实验10 光纤位移传感器实验(钟鹏)

实验10 光纤位移传感器实验(钟鹏)
实验10 光纤位移传感器实验(钟鹏)

实验十反射式光纤位移传感器测距原理实验

实验目的:

1.了解光纤传输的基本原理

2.了解反射式光纤传感器的一般原理结构、性能

3.利用反射式光纤位移传感器测量出光强随位移变化的函数关系。

实验原理:

1.光导纤维与光纤传感器的一般原理

图1光纤的基本结构

光导纤维是利用光的完全内反射原理传输光波的一种介质。如图1所示,它是由高折射率的纤芯和包层所组成。包层的折射率小于纤芯的折射率,直径大致为0.1mm~0.2mm。当光线通过端面透入纤芯,在到达与包层的交界面时,由于光线的完全内反射,光线反射回纤芯层。这样经过不断的反射,光线就能沿着纤芯向前传播。

由于外界因素(如温度、压力、电场、磁场、振动等)对光纤的作用,引起光波特性参量(如振幅、相位、偏振态等)发生变化。因此人们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。

2.反射式位移传感器的结构原理

反射式光纤位移传感器是一种传输型光纤传感器。其原理如图2所示:光纤采用Y型结构,两束多模光纤,一端合并组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当

反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。图3所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

图2反射式位移传感器原理

图3反射式光纤位移传感器的输出特性

实验仪器:SET-QX型光纤位移传感器实验箱。

实验内容:

1.观察光纤结构:光纤探头为半圆型结构,由数百根纤维组成,一半为光源光纤,一

半为接收光纤。

2.装上光纤探头,探头对准反射片。

3.安装好测微头,将顶部的反射片擦拭干净,测微头旋至10mm左右,前后移动测微头使反射片距光纤位移传感器约3mm,固定好测微头。

4.如图4,将发光二极管和光敏三极管连接到放大电路相应的位置上,补偿调零电位器也接入到电路中,将第二级可变增益反相放大器的输出端V O与数字电压表相连,数字电压表置20V档,打开传感器电源开关。

图4

5.旋转测微头使反射片贴紧光纤传感器端面,调节“增益”电位器适中,调节补偿调零电位器使数字电压表指示为零(粗调)。

6.减小数字电压表量程(2V/200mV),调节补偿调零电位器,进一步使数字电压表指示为零(细调),结果是X=0,V=0。

最小(一般为零)。

7.旋转千分尺,使光纤探头端面紧贴反射面,此时输出电压V

8.电压表打到20v档,旋转千分尺,使反射面离开探头,每隔0.1mm读取一电压值,填入表1。

9.据表1数据,做出光纤位移传感器的位移特性图(X-V坐标图),计算灵敏度S=△V/△X及线性范围。

思考题:

1.光纤位移传感器测量位移时,对被测体表面有什么要求?2.利用本实验所用光纤传感器能否设计出转速测量仪?

注意事项:

1.实验时请保持反射面的清洁和与光纤探头端面的垂直度。

2.工作时光纤端面不宜长时间直接照射强光,以免内部电路受损。

3.注意背景光对实验的影响,实验过程中应尽量避免一切光源干扰(人员走动、灯光闪烁等)避免强光直接照射反光表面,造成测量误差。

4.切勿将光纤折成锐角,保护光纤不受损伤。

5.光纤探头在支架上固定时,应保持其端口与反光面平行,切不可相擦,以免使光纤探头端面受损。

6.测量完毕关闭传感器电源

光纤通信实验报告

计算机与信息技术学院实验报告 专业:通信工程 年级/班级:2009级 2011—2012学年第一学期 课程名称 光纤通信 指导教师 李新源 本组成员 学号姓名 XXXXXX 实验地点 计算机楼501 实验时间 2012年4月6 日 项目名称 自动光功率控制电路 实验类型 硬件实验 一、 实验目的 1.掌握自动功率控制电路的工作原理 二、实验内容: 1.学习自动功率控制电路的工作原理 2.测量相关特征测试点的参数 三、实验仪器: 1.示波器。 2.光纤通信实验系统。 3.光功率计。 4.万用表。 5.FC/PC 型光纤跳线2根。 四、实验原理: 激光器输出光功率与温度和老化效应密切相关。保持激光器输出光功率稳定,可以用光反馈来自动调整偏置电流,电路如下图所示: 1 A 3 A 2 A B I

