第四章 空间数据的转换与处理

第四章 空间数据的转换与处理
第四章 空间数据的转换与处理

第四章空间数据的转换与处理

1、投影变换

一、定义投影

1)、选择【Data Management Tools】|【Projections and Transformation】|【Define Projection】工具,打开【Define Projection】对话框;

图表1【Define Projection】工具

2)、在【Input Dataset or Feature Class】文本框中选择需要定义投影的数据;

3)、unknown代表没有定义坐标系统,单击图标,打开【Spatial Reference Properties】对话框,设置数据的投影参数;

图表 2 【Define Projection】对话框

4)、定义投影有以下三种方法:

(1)、单击【select…】按钮,打开【Browse for Coordinate System】对话框,为数据选择坐标系统;

图表3【Spatial Reference Properties】对话框

图表4【Browse for Coordinate System】对话框

(2)、单击【Import…】按钮,选择一个已有某坐标系统的数据的投影信息来定义原始数据;

(3)、单击【New…】按钮,新建一个坐标系统,打开【New Geographic …/Projected ...Coordinate System】对话框,进行相关参数的设定;

图表5【New Geographic …/Projected ...Coordinate System】

5)、定义投影后,单击【Finish】,返回上一级对话框,单击【Modify…】可修改已定义的投影,单击【Clear】可清除原有投影;

6)、单击【确定】,完成操作。

二、投影变换

1、栅格数据投影变换

1)、选择【Data Management Tools】|【Projections and Transformation】|【Raster】|【Project Raster】工具,打开【Project Raster】对话框;

图表6【Project Raster】工具

2)、在【Input Raster】文本框中指定需要进行投影变换的栅格数据(已具有投影信息);

3)、在【Output Coordinate System】文本框中键入输出的栅格数据的路径与名称;

图表7【Project Raster】对话框

4)、单击图标,打开【Spatial Reference Properties】对话框,定义输出数据的投影,操作与上相同;

图表8【Spatial Reference Properties】对话框

5)、【Resampling Techinque】是可选项,默认状态为NEAREST;6)、【Out Put Cell Size】默认状态下与原数据栅格大小相同;

7)、单击【OK】按钮,完成操作。

2、矢量数据的投影变换

1)、选择【Data Management Tools】|【Projections and Transformation】|【Feature】|【Project】工具,打开【Project】对话框;

图表9【Project】工具

2)、在【Input Dataset or Feature Class】文本框中选择需要进行投影变换的矢量数据(已具有投影信息),操作同上;

3)、在【Output Dataset or Feature Class】文本框中键入输出的栅格数据的路径与名称,操作同上;

图表10【Project】对话框

4)、单击图标,打开【Spatial Reference Properties】对话框,定义输出数据的投影,操作同上;

图表11【Spatial Reference Properties】对话框

5)、单击【确定】按钮,完成操作。

三、数据变换

1、空间纠正

1)、在ArcMap窗口工具栏空白处单击右键,勾选【Editor】和【Spatial Adjustment】工具条;

2)、启动编辑:点击【Editor】下拉菜单中的【Start Editing】,

启动编辑会话;

图表13【Start Editing】

3)、设置校正数据:在【Spatial Adjustment】工具条中选择【Spatial Adjustment】|【Set Adjust Data…】,打开对话框,设置参与纠正的数据,单击【OK】;

图表14 【Set Adjust Data…】

4)、设置校正方法:在‘空间校正’工具条中选择【Spatial Adjustment】|【Adjustment Methods】|【Transformation-Similarity】;

图表15【Transformation-Similarity】

图表16 平移前后对比

5)、添加位移连接:单击【Spatial Adjustment】工具条中的图标创建位移连接;

图表17添加位移连接

查看Link Table:在空间校正工具条中点击图标,检查残差和RMS;

图表18 Link Table

6)、执行空间校正:选择【Spatial Adjustment】|【Adjustment】,执行。

1.

