保证产品零件质量的前提下,所能加工制件的总数量,它包括工作面的多次修磨和易损件更换后的寿命。模具寿命一般可分为设计寿命和使用寿命,在模具设计阶段就应明确该模具适用的生产批量类型或者模具生产制件的总数量,即模具的设计寿命;在正常情况下,模具的使用寿命应大于设计寿命。不同类型的模具正常损坏的形式也不一样,冲压模具失效形式主要为磨损失效、变形失效、断裂失效和啃伤失效等。然而,由于冲压工序不同、工作条件不同,影响冲压模具寿命的因素是多方面的。冷冲压模具的使用寿命,直接关系着产品加工质量和产品加工效率的高低,是影响产品加工经济成本以及产品加工经济效益的重要因素,同时也是衡量冷冲压模具制造水平高低的重要指标。为了确保企业的产品加工质量,产品的加工效率,降低产品的经济成本,获得最大的经济效益,努力提高冷冲压模具的使用寿命是诸多因素中的重要一环。我们有必要根据具体的实际情况,科学的分析和研究,影响冷冲压模具使用寿命长短的各种因素,从冷冲压模具的结构设计开始,从冷冲压模具材料的合理选材入手,从冷冲压模具加工工艺的制定、装配与调试等多种途径和渠道,采用多方位的科学技术手段,来确保提高冷冲压模具的加工制造质量,延长冷冲压模具的使用寿命。为此,从以下几个方面进行简略的分析。以下就冲压模具在的模具设计、模具制造、模具使用等方面来分析冲压模具寿命的影响因素,并提出相应的改善措施来提高模具的使用寿命[2]。 1 影响冷冲压模具使用寿命的几种形式 影响冷冲压模具使用寿命的形式、原因多种多样,其中最主要的有断裂,变形,磨损,啃伤等等。 1.1 断裂

冲压模具间隙对模具寿命的影响

冲压模具间隙对模具寿 命的影响 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

冲压模具间隙对模具寿命的影响 【摘要】利用一轴对称冲裁模形,研究了冲裁变形过程和的各个阶段,间隙变化对冲裁力的影响规以及在不同的间隙条件下,凸模的预期磨损使用寿命的计算方法。 关键词:模具;冲压;影响 【Abstract】Basedon as ymmetry blanking model,it interprets the blankingprocess andits deforma-.Discussing val'ioll2 clearance leads tothetrend ofpunchforce.Mlast by the meQll,$oftool weal"c口20配一the life ofpunchfor normoluse beforesharpening to restore its ongincashape. Key words:Die;Stamping;Influence 1引言 当前由于产品变化更新较快,同时,大部分技术人员为了保证模具的寿命对模具的选材尽量沿着高端走,模具寿命的问题在冲压类模具企业没有显得特别突出,因而模具寿命在许多冲压类模具企业并没有受到太大的重视。对于产品批量要求大、模具寿命要求长时,大多生产商为了保证其正常生产节奏,要么采用快换凸模的模具结构形式,要么干脆备用—套模具。 由于对模具没有合理的寿命估算,模具的成本在这个生产过程中就显得特别高。影响模具寿命的因素有很多,模具材料、模具润滑形式、板材性能、零件表面粗糙度、模具材料热处理工艺、模具几何形状、冲裁间隙都是不可忽略的因