首先,PIN管监测背向光功率,经检出的光电流由A1放大,送入比较器A3的反向输入端,输入的数字信号和直流参考信号经A2比较放大,接到的A3同相输入端。A3和VT3组成恒流源,给激光器加上偏置电流IB的大小,其中信号参考电压是防止控制电路在无输入信号或长连“0”时,使偏流自动上升。这种电路在10°C~50°C温度范围内功率不稳定度ΔP/P可小于5%。 五、实验步骤: 1.关闭系统电源。按以下方式用连信号连接导线连接: 数字信号模块(数字信号输出一)P300—P100 1310数字光发模块 (数字光发信号输 入) 2.用光纤跳线连接1310nm光发模块和光功率计。 3.将1310nm光发模块的J100,两位都调到ON状态。 4.将1310nm光发模块的J101设置为“数字”。 5.打开系统电源,将数字信源模块第一路的拨码开关U311全拨到OFF状态。这时输入到1310nm数字光发模块的信号始终为“1”。 6.用万用表测量R124两端的电压。测量方法:先将万用表打到20V直流电 压档。然后,将红表笔插入1310nm数字发光模块的台阶插座TP101黑表笔插入TP102。读出万用表的读数U1,代入公式I1= U1/ R124(R124=51Ω)可得此时 自动光功率控制所补偿的电流。观察此时光功率计的读数P1。然后,将1310nm 的拨码开关的右边一位拨到OFF状态,记下光功率计的读数P2。 7.调整手调电位器RP100改变光功率的大小,再重复实验步骤5,将测的实 验数据填入下表。 8.关闭系统电源,拆除实验导线。将各实验仪器摆放整齐。 六、实验结果和心得: 1 2 3 4 5 6 7 16.31dB 16.17dB 11.90dB 7.62dB 6.62dB 4.59dB 3.40dB 37.31dB 25.58dB 11.88dB 7.62dB 6.63dB 4.59dB 3.42dB 3.14mA 5.88mA 8.43mA 12.75mA 1 4.51mA 19.80mA 24.12mA

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

光纤传感器的设计1

HARBIN ENGINEERING UNIVERSITY 物理实验报告 实验题目:光纤传感器的设计 姓名: 物理实验教学中心

实 验 报 告 一、实验题目:光纤传感器的设计 二、实验目的: 1.了解光纤传感器设计实验系统的基本构造和原理及应用; 2.了解光纤传感器设计实验系统的补偿机理,验证补偿效果; 3.设计光纤位移传感器,给出定标曲线。 三、实验仪器: 光纤传感设计实验系统主机、三光纤补偿式传感探头、精密机械调节架。 四、实验原理(原理图、公式推导和文字说明): 图1 在纤端出射光场的远场区,为简便计,可用接收光纤端面中心点处的光强来作为整个纤芯面上的平均光强。在这种近似下,得到在接收光纤终端所探测到的光强公式为 2 022(,)exp[](2)(2) SI d I x d x x πωω=?- (1) 考虑到光纤的本征损耗,光纤所接收到的反射光强可进一步表示为 00(,)(,)I x d I K KRf x d = 式中 I 0——注入光源光纤的光强; K 0,K ——光源光纤和反射接收光纤的本征损耗系数; R ——反射器的反射系数;

d ——两光纤的间距; f (x ,d )——反射式特性调制函数。结合式(1),f (x ,d )由下式给出,即 22 022(,)exp[](2)(2) a d f x d x x πωω=?- 其中 3/2 00 ()[1()] x x a a ωξ =+ 为了避免光源起伏和光纤损耗变化等因素所带来的影响。采用了双路接收的主动补偿方式可有效地补偿光源强度的变化、反射体反射率的变化以及光纤损耗等因素所带来的影响。补偿式光纤传感器的结构由图1给出。由(1)式可知 1002 00(,)(,) (,2)(,2)I x d I K KRf x d I x d I K KRf x d =?? =? 则两路接收光纤接收光强之比为 ]) 2()2(exp[22 221x d d I I ω--= 通过实验建立两路接收光强的比值与位移的关系(标定)后,即可实现补 偿式位移测量。