图表19 执行空间校正

2、橡皮页变换

1)、启动编辑:点击【Editor】下拉菜单中的【Start Editing】,启动编辑会话;

2)、设置节点捕捉:在捕捉工具条上单击【Point Snapping】;

图表20 【Point Snapping】

图表21 捕捉工具条

3)、设置校正数据:在空间校正工具条中选择【Spatial Adjustment】|【Set Adjust Data…】,设置参与校正的数据,单击【确定】,操作同上;

4)、设置校正方法:选择【Spatial Adjustment】|【Adjustment Methods】|【Rubbersheet】;

图表22 【Rubbersheet】

5)、设置校正方法的属性:选择【Spatial Adjustment】|【Options】,

第三章 空间数据采集与处理练习..

一、单选题 1、对于离散空间最佳的内插方法 是: A.整体内插法 B.局部内插法 C.移动拟合法 D.邻近元法 2、下列能进行地图数字化的设备 是: A.打印机 B.手扶跟踪数字化仪 C.主 机 D.硬盘 3、有关数据处理的叙述错误的 是: A.数据处理是实现空间数据有序化的必要过程 B.数据处理是检验数据质量的关键环节 C.数据处理是实现数据共享的关键步骤 D.数据处理是对地图数字化前的预处理 4、邻近元法 是: A.离散空间数据内插的方法 B.连续空间内插的方法 C.生成DEM的一种方法 D.生成DTM的一种方法 5、一般用于模拟大范围内变化的内插技术是: A.邻近元法 B.整体拟合技术 C.局部拟合技术 D.移动拟合法 6、在地理数据采集中,手工方式主要是用于录入: A.属性数据 B.地图数据 C.影象数 据 D.DTM数据

7、要保证GIS中数据的现势性必须实时进行: A.数据编辑 B.数据变换 C.数据更 新 D.数据匹配 8、下列属于地图投影变换方法的 是: A.正解变换 B.平移变换 C.空间变 换 D.旋转变换 9、以信息损失为代价换取空间数据容量的压缩方法是: A.压缩软件 B.消冗处理 C.特征点筛选 法 D.压缩编码技术 10、表达现实世界空间变化的三个基本要素是。 A. 空间位置、专题特征、时间 B. 空间位置、专题特征、属性 C. 空间特点、变化趋势、属性 D. 空间特点、变化趋势、时间 11、以下哪种不属于数据采集的方式: A. 手工方式 B.扫描方式 C.投影方 式 D.数据通讯方式 12、以下不属于地图投影变换方法的是: A. 正解变换 B.平移变换 C.数值变 换 D.反解变换 13、以下不属于按照空间数据元数据描述对象分类的是: A. 实体元数据 B.属性元数据 C.数据层元数据 D. 应用层元数据 14、以下按照空间数据元数据的作用分类的是: A. 实体元数据 B.属性元数据 C. 说明元数据 D. 分类元数据 15、以下不属于遥感数据误差的是: A. 数字化误差 B.数据预处理误差 C. 数据转换误差 D. 人工判读误差