冲压模具制造工艺

概述 模具是工业生产中使用极为广泛的工艺装备之一,也是发展工业的基础。模具是成形金属、塑料、橡胶、玻璃、陶瓷等制件的基础工艺装备,是工业生产中发展和实现少无切屑加工技术不可缺少的工具。模具是一种高效率的工艺设备,用模具进行各种材料的成型,可实现高速度的大批量生产,并能在大量生产条件下稳定的保证制件的质量、节约原材料。因此,在现代工业生产中,模具的应用日益广泛,是当代工业生产的重要手段和工艺发展方向。许多现代工业的发展和技术水平的提高,在很大程度上取决于模具工业的发展水平。 为了实现工业现代化今后的模具发展趋势大致包括以下几方面: 1、发展高效模具。对于大批量生产用模具,应向高效率发展。如为了适应当前高速压力机的使用,应发5冲模的工作部分零件必须具备的性能展多工位级进模以提高生产效率。 2、发展简易模具。对于小批量生产用模具,为了降低成本、缩短模具制造周期应尽量发展薄板冲模、聚氨酯模具、锌合金、低熔点合金,环氧树脂等简易模具。 3、发展多功能模具。为了提高效率和保证制品的质量,要发展多工位级进模及具有组合功能的双色、多色塑料注射模等。 4、发展高寿命模具。高效率的模具必然需要高寿命,否则将必然造成频繁的模具拆卸和整修或需要更多的备模。为了达到高寿命的要求,除模具本身结构优化外,还要对材料的选用和热处理、表面强化技术予以开发和创新。 5、发展高精度模具。计算机硬件,软件以及模具加工,检测技术的快速发展使得精锻模具CAD/CAM/CAE一体化技术成为锻造企业切实可行的技术。精密,高效是现代锻造业的发展趋势;应用该技术的实践表明,只有基于效率的模具CAD/CAM/CAE…CAX平台才能实现精锻件及其模具的高效率开发。 模具的发展与现状 模具是工业生产中的基础工艺装备,是一种高附加值的高技术密集型产品。 也是高新技术产业的重要领域,其技术水平的高低已成为衡量一个国家制造水平的重要标志,随着国民经济总量和工业产品技术的不断发展,各行业对模具的需求量越来

影响汽车冲压模具寿命的因素分析实用版

YF-ED-J8533 可按资料类型定义编号 影响汽车冲压模具寿命的因素分析实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

影响汽车冲压模具寿命的因素分 析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 现代汽车行业的迅猛发展,使得人们对汽 车各个方面的要求也越来越高,故而要求汽车 冲压件结构复杂,且能在高温、高速、高摩擦 剂腐蚀性工作环境中正常工作,也随之提高了 对冲压模具的要求。冲压模具使用寿命一直是 企业关注的重要问题,但目前我国企业生产的 模具使用寿命仅相当于发达国家的1/3—1/5。 为了提高模具寿命,降低成本,必须分析影响 模具使用寿命的因素,获得提高模具寿命的方 法。通过分析模具失效原因发现,合理设计模

具结构,恰当的选用材料及热处理,正确使用和维护模具,对模具使用寿命的提高是有重大意义的。 模具结构 冲压模具结构是影响模具寿命最主要的因素。因此模具设计者要需对冲压模具有较好的认识,同时具备基本的铸造和机加工相关知识,并能将这三者结合在一起来设计模具。 模具设计最基本原则是安全性,其次是经济性,考虑这个因素节省成本,为企业带来效益。所以设计模具过程中,在合理安排模具冲压间隙,冲压工序及冲压工位之后,还须做到以下几点保证模具的寿命达到预期: 1.1整个模具框架结构的厚度需均匀合理 根据模具的大小及生产要求确定模具框架