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

光纤位移传感器静态动态实验

光纤位移传感器静态和动态实验 【教学目的】 1.了解光纤传输的基本原理。 2.了解反射式光纤传感器的原理、结构、性能。 3.学习用光纤传感器进行相关物理量的测量。 【教学重点】 1.反射式光纤位移传感器的结构与工作原理。 2.反射式光纤传感器的输出特性曲线。 【教学内容】 光纤传感器是以光学技术为基础,将被敏感的状态以光信号形式取出。光信号不仅人能直接感知,而且,利用半导体二极管诸如光电二极管、雪崩光电二极管、发光二极管之类的小型而简单的元件很容易进行光电、电光转换,所以易与高度发展的电子装置匹配,这是光纤传感器的突出优点。此外,由于光纤不仅是敏感元件而且也是一种优良的低损耗传输线,因此不必考虑测量仪器和被测物体的相对位置,从而特别适用于电子传感器等不太适用的地方。 与其它机械量相比,位移是既容易检测又容易获得高精度的检测量,所以测量中常采用将被测对象的机械量转换成位移来检测的方法。例如将压力转换成膜的位移,将加速度转换成重物位移等;而且这种方法结构简单,所以位移传感器是机械量传感器中的基本传感器。光纤位移传感器有强度型和干涉型两大类,本实验所用传感器为反射式强度型光纤传感器。反射式强度型光纤传感器具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量(如位移、压力、振动、表面粗糙度等)的测量中获得成功应用。这种位移传感器在小的测量范围内能进行高速位移测量,它具有非接触、探头小、频响高、线性度好等特点。 一、实验原理 1)光导纤维与光纤传感器的一般原理 图1光纤的基本结构

光导纤维是利用光的完全内反射原理传输光波的一种介质。如图1所示,它是由高折射率的纤芯和包层所组成。包层的折射率小于纤芯的折射率,直径大致为0.1mm~0.2mm。当光线通过端面透入纤芯,在到达与包层的交界面时,由于光线的完全内反射,光线反射回纤芯层。这样经过不断的反射,光线就能沿着纤芯向前传播。 由于外界因素(如温度、压力、电场、磁场、振动等)对光纤的作用,引起光波特性参量(如振幅、相位、偏振态等)发生变化。因此人们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。 2)反射式位移传感器的结构原理 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图2所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。图3所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图2反射式位移传感器原理 图3反射式光纤位移传感器的输出特性

机电系统控制实验报告

穿销单元工件穿销实验报告 一、前言 模块化柔性制造综合实训系统最大特点是以机器人技术为核心的技术综合性和系统性,又兼顾模块化特征。综合性体现在机器人技术、机械技术、微电子技术、电工电子技术、传感测试技术、接口技术、PLC工控技术、信息变换技术、网络通信技术等多种技术的有机结合,并综合应用到生产设备中;而系统性指的是,生产线的传感检测、传输与处理、控制、执行与驱动等机构在微处理单元的控制下协调有序地工作,有机地融合在一起。 系统模块化结构,各工作单元是相对独立的模块,并具有较强的互换性。可根据实训需要或工作任务的不同进行不同的组合、安装和调试,达到模拟生产性功能和整合学习功能的目标,十分适合教学实训考核或技能竞赛的需要。 通过该系统,学生经过实验了解生产实训系统的基本组成和基本原理,为学生提供一个开放性的,创新性的和可参与性的实验平台,让学生全面掌握机电一体化技术的应用开发和集成技术,帮助学生从系统整体角度去认识系统各组成部分,从而掌握机电控制系统的组成、功能及控制原理。可以促进学生在掌握PLC技术及PLC网络技术、机械设计、电气自动化、自动控制、机器人技术、计算机技术、传感器技术等方面的学习,并对电机驱动及控制技术、PLC控制系统的设计与应用、计算机网络通信技术和高级语言编程等技能得到实际的训练,激发学生的学习兴趣,使学生在机电一体化系统的设计、装配、调试能力等方面能得到综合提高。体现整体柔性系统教学的先进性。 二、实验目的 1、了解PLC的工作原理; 2、掌握PLC编程与操作方法; 3、了解气缸传感器的使用方法; 4、掌握PLC进行简单装配控制的方法。 三、实验设备 1、模块化柔性制造综合实训系统一套; 2、安装西门子编程软件STEP7-MicroWIN SP6的计算机一台; 3、西门子S7-200 PLC编程电缆一条。 四、实验原理 学生可通过实验验证工业现场中如何使用PLC对控制对象进行控制,我公司提供PLC源程序,学生可在源程序的基础上进行进一步编程,将编写好的程序通过编