空间数据分析模型

第7 章空间数据分析模型 7.1 空间数据 按照空间数据的维数划分,空间数据有四种基本类型:点数据、线数据、面数据和体数据。 点是零维的。从理论上讲,点数据可以是以单独地物目标的抽象表达,也可以是地理单元的抽象表达。这类点数据种类很多,如水深点、高程点、道路交叉点、一座城市、一个区域。 线数据是一维的。某些地物可能具有一定宽度,例如道路或河流,但其路线和相对长度是主要特征,也可以把它抽象为线。其他的线数据,有不可见的行政区划界,水陆分界的岸线,或物质运输或思想传播的路线等。 面数据是二维的,指的是某种类型的地理实体或现象的区域范围。国家、气候类型和植被特征等,均属于面数据之列。 真实的地物通常是三维的,体数据更能表现出地理实体的特征。一般而言,体数据被想象为从某一基准展开的向上下延伸的数,如相对于海水面的陆地或水域。在理论上,体数据可以是相当抽象的,如地理上的密度系指单位面积上某种现象的许多单元分布。 在实际工作中常常根据研究的需要,将同一数据置于不同类别中。例如,北京市可以看作一个点(区别于天津),或者看作一个面(特殊行政区,区别于相邻地区),或者看作包括了人口的“体”。 7.2 空间数据分析 空间数据分析涉及到空间数据的各个方面,与此有关的内容至少包括四个领域。 1)空间数据处理。空间数据处理的概念常出现在地理信息系统中,通常指的是空间分析。就涉及的内容而言,空间数据处理更多的偏重于空间位置及其关系的分析和管理。 2)空间数据分析。空间数据分析是描述性和探索性的,通过对大量的复杂数据的处理来实现。在各种空间分析中,空间数据分析是重要的组成部分。空间数据分析更多的偏重于具有空间信息的属性数据的分析。 3)空间统计分析。使用统计方法解释空间数据,分析数据在统计上是否是“典型”的,或“期望”的。与统计学类似,空间统计分析与空间数据分析的内容往往是交叉的。 4)空间模型。空间模型涉及到模型构建和空间预测。在人文地理中,模型用来预测不同地方的人流和物流,以便进行区位的优化。在自然地理学中,模型可能是模拟自然过程的空间分异与随时间的变化过程。空间数据分析和空间统计分析是建立空间模型的基础。 7.3 空间数据分析的一些基本问题 空间数据不仅有其空间的定位特性,而且具有空间关系的连接属性。这些属性主要表现为空间自相关特点和与之相伴随的可变区域单位问题、尺度和边界效应。传统的统计学方法在对数据进行处理时有一些基本的假设,大多都要求“样本是随机的”,但空间数据可能不一定能满足有关假设,因此,空间数据的分析就有其特殊性(David,2003)。

GIS原理与应用教案——第四章 空间数据的处理

第四章空间数据的处理 学习要求:掌握数据处理的基本内容、途径和算法。 §4.1 矢量数据拓扑关系的自动建立 矢量数据拓扑关系在空间数据的查询与分析中非常重要,矢量数据拓扑关系自动建立的算法是GIS中的关键算法之一,这里介绍其实现的基本步骤和要点: 一、链的组织 找出在链的中间相交,而不是在端点相交的情况,自动切成新链;把链按一定顺序存储,然后把链按顺序编号。 二、结点匹配 结点匹配是指把一定限差内的链的端点作为一个结点,其坐标值取多个端点的平均值。 三、检查多边形是否闭合 检查多边形是否闭合可以通过判断一条链的端点是否有与之匹配的端点来进行。 四、建立多边形 建立多边形是矢量数据自动拓扑中最关键的部分,由于其算法比较复杂。先介绍了几个基本概念:顺时针方向构多边形、最靠右边的链、多边形面积的计算,然后介绍其实现的过程。

五、岛的判断 论述多边形之间的一种关系。岛的判断即指找出多边形互相包含的情况,也即寻找多边形的连通边界。 六、确定多边形的属性 多边形以内点标识。内点的属性常赋于多边形。 §4.2 矢量数据的图形编辑 图形编辑是纠正数据采集错误的重要手段,其基本的功能要求是:具有友好的人机界面;具有对几何数据和属性编码的修改功能;具有分层显示和窗口功能。图形编辑的关键是点、线、面的捕捉。 一、点的捕捉 图形编辑是纠正数据采集错误的重要手段。点的捕捉就是计算机屏幕上进行图形编辑时如何根据光标的位置找到需要编辑的要素点。 1、点的捕捉 图4-2-1 图4-2-2