十大因素影响冲压模具的寿命管理

十大因素影响冲压模具的寿命管理2008-07-05 12:36:01 来自: 罗百辉模具寿命与失效的评论研究表明模具的使用寿命与模具结构设计、模具钢材选用、热处理、表面处理、机械加工研磨、线切割工艺冲压设备、冲压材料及工艺模具润滑、保养维修水平差等诸多因素有关。其中引起模具失效的各种因素中模具结构不合理、选材不当约占25热处理不当约占45工艺问题约占10设备问题、滑润问题等因素约占20。1.合理的模具结构设计模具结构对模具受力状态的影响很大合理的模具结构能使模具工作时受力均匀不易偏载应力集中小。模具设计的原则是保证足够的强度、刚度、同心度、对中性和合理的冲裁间隙并减少应力集中以保证由模具生产出来零件符合设计要求。因此对模具的主要工作零作如冲模的凸、凹模等要求其导向精度高、同心度和中性好及冲裁的间隙合理。在进行模具设计时应着重考虑的是①.设计凸模时必须注意导向支撑和对中保护。特别是设计小孔凸模时采用导向装置结构能保证模具零件相互位置的精度增加模具抗弯曲、抗偏载的能力避免模具不均匀磨损从而延长模具寿命。②. 对小孔、夹角、窄槽等薄弱部位进行补强为了减少应力集中要以圆弧过渡圆弧半径R可取35mm。③. 整体模具的凹圆角半径很易造成应力集中并引起开裂对于结构复杂的凹模采用镶拼结构减少应力集中。 ④. 冲模的凸、凹模圆角半径R不仅对冲压件成形有较大的影响而且对于模具的磨损及寿命也影响很大。设计时应从保证成型零件充分接触的前提下尽可能放大避免产生倒锥影响冲件脱料出模如圆角半径R过小且没有光滑过渡则容易产生裂纹。 ⑤.合理增大间隙改善凸模工作部分的受力状态使冲裁力、卸件力和推件力下降凸、凹模刃口磨损减少。一般情况下冲裁间隙放大可以延长切飞边模寿命。⑥.模架应有良好的刚性不要仅仅满足强度要求模座厚度不宜太薄至少应设计到45mm 以上。浮动模柄可避免冲床对模具导向精度的不良影响。凸模应紧固牢靠装配时要检查凸模或凹模的轴线对水平面的垂直度以及上下底面之间的平行度。⑦.模具的导向机构精度。准确和可靠的导向对于减少模具工作零件的磨损避免凸、凹模啃伤影响极大尤其是无间隙和小间隙冲裁模、复合模和连续模则更为有效。为提高模具寿命必须根据工序性质和零件精度等要求正确选择导向形式和确定导向机构的精度。一般情况下导向机构的精度应高于凸、凹模配合精度。连续模具应设计4根导柱导向这样导向性能好。因为增加了刚度保证了凸、凹模间隙均匀确保凸模和凹模不会发生碰切现象。⑧.排样方式与搭边值大小对模具寿命的影响很大过小的搭边值往往是造成模具急剧磨损和凸、凹模啃伤的主要原因。从节约材料出发搭边值愈小愈好但搭边值小于一定数值后对模具寿命和剪切表面质量不利。在冲裁中有可能被拉入模具间隙中使零件产生毛刺甚至损坏模具刃口降低模具寿命。因此在考虑提高材料利用率的同时必须根据零件产量、质量和寿命确定排样方法和搭边值。2.合理选择模具材料冲压模具工作时要承受冲击、振动、摩擦、高压和拉伸、弯扭等负荷甚至在较高的温度下工作如冷挤压工作条件复杂易发生磨损、疲劳、断裂、变形等现象。因此模具材料的性能对模具的寿命影响较大不同材质的模具寿命往往不同对模具工作零件材料的要求比普通零件也高。①.根据模具的工作条件、生产批量以及材料本身的强韧性能来选择模具用材应尽可能选用品质好的钢材。a.材料的使用性能应具有高硬度5864HRC和高强度并具有高的耐磨性和足够的韧性热