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

光纤压力传感器实验

光纤压力传感器实验 一、实验目的 1、了解并掌握传导型光纤压力传感器工作原理及其应用 二、实验内容 l、传导型光纤压力传感光学系统组装调试实验; 2、发光二极管驱动及探测器接收实验; 3、传导型光纤压力传感器测压力原理实验。 三、实验仪器 1、光纤压力传感器实验仪1台 2、气压计1个 3、气压源l套 4、光纤1根 5、2#迭插头对若干 6、电源线1根 四、实验原理 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或 称为传感型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使 用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器的制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高。 本实验仪所用到的光纤压力传感器属于非功能型光纤传感器。 本实验仪重点研究传导型光纤压力传感器的工作原理及其应用电路设计。在传导型光纤压力传感器中,光纤本身作为信号的传输线,利用压力一电一光一光一电的转换来实现压力的测量。主要应用在恶劣环境中,用光纤代替普通电缆传送信号,可以大大提高压力测量系统的抗干扰能力,提高测量精度。 相关参数: l、光源 高亮度白光LED,直径5mm

光纤通信实验报告全

光纤通信实验报告 实验1.1 了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。 实验1.2 1.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为 1550nm的光信道),注意收集好器件的防尘帽。 2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。确认,即在P101铆孔 输出32KHZ的15位m序列。 3.示波器测试P101铆孔波形,确认有相应的波形输出。 4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有 相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超 过5V。即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接 口输出。 5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一 样或类似的信号波形。 6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。改变SW101拨码器 设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波 形是否跟着变化。

7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。 8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。 9.关闭系统电源,拆除各光器件并套好防尘帽。 实验2.1 1.关闭系统电源,按照图 2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模 尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆 孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。 3.示波器测试P101铆孔波形,确认有相应的波形输出。

光纤通信实验报告

一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验内容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

速度测量实验

霍尔测速实验 一、实验目的:了解霍尔转速传感器的应用。 二、基本原理:利用霍尔效应表达式U H = K H IB ,当被测圆盘上装上N 只磁性 体时,圆盘每转一周,磁场就变化N 次,霍尔电势相应变化N 次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12) 三、需用器件与单元:霍尔转速传感器、转速调节2-24V 、转动源单元、数显单元的转速显示部分。 四、实验步骤: 1、根据图5-4,将霍尔转速传感器装于传感器支架上,探头对准反射面的磁 钢。 2、将直流源加于霍尔元件电源输入端。红(+)接+5V ,黑(┴)接地。 3、将霍尔转速传感器输出端(蓝)插入数显单元F in 端。 4、将转速调节中的2-24V 转速电源引到转动源的2-24V 插孔。 5、将数显单元上的转速/频率表波段开关拨到转速档,此时数显表指示转速。 6、调节电压使转动速度变化。观察数显表转速显示的变化。 五、思考题: 1、利用霍尔元件测转速,在测量上是否有限制? 2、本实验装置上用了十二只磁钢,能否用一只磁钢,二者有什么区别呢? 图1霍尔、光电、磁电转速传感器安装示意图