但是由于在计算d时需进行乘方运算,所以影响了搜索的速度,因此,把距离d的计算改为: 二、线的捕捉 线的捕捉就是计算机屏幕上进行图形编辑时如何根据光标的位置找到需要编辑的线。方法是计算点到直线的距离。 图4-2-3 图 4-2-4 图4-2-5 如图4-2-5所示,点S(x,y)到直线段(x 1,y 1 ),(x 2 ,y 2 )的距离d的计算公 式为:

第四章 空间数据的处理及投影变换

练习 4 1.空间数据处理(融合、合并、剪切、交叉、合并) 2.设置地图投影及投影变换 空间数据处理 (1) 第1步裁剪要素 (2) 第2步拼接图层 (3) 第3步要素融合 (4) 第4步图层合并 (6) 第5步图层相交 (7) 定义地图投影 (9) 第6步定义投影 (9) 第7步投影变换――地理坐标系->北京1954坐标系转换->西安80坐标系 (10) 补充:图层相减,计算面积 (11) 空间数据处理 ●数据:云南县界.shp; Clip.shp西双版纳森林覆盖.shp 西双版纳县界.shp ●步骤: 将所需要的数据下载后,解压到到 e:\gisdata, 设定工作区:在ArcMap中 执行菜单命令:<工具>-><选项>,在“空间处理”选项页里,点 击“环境变量”按钮,在环境变量对话框 中的常规设置选项中,设定“临时工作空 间”为 e:\gisdata

第1步 裁剪要素 ◆在ArcMap中,添数据GISDATA\云南县界.shp,添加数据GISDATA\Clip.shp (Clip 中有四 个要素) ◆激活Clip图层。选中Clip图层中的一个要素,注意确保不要选中“云南县界”中的要素! 点击打开ArcToolbox, 指定输出要素类路径及名称,这里请命名 为“云南县界_Clip1” 指定输入类:云南县界 指定剪切要素:Clip(必须是多边形要素)

依次选中Clip主题中其它三个要素,重复以上的操作步骤, 完成操作后将得到共四个图层(“云南县界_Clip1” , “云南县界_Clip2”,“云南县界_Clip3”,“云南县界_Clip4” )。 第2步 拼接图层 ◆在ArcMap中新建地图文档,加载你在剪切要素操作中得到的 四个图层 ◆点击打开ArcToolbox

实验四、空间数据处理

实验四、空间数据处理 一、实验目的 1.掌握空间数据处理(融合、拼接、剪切、交叉、合并)的基本方法,原理。领会其 用途。 2.掌握地图投影变换的基本原理与方法。 3.熟悉ArcGIS中投影的应用及投影变换的方法、技术 4.了解地图投影及其变换在实际中的应用。 二、实验准备 预备知识: ArcToolbox 是ArcGIS Desktop中的一个软件模块。内嵌在ArcCatalog 和ArcMap 中。 ArcToolbox 具有许多复杂的空间处理功能,包括的工具有: ●数据管理 ●数据转换 ●Coverage 的处理 ●矢量分析 ●地理编码 ●统计分析 空间间数据处理是基于已有数据派生新数据的一种方法。是通过空间分析方法来实现的。是基于矢量数据进行的,包括如下几种常用的操作:融合,剪切,拼接,合并(并集),相交(交集)。 地理坐标系(Geogrpahic Coordinate System) 地理坐标系使用基于经纬度坐标的坐标系统描述地球上某一点所处的位置。某一个地理坐标系是基于一个基准面来定义的。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面。 ●GCS_WGS1984(基于WGS84 基准面)