如何提高模具的使用寿命

如何提高模具的使用寿命 姓名:付俊峰班级:11材控<1>班学号:1110121010 摘要: 本文从生产实际出发,介绍在六个方面介绍、分析了在生产中模具经常 出现的损耗情况,探讨了如何提高模具使用寿命的方式和方法,并介绍了在模具制造过程中需要注意的问题和事项。 关键词:模具、凸模、凹模 在现代机械制造业中模具工业已成为国民经济中一个非常重要的行业,许多新产品的开发和生产,在很大程度上依赖于模具制造技术,特别是在汽车、轻工、电子和航天等行业中尤显重要。模具制造能力的强弱和模具制造水平的高低,已经成为衡量一个国家机械制造技术水平的重要标志之一,直接影响着国民经济中许多部门的发展。现代工业的发展,对模具技术的要求越来越高。最大限度的降低模具成本,提高冲压模具的使用寿命已经成为业界的一项重要研究课题。综观现代模具技术,正向如下的方向 发展: (1)高精度现代模具的精度要求比传统的模具精度至少要高一个数量级。(2)长寿命现代模具的寿命比传统模具的寿命要高出5~10倍。如现代模具一般均可达到500万次以上,最高可达6亿次之多。 (3)高生产率由于采用多工位的级进模、多能模等先进模具,可以极大地提高生产率,从而带来显著的经济效益。 (4)结构复杂随着社会需求的多样化和个性化以及许多新材料、新工艺的广泛应用,对现代模具的结构形式要求也日益复杂。 在模具的生产中,导致模具损坏的部位,经常是冲模的刃口,刃口的损坏直接导致使冲压件的毛刺过大,制件的返修率高,增加生产成本。而刃口的损坏,在整个模具中仅仅是一小部分,尤其是在冲裁金属制件时,冲裁凸模中经常损坏的是小凸模,在大型模具的的冲裁模具中的小凸模,经常损坏程度不一样。因此,在某些情况下,只要改进冲裁模具中的小凸模就可以大大提高模具的寿命,下面,我们就以小凸模为例,探讨一下如何应用大型模具上的小零件而延长其使用寿命: 1.保持模具零件的位置稳定 在模具工作时,要求模具上所有的部件保持稳定的设计位置,模具加工间隙包括冲裁、弯曲、成形等凸凹模间隙的均匀配合,是控制相对位置的重要方面。以冲裁模为例,如果凸凹模配合间隙不均匀,则围绕凸模剪切边缘会产生均衡的负荷,

冲压模具的制造精度与使用寿命提升方法

冲压模具的制造精度与使用寿命提升方法 摘要:最近几年,我国工业建设发展非常迅速,使我国快速进入现代化发展阶段。在工业的生产制造过程中,通过冲压模具制造零件占据了较大的比例,随着 机械加工技术的不断提升,生产过程对于机械产品加工精度的要求越来越高。冲 压模具加工作为生产加工的特有方式,对于一些结构复杂或是非标准的零部件加工,能够以较高的效率制造出所需要的产品,且随着工艺技术的不断改进,模具 的制造精度、使用寿命和加工工艺也在实践与优化中得到了提升。 关键词:冲压模具制造精度;使用寿命提升方法 引言 我国整体经济建设的快速发展带动我国各行业发展迅速,为我国基础建设贡 献力量。在我国的工业化发展过程中,模具制造加工工艺是其中十分重要的内容,冲压模具制造技术,作为当前模具制造加工技术中应用最为普遍的技术,在我国 的机械加工行业发展过程中,必须要对其进行一定的探讨,对其发展趋势进行研究,促进其合理应用,这样才能够带动我国国民经济的快速发展。 1发展方向 冲压工艺在经过长期的发展,其开始呈现复合化、智能化、综合化以及集成 化的趋势,从总体角度分析,以现代技术为重要支撑的冲压工艺主要呈现以下三 个发展方向:第一,数字化方向发展,当前,随着智能技术在制造业中的应用, 冲压成型开始趋于可控化以及数字化方向发展,并且已经取得了较大的进展。同时,在计算机技术和信息技术的支撑下,冲压工艺在应用过程中,可以通过数字 技术提升产品的成品率和实用性,但是这种技术需要制造系统与工艺应用的高度 统一和集成,配合对控制技术和智能化技术的应用,可以大规模的生产各种形状 简单的零件。第二,整体性方向发展,冲压产品在整个制造过程中,需要对所有 环节加以重视,传统的单一性生产模式已经逐渐被时代淘汰,冲压工艺开始向全 生命性、全过程性以及整体性的方向发展。通过整体性的生产模式,可以实现对 工艺实施中全局性以及多目标的综合优化。 2冲压制造的精度提升 1.规范操作,冲压模具加工主要依靠上下模具的相对运动来完成,在实际生 产过程中,首先应确保被加工对象可靠地固定于冲压模具上,并针对关键尺寸实 现准确定位,以保证冲压成型的精确性。在冲压加工的同时还应综合考虑模具结 构特点和特殊性等问题,保证依据操作标准实现精准的定位。其次,精确冲压加 工过程中,导柱必须设计在远离模块和压料板的位置上,以保证冲压过程的安全性,同时达到合理控制凸凹模在冲压过程的配合间隙的要求。再次,冲压模具的 加工过程会不可避免地产生很大的冲击力,因此,针对于模具装配过程中所使用 的螺钉、螺母等固定零件和定位零件必须要保证其安装的可靠性,以免因为模具 的反复使用造成松动,影响位置和精度。最后,压料零件应当设计压边圈,以避 免材料受切向压力作用时出现凹凸不平的问题,精加工过程中应当确保卸料板及 时清理与保养,不得有杂物出现。2.合理设计,在冲压模具的精确制造过程中, 对于多种的零件制造与设计技术应当做到灵活应用。首先,积极利用计算机软件 进行模具的辅助设计,制作合理明确的生产图纸,并利用三维建模技术提高模具 设计过程中的精确度。其次,合理选用模具的制造技术,例如线切割技术的加工 精度能达到1.5μm的标准,且具有良好的加工表面粗糙度,由于线切割加工的直 径仅为0.03~0.1mm,能够保证凹凸模一次性加工完成。此外,通过磨削及抛光