实验三十一光纤传感器测速实验 一、实验目的:了解光纤位移传感器用于测量转速的方法。 二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。 三、需用器件与单元:光纤传感器、光纤传感器实验模块、转速/频率数显表、直流源±15V、转速调节2~24V,转动源模块。 四、实验步骤: 1、光纤传感器按图1装于传感器支架上,使光纤探头与电机转盘平台中磁钢反射点对准。 2、按“光纤位移特性实验”的连线图,如图2所示,将光纤传感器实验模 块输出V o1与数显电压表V i 端相接,接上实验模块上±15V电源,数显表的切换 开关选择开关拨到20V档。①用手转动圆盘,使探头避开反射面(暗电流),合 上主控箱电源开关,调节Rw 2使数显表显示接近零(≥0),此时Rw 1 处于中间位 置。②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表 指示最大,重复①、②步骤,直至两者的电压差值最大,再将V o1 与转速/频率数显表fi输入端相接,数显表的波段开关拨到转速档。 图2光纤传感器位移实验模块 3、将转速调节2-24V,接入转动电源24V插孔上,使电机转动,逐渐加大转速源电压。使电机转速盘加快转动,固定某一转速,观察并记下数显表上的读 数n 1 。 4、固定转速电压不变,将选择开关拨到频率测量档,测量频率,记下频率 读数,根据转盘上的测速点数折算成转速值n 2 (转速和频率的折算关系为:转速=频率*60/12)。 5、将实验步骤4与实验步骤3比较,以转速n 1 作为真值计算两种方法的测

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

光纤通信实验报告

光纤通信实验报告 课程名称光纤通信实验 实验一 光源的P-I特性、光发射机消光比测试 一、实验目的 1、了解半导体激光器LD的P-I特性、光发射机消光比。 2、掌握光源P-I特性曲线、光发射机消光比的测试方法。 二、实验器材 1、主控&信号源模块、2号、25号模块各一块 2、23号模块(光功率计)一块 3、FC/PC型光纤跳线、连接线若干 4、万用表一个 三、实验原理 数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平

均光功率的测试。 1、半导体光源的P -I 特性 I(mA) LD 半导体激光器P -I 曲线示意图 半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P -I 的线性关系。 P -I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,没有扭折点, P -I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。 2、光发射机消光比 消光比定义为:00 11 10lg P EXT P 。 式中P 00是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。P 11是光发射机输入全“1”时输出的平均光功率。从激光器的注入电流(I )和输出功率(P )的关系,即P -I 特性可以清楚地看出消光比的物理概念,如下图所示。

自动检测课程——转速检测试验报告

实验一霍尔测速和光电测速实验 一、实验目的: 了解霍尔组件的应用——测量转速。 二、实验仪器: 光电传感器、霍尔传感器、+5V、+4、±6、±8、±10V直流电源、转动源、频率/转速表。 三、实验原理; 如图1,霍尔传感器和光电传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。光电传感器正对着测速圆盘的通孔。 a霍尔测速 b 光电测速 图1 霍尔测速原理:利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N只磁性体时,转盘每转一周磁场变化N次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。 光电测速原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的,传感器端部有发光管和光电池,发光管发出的光源通过转盘上的孔透射到光电管上,并转换成电信号,由于转盘上有等间距的6个透射孔,转动时将获得与转速及透射孔数有关的脉冲,将电脉计数处理即可得到转速值。转盘每转一周输出N个脉冲信号,计数器可以测出脉冲信号的频率(Hz),可按n=f*60/N计算转速。 四、实验内容与步骤 霍尔测速步骤 1.将+5V电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到直流电压表。用手转动测速圆盘,观测输出电压与霍尔传感器相对测速圆盘位置的关系。 2.将“霍尔”输出接到频率/转速表(切换到测转速位置)。 3.打开实验台电源,选择不同电源+4V、+6V、+8V、+10V、12V(±6)、16V(±8)、20V(±10)、24V驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值和频率值 4用示波器观测霍尔元件输出的脉冲波形,记录其频率,根据测速圆盘的结构,换算转速;将示波器测得的转速作为实际转速与转速表测得的转速对比,计算误差。

相关文档
最新文档