●GCS_BEIJING1954(基于北京1954基准面) ●GCS_XIAN1980(基于西安1980基准面) 投影坐标系(Projected Coordinate Systems) 投影坐标系使用基于X,Y值的坐标系统来描述地球上某个点所处的位置。这个坐标系是从地球的近似椭球体投影得到的,它对应于某个地理坐标系。 投影坐标系由以下参数确定 ●地理坐标系(由基准面确定,比如:北京54、西安80、WGS84) ●投影方法(比如高斯-克吕格、Lambert投影、Mercator投影) 在ArcGIS中提供了几十种常用的投影方法 北京1954投影坐标系和西安1980坐标系都是应用高斯-克吕格投影,只是基准面、椭球、大地原点不同。 地理变换 地理变换是一种在地理坐标系(基准面)间转换数据的方法,当将矢量数据从一个坐标系统变换到另一个坐标系统下时,如果矢量数据的变换涉及基准面的改变时,需要通过地理变换来实现地理变换或基准面平移。 主要的地理变换方法有:三参数和七参数法。 投影变换 当系统所使用的数据是来自不同地图投影的图幅时,需要将一种投影的地理数据转换成另一种投影的地理数据,这就需要进行地图投影变换。 实验数据: 云南县界.shp; Clip.shp西双版纳森林覆盖.shp 西双版纳县界.shp 三、实验内容及步骤 空间数据处理 步骤: 将所需要的数据解压到磁盘:如 e:\gisdata, 设定工作区:在ArcMap中执行菜单命令:<工具>-><选项>,在“空间处理”选项页里,点击“环境变量”按钮,在环境变量对话框中的常规设置选项中,设定“临时工作空间”为 e:\gisdata

第五章 空间数据的处理

第五章空间数据的处理 §5-1 坐标变换 一、图幅数据的坐标变换 几何变换:1、比例尺变换:乘系数 2、变形误差改正: 通过控制点利用高次变换、二次变换和仿射变换加以改正 3、坐标旋转和平移 即数字化坐标变换,利用仿射变换改正。 4、投影变换: 三种方法。 二、几何纠正 1、高次变换 2、二次变换 3、仿射变换 三、地图投影变换 假定原图点的坐标为x,y(称为旧坐标),新图点的坐标为X,Y(称为新坐标),则由旧坐标变换为新坐标的基本方程式为: 1、解析变换法 1)反解变换法(又称间接变换法) 2)正解变换法(又称直接变换法) 2、数值变换法 利用若干同名数字化点(对同一点在两种投影中均已知其坐标的点),采用插值法、有限差分法或多项式逼近的方法,即用数值变换法来建立两投影间的变换关系式。 3、数值解析变换法 §5-2 图形编辑 图形编辑又叫数据编辑、数字化编辑,是指对地图资料数字化后的数据进行编辑加工,其主要的目的是在改正数据差错的同时,相应地改正数字化资料的图形。 图形编辑是一交互处理过程, GIS具备的图形编辑功能的要求是: 1)具有友好的人机界面,即操作灵活、易于理解、响应迅速等; 2)具有对几何数据和属性编码的修改功能,如点、线、面的增加、删除、修改等; 3)具有分层显示和窗口操作功能,便于用户的使用。 一、编辑操作 1、结点的编辑 1)结点吻合(Snap) 或称结点匹配、结点咬合,结点附和。 方法: A、结点移动,用鼠标将其它两点移到另一点; B、鼠标拉框,用鼠标拉一个矩形,落入该矩形内的结点坐标通过求它们的中间坐标匹配成一致; C、求交点,求两条线的交点或其延长线的交点,作为吻合的结点; D、自动匹配,给定一个吻合容差,或称为咬合距,在图形数字化时或之后,将