冲压模具的寿命管理

随着模具工业的不断发展,模具的应用越来越广泛。目前国内大多数模具企业,模具的使用寿命还比较低,而且缺乏对模具寿命管理的理论认识和指导依据,这不仅会影响模具冲压生产的产品质量,而且会造成模具材料、加工工时等成本的巨大浪费,增加产品的成本并降低生产效率,严重影响模具企业产品市场的竞争力。 现从模具寿命的概念入手,说明了模具的失效形式及原理,通过对影响模具寿命的各方面因素进行分析,提供了模具寿命管理的有效方法和相关数据。一、模具寿命的概念原理 模具寿命是指在保证制件品质的前提下,模具所能达到的生产次数(冲压次数、成型次数)。它包括反复刃磨和更换易损件,直至模具的主要部分更换所成形的合格制件总数。 模具使用寿命:模具已经生产的次数。模具的失效分为非正常失效和正常失效。非正常失效(早期失效)是指模具未达到一定的工业水平下公认的寿命时就不能工作。早期失效的形式有塑性变形、断裂、局部严重磨损等。正常失效是指模具经大批量生产使用,因缓慢塑性变形或较均匀地磨损或疲劳断裂而不能继续工作。 1.模具正常寿命 模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。 2.模具失效形式及原理 模具种类繁多,工作状态差别很大,损坏部位也各异,但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。 ①.磨损失效 模具在工作时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分以下几种: a. 疲劳磨损 两接触表面相对运动时,在循环应力(机械应力与热应力)的作用下,使表面金属

如何实施冲压模具的寿命管理

编者按: 随着模具工业的不断发展,模具的应用越来越广泛。目前国内大多数模具企业,模具的使用寿命还比较低,而且缺乏对模具寿命管理的理论认识和指导依据,这不仅会影响模具冲压生产的产品质量,而且会造成模具材料、加工工时等成本的巨大浪费,增加产品的成本并降低生产效率,严重影响模具企业产品市场的竞争力。 摘要: 本文从模具寿命的概念入手,说明了模具的失效形式及原理,通过对影响模具寿命的各方面因素进行分析,提供了模具寿命管理的有效方法和可靠数据。 关键词: 模具寿命模具使用寿命模具失效模具维修寿命管理 一、模具寿命的概念原理 模具寿命是指在保证制件品质的前提下,模具所能达到的生产次数(冲压次数、成型次数)。它包括反复刃磨和更换易损件,直至模具的主要部分更换所成形的合格制件总数。 模具使用寿命:模具已经生产的次数。模具的失效分为非正常失效和正常失效。非正常失效(早期失效)是指模具未达到一定的工业水平下公认的寿命时就不能工作。早期失效的形式有塑性变形、断裂、局部严重磨损等。正常失效是指模具经大批量生产使用,因缓慢塑性变形或较均匀地磨损或疲劳断裂而不能继续工作。 1.模具正常寿命 模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。 2.模具失效形式及原理 模具种类繁多,工作状态差别很大,损坏部位也各异,但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。 ①.磨损失效 模具在工作时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分以下几种: a. 疲劳磨损 两接触表面相对运动时,在循环应力(机械应力与热应力)的作用下,使表面金属疲劳脱落的现象称为疲劳磨损。 b. 气蚀磨损和冲蚀磨损 金属表面的气泡破裂,产生瞬间的冲击和高温,使模具表面形成微小麻点和凹坑的现象叫气蚀磨损。 液体和固体微小颗粒反复高速冲击模具表面,使模具表面局部材料流失,形成麻点和凹坑的现象叫冲蚀磨损。 c. 磨蚀磨损 在摩擦过程中,模具表面和周围介质发生化学或电化学反应,再加上摩擦力的机械作用,引起表面材料脱落的现象叫磨蚀磨损。 在模具与工件(或坯料)相对运动中,磨损往往是以多种形式并存,并相互影响。 ②.断裂失效 模具出现大裂纹或分离为两部分和数部分丧失工作能力时,成为断裂失效。 断裂可分为塑性断裂和脆性断裂。模具材料多为中、高强度钢,断裂的形式多为脆性断裂。脆性断裂又可分为一次性断裂和疲劳断裂。 ③.塑性变形失效 模具在工作时承受很大的应力,而且不均匀。当模具的某个部位的应力超过了当时温度下模具材料的屈服极限时,就会以晶格滑移、孪晶、晶界滑移等方式产生塑性变形,改变了几何形状或尺寸,而且不能修复再工作时,叫塑性变形失效。塑性变形的失效形式表现为镦粗、弯曲、形腔胀大、塌陷等。 模具的塑性变形是模具金属材料的屈服过程。是否产生塑性变形,起主导作用的是机械负荷以及模具的

影响冲压模具寿命的主要因素

影响冲压模具寿命的主要因素 研究表明:使用寿命的模具结构设计,模具钢材选用、热处理、表面处理、机械加工磨、线切割过程、冲压设备、冲压材料及工艺,模具的润滑,维修水平等因素。一个原因模具的各种因素,模具结构合理的失败,选材不当大约25%的不当约45%,热处理工艺问题大约10%;设备问题,润滑问题因素约占20%。 1。合理的模具结构设计 模具结构对模具的应力状态的影响,合理的模具结构,能够使模具工作力量均匀,不易偏载,应力集中小。模具设计原则:以确保有足够的强度、刚度、中性和合理同心度,切刀间隙,降低应力集中,为了保证零件模具生产出满足设计要求。所以的主要工作,模具(如冲压零凸、凹模等)要求其制导精度,同心度和中性好,切刀间隙是合理的。在模具设计中应着重考虑的是: (1)冲床。设计必须注意保护的支持和指导。特别设计的冲压孔定位装置的结构,可以保证模具的精度,增加的相互位置模具抗弯、抗偏载能力,避免模具磨损不均匀,从而提高模具寿命。 (2)对小孔、角度和狭窄的位置,如强薄弱部位,以减少应力集中,以圆弧过渡圆弧半径R可取,3 ~ 5毫米。 (3)整个模具。凹圆角半径很易引起应力集中,造成开裂、复杂的结构与拼写的凹模结构,减少应力集中。 (4)凸模冲压模具。圆角半径R不仅对冲压成形有较大影响,磨损及使用也受到了影响。模具设计时应保证塑料件与放大器充分接触为前提,避免产生倒锥,影响冲压模具,如没有平稳过渡到小轮的半径R,它很容易被损坏。 (5)差距合理增大5。重拳,提高工作部件的应力状态,切削力、卸了力量和推动力量凸、凹模下来,刃口磨损减少。在正常生理情况下,切刀间隙放大器可以延长寿命。切闪光模式 (6)模板应该有一个刚性好,不仅要达到要求的强度、而且模具基础厚度不宜太瘦了,至少应该设计到45毫米以上。可避免流动方式处理指导精密模具压坏影响。冲头应紧实、装配的冲头或检查的轴线上的凹模之间的平行平面垂直度和上部底面。 (7) 模具转向机构的精度。尤其是无间隙和小间隙冲裁模,复合模和连续模