空间数据处理的方法

空间数据处理的方法 1空间数据处理 空间数据是指用来表示空间实体的位置、形状、大小及其分布特征诸多方面信息的数据,它可以用来描述来自现实世界的目标,它具有定位、定性、时间和空间关系等特性。空间数据具有三个基本特征:空间特征(定位)、属性特征(非定位)、时间特征(时间尺度)。在基础地理信息数据库的建设过程中,空间数据始终是GIS中最基本、最重要、最重要的组成部分,也是投资比重最大的一部分。在GIS中人们将空间数据抽象,用数字表达可以归结为四大类:数字线划数据、影像数据、数字高程模型和地物的属性数据。 空间数据处理包含两方面的意义:一是将原始采集的数据或者说不符合GIS质量要求的数据进行处理,以符合GIS的数据质量要求;第二层意义是对于已存储于GIS中的数据经过处理以派生出其他信息,例如进一步的空间关系的信息,或者将一种类型的数据转化为另一种类型。 2空间信息处理的内容与方法 2.1空间数据的坐标变换 在地图录入完毕后,经常需要进行投影变换,得到经纬度参照系下的地图。对各种投影进行坐标变换的原因主要是输入时地图是一种投影,而输出的地图产物是另外一种投影。空间数据坐标变换类型主要有以下三种: 1.几何变换:主要解决数字化原图变形等原因引起的误差,并进行几何配准。 2.坐标系转换:主要解决G1S中设备坐标同用户坐标的不一致,设备坐标之间的不一致问题。 3.投影变换:主要解决地理坐标到平面坐标之间的转换问题。 几何变换和坐标系转换可以通过仿射变换来完成。对于原始图介质存在的几何变形、扫描输入时图纸未被压紧产生的斜置、遥感影像本身的几何变形等带来的误差,可通过几何纠正解决。仿射变换是几何纠正常用的方法。

Gis原理“第五章空间数据采集与处理作业”

成都信息工程学院资源环境学院 《GIS原理》作业 章节第五章 空间数据采集与处理 姓名 学号 班级遥感科学与技术131

《GIS原理》作业 1、为什么说地图数据是GIS的重要数据源? 答:地图是 GIS 的主要数据源,因为地图包含着丰富的内容,不仅含有实体的类别和属性,而且含有实体间的空间关系。地图数据主要通过对地图的跟踪数字化和扫描数字化获取目前各种类型的地图是重要的信息源。这不仅是因为地图的内容直观与丰富,而且是由于在地理信息系统诞生以前,地图是表示空间与非空间信息强有力的手段,从某种意义上说,一册完备的专题地图集是一个很好的人工操作地理信息系统。 2、简要说明空间数据采集的基本流程?在ArcGis桌面系统中,如何进行矢量数据采集? 答:空间数据采集的基本流程 (1)数据源的选择 ①是否能够满足系统功能的要求; ②所选数据源是否已有使用经验; ③系统成本。 (2)确定采集方法的确定 (3)数据的编辑与处理 各种方法所采集的原始空间数据,都不可避免地存在着错误或误差,属性数据在建库输入时,也难免会存在错误,所以对图形数据和属性数据进行一定的检查、编辑是很有必要的。 (4)数据质量控制与评价 无论何种数据源,使用何种方法进行采集,都不可避免地存

在各种类型的误差,而且误差会在数据处理及系统的各个环节之中累计和传播。对于数据质量的控制和评价是系统有效运行的重要保障和系统分析结果可靠性的前提条件之一。 (5)数据入库 数据入库就是按照空间数据管理的要求,把采集和处理的成果数据导入到空间数据库中。 在ArcGis桌面系统中进行矢量数据采集:在ArcGIS中,进行矢量数据采集,就是对地图等扫描的数据进行数字化的过程。 3、简要说明空间数据质量问题的来源?如何进行控制? 答:空间数据质量问题的来源: ①空间现象自身存在的不稳定性:空间现象自身存在的不稳定性包括空间特征和过程在空间、专题和时间内容上的不确定性。 ②空间现象的表达:数据采集中的测量方法以及量测精度的选择等受到人类自身的认识和表达的影响,这对于数据的生成会出现误差。 ③空间数据处理中的误差:在空间数据处理过程中,容易产生的误差。(投影变换,地图数字化…) ④空间数据使用中的误差:在空间数据使用的过程中也会导致误差的出现,主要包括两个方面:一是对数据的解释过程,二是缺少文档。 空间数据质量控制常见的方法有: ①传统的手工方法 ②元数据方法 ③地理相关法

第四章 空间数据的转换与处理

第4章 空间数据的转换与处理 空间数据是GIS 的一个重要组成部分。整个GIS 都是围绕空间数据的采集、加工、存储、分析和表现展开的。原始数据往往由于在数据结构、数据组织、数据表达等方面与用户自己的信息系统不一致而需要对原始数据进行转换与处理,如投影变换,不同数据格式之间的相互转换,以及数据的裁切、拼接等处理。以上所述的各种数据转换与处理均可以利用ArcToolbox 中的工具实现。在ArcGIS9中,ArcToolbox 嵌入到了ArcMap 中。本章就投影变换、数据格式转换、数据裁切、拼接等内容分别简单介绍。 4.1 投影变换 由于数据源的多样性,当数据与我们研究、分析问题的空间参考系统(坐标系统、投影方式)不一致时,就需要对数据进行投影变换。同样,在对本身有投影信息的数据采集完成时,为了保证数据的完整性和易交换性,要对数据定义投影。以下就地图投影及投影变换的概念做简单介绍,之后分别讲述在ArcGIS 中如何实现地图投影定义及变换。 空间数据与地球上的某个位置相对应。对空间数据进行定位,必须将其嵌入到一个空间参照系中。因为GIS 描述的是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为空间数据的参照系统。而地球是一个不规则的球体,为了能够将其 表面的内容显示在平面的显示器或纸面上,就必须将球面的地理坐标系统变换成平面的投 图4.1椭球体表面投影到平面的微分梯形 Y

影坐标系统(图4.1)。因此,运用地图投影的方法,建立地球表面和平面上点的函数关系,使地球表面上由地理坐标确定的点,在平面上有一个与它相对应的点。地图投影的使用保证了空间信息在地域上的联系和完整性。 当系统使用的数据取自不同地图投影的图幅时,需要将一种投影的数字化数据转换为所需要投影的坐标数据。投影转换的方法可以采用: 1. 正解变换: 通过建立一种投影变换为另一种投影的严密或近似的解析关系式,直接由 一种投影的数字化坐标x 、y 变换到另一种投影的直角坐标X 、Y 。 2. 反解变换: 即由一种投影的坐标反解出地理坐标(x 、y →B 、L),然后再将地理坐标代 入另一种投影的坐标公式中(B 、L →X 、Y),从而实现由一种投影的坐标到另一种投影坐标的变换(x 、y →X 、Y)。 3. 数值变换: 根据两种投影在变换区内的若干同名数字 化点,采用插值法,或有限差分法,最小二乘法、或有限元法,或待定系数法等,从而实现由一种投影的坐标到另一种投影坐标的变换。 图4.2 投影变换工具 目前,大多数GIS 软件是采用正解变换法来完成不同投影之间的转换,并直接在GIS 软件中提供常见投影之间的转换。 借助ArcToolbox 中Projections and Transformations 工具集中的工具(图4.2),可以实现对数据定义空间参照系统、投影变换,以及对栅格数据进行多种转换,例如翻转(Flip)、旋转(Rotate)和移动(Shift)等操作。 4.1.1 定义投影 定义投影(Define Projection),指按照地图信息源原有的投影方式,为数据添加投影信息。具体操作如下: 图4.3 Define Projection 对话框 1. 展开Data Management Tools 工具 箱,打开Projections and Transformations 工具集,双击Define Projection 工具,打开Define Projection 对话框(图4.3)。 2. 在Input Dataset or Feature Class 文本 框中选择输入需要定义投影的数据。 3. Coordinate System 文本框显示为Unknown ,表明原始数据没有坐标系统。单击 Coordinate System 文本框旁边的 图标,打开Spatial Reference 属性对话框(图4.4),

相关文档
最新文档