提高冲压模具使用寿命的方法探讨

提高冲压模具使用寿命的方法探讨 摘要随着我国工业生产水平的日益提升,对冲压产品生产过程的可靠性提出了更高的要求。在此背景下,为了确保冲压产品质量,保证冲压模具得到良好的应用效果,需要提高冲压模具的使用寿命,实现高节拍的冲压生产的可持续发展。 关键词冲压模具;使用寿命;可持续发展;方法 随着冲压自动化生产的日益普及,以及高强度板料在冲压生产中的应用比重日益加大。如何提高模具班产稳定性,降低模具维护成本,减少模具维护时间,提高冲压生产效率,必将成为当前探讨提高冲压模具使用寿命主要方向。 现就对实践中影响冲压模具使用寿命的因素进行分析,探讨提高冲压模具使用寿命的一些方法。 1 实践中影响冲压模具使用寿命的因素分析 1.1 模具结构设计因素的影响 模具结构是否合理对模具使用寿命有着直接的影响。实践中结构设计因素对冲压模具的影响,具体表现为:①冲压模具结构设计不合理,致使模具应用过程中存在着应力集中,从而降低了冲压模具的强度,加大了模具使用中的变形开裂问题发生率,无形之中缩短了冲压模具的使用寿命;②模具结构设计不合理,使得模具刚度差,影响冲压件质量,使模具的使用寿命大打折扣;③冲裁间隙等结构参数设置不当,会加速磨损,缩短冲压模具使用寿命;④未考虑有效的防侧向力措施,造成模具使用过程中磨损加剧,缩短冲压模具使用寿命;⑤在冲压模具设计过程中,未充分考虑模具加工工艺,对加工造成困难,导致模具的精度缺乏可靠保障,从而对其使用寿命造成了不利的影响。 1.2 模具选材及热处理因素的影响 合理选材是保证模具寿命的基本要求之一,而合理的热处理工艺是实现材料性能的保证。根据大量失效模具的分析统计,在引起模具失效的各种因素中,热处理不当约占45%,选材不当、结构设计不合理约占25%[1]。实践中模具选材及热处理工艺对模具寿命的影响具体表现为:①在冲压模具选材过程中,对冲压生产工作环境考虑不足,只考虑模具的耐磨性,而对部分部件的耐冲击性能未充分考虑,从而出现疲劳断裂、崩刃等问题;②选材及热处理不当,造成模具硬度不足,模具耐磨性差,出现模具尺寸超差及表面拉毛。③由于热处理应力集中产生的微小裂纹,在模具使用一段时间后产生断裂。 1.3 模具加工装配因素的影响

冲压模具寿命

注塑模具寿命标准及级别 注塑模具寿命标准及级别 第1级[适用于大量生产模(250,00-1,000,000啤或以上)] 1、需要详细模具结构图 2、精确的散件图 3、适宜应用模凝的模具注射过程、注射分析、压力分布及温度分布,以确定最好的入水位置、流道尺寸、疏气位置等 4、模胚的A、B板及通腔背板均用28Hrc硬度的钢料 5、上、下模及镶件尺寸在300*250*150mm以内,使用硬度为48Hrc或以上的钢料,上、下模尺寸在300*250*150mm以上,应使用硬度在36~40Hrc的预硬钢料 6、模具尽可能自动断水口;如有可能,尽量使用潜水、细水口、勾形入水,并且要考虑热流道的可行性 7、模具设计应具备最大限度的冷却,上、下内模高温点应该个别的冷却 8、顶出方法应可使流道与产品自动掉下,避免运用多次顶出方法 9、模具应该能够全自动生产,大的零件应能够由机械手拿出 10、所有移动的零件应使用硬钢料,行位必须用硬垫板和硬线条,而且必须有限位及定位锁 11、顶针板必须有道柱 12、模具应经过足够时间测试,符合CPK定义的质量标准 13、模具应具备所有的安全特性,以预防受到意外的损害及错误的安装 14、上、下模需要精确配合,有擦位的地方,模具一定要有直身锁 15、需要高温的模具,必须有隔热板 16、所有的可规换的组件必须是标准件 注塑模具标准及级别 第2级[适用于中量生产模(50,000-250,000啤)] 1、需要模具结构图 2、模胚使用1040碳钢,4130(28Hrc)更适合 3、上、下模应使用预硬(28Hrc以上)钢料 4、优良的冷却系统 5、模具尽可能自断水口,全自动生产 6、建议在锁模力超过100吨的注塑机生产模具,加装顶针板导柱,装配有丝筒针,1.5mm

模具寿命的概念

一、模具寿命的概念原理 模具寿命是指在保证制件品质的前提下,模具所能达到的生产次数(冲压次数、成型次数)。它包括反复刃磨和更换易损件,直至模具的主要部分更换所成形的合格制件总数。 模具使用寿命:模具已经生产的次数。模具的失效分为非正常失效和正常失效。非正常失效(早期失效)是指模具未达到一定的工业水平下公认的寿命时就不能工作。早期失效的形式有塑性变形、断裂、局部严重磨损等。正常失效是指模具经大批量生产使用,因缓慢塑性变形或较均匀地磨损或疲劳断裂而不能继续工作。 1.模具正常寿命 模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。 2.模具失效形式及原理 模具种类繁多,工作状态差别很大,损坏部位也各异,但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。 ①.磨损失效 模具在工作时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分以下几种: a. 疲劳磨损 两接触表面相对运动时,在循环应力(机械应力与热应力)的作用下,使表面金属疲劳脱落的现象称为疲劳磨损。

b. 气蚀磨损和冲蚀磨损 金属表面的气泡破裂,产生瞬间的冲击和高温,使模具表面形成微小麻点和凹坑的现象叫气蚀磨损。 液体和固体微小颗粒反复高速冲击模具表面,使模具表面局部材料流失,形成麻点和凹坑的现象叫冲蚀磨损。 c. 磨蚀磨损 在摩擦过程中,模具表面和周围介质发生化学或电化学反应,再加上摩擦力的机械作用,引起表面材料脱落的现象叫磨蚀磨损。 在模具与工件(或坯料)相对运动中,磨损往往是以多种形式并存,并相互影响。 ②.断裂失效 模具出现大裂纹或分离为两部分和数部分丧失工作能力时,成为断裂失效。断裂可分为塑性断裂和脆性断裂。模具材料多为中、高强度钢,断裂的形式多为脆性断裂。脆性断裂又可分为一次性断裂和疲劳断裂。 ③.塑性变形失效 模具在工作时承受很大的应力,而且不均匀。当模具的某个部位的应力超过了当时温度下模具材料的屈服极限时,就会以晶格滑移、孪晶、晶界滑移等方式产生塑性变形,改变了几何形状或尺寸,而且不能修复再工作时,叫塑性变形失效。塑性变形的失效形式表现为镦粗、弯曲、形腔胀大、塌陷等。 模具的塑性变形是模具金属材料的屈服过程。是否产生塑性变形,起主导作用的是机械负荷以及模具的室温强度。在高温下工作的模具,是否产生塑性变形,主要取决于模具的工作温度和模具材料的高温强度。 二、影响冲压模具寿命的主要因素

相关文档
最新文档