智能功率器件的原理

智能功率器件的原理
智能功率器件的原理

智能功率器件的原理与应用

1 智能功率器件的特点及产品分类

1.1 智能功率器件的特点

所谓智能功率器件,就是把功率器件与传感器、检测和控制电路、保护电路及故障自诊断电路等集成为一体并具有功率输出能力的新型器件。由于这类器件可代替人工来完成复杂的功率控制,因此它被赋予智能的特征。例如,在智能功率器件中,常见的保护功能有欠电压保护、过电压保护、过电流及短路保护、过热保护。此外,某些智能功率器件还具有输出电压过冲保护、瞬态电流限制、软启动和最大输入功率限制等保护电路,从而大大提高了系统的稳定性与可靠性。

智能功率器件具有体积小、重量轻、性能好、抗骚扰能力强、使用寿命长等显著优点,可广泛用于单片机测控系统、变频调速器、电力电子设备、家用电器等领域。

1.2 智能功率器件的产品分类

智能功率器件可分成两大类,即智能功率集成电路与智能功率模块。

1)智能功率集成电路

智能功率集成电路的种类很多,下面仅列出几种典型产品。

——高压功率开关调节器(High Voltage Power Switching Regulator)。例如,美国摩托罗拉公司研制的MC33370系列产品。

——智能功率开关(IntelligentP ower Switch)。例如,德国西门子(Siemens)公司生产的Smart SIPMOS智能功率开关,产品型号有

BTS412B、BTS611等。

2)智能功率模块

智能功率模块是采用微电子技术和先进的制造工艺,把智能功率集成电路与微电子器件及外围功率器件组装成一体,能实现智能功率控制的商品化部件。模块大多采用密封式结构,以保证良好的电气绝缘和抗震性能。用户只须了解模块的外特性,即可使用。因此,它能简化设计工作,缩短系统的研制周期。国内外许多著名的模块厂商的产品都通过了IEC950(国际电工委员会)或UL1950(美国)、GS(德国)、CE(欧共体)安全认证,其质量可靠、安全性好、抗骚扰性强、符合电磁兼容性(EMC)标准、便于维修,上机合格率可达100%。

例如,日本三菱电机公司最近开发的IPM系列第三代智能功率模块,其用途极为广泛。最近,国内也相继开发出变频空调器专用智能功率模块、电动机智能功率模块等新产品。

图1给出了各种功率器件的工作频率、容量的范围及其应用领域。其中, SCR为普通晶闸管, Triac为双向晶闸管, GTO 代表可关断晶闸管, Tr Mod表示普通功率管模块,MOSFET表示功率场效应管, IGBT MOD IPM代表 IPM系列的IGBT智能功率模块,其中的 IGBT( Insulated Gate Bipolar Transistor)为绝缘栅型场效应管-双极型晶体管的英文缩写。由图可见, IGBT智能功率模块的工作频率远高于普通功率管模块,而其容量又比功率场效应管提高 1~ 2个数量级。

图1 各种功率器件的性能及应用领域

2 智能功率集成电路的原理与应用

2.1 MC33370系列高压功率开关调节器

MC33370系列是美国Motorola公司于1999年研制的适配微控制器(MCU)的高压功率开关调节器,它包括MC33369~MC33374,根据封装形式的不同,

共有17种型号。可广泛用于办公自动化设备、仪器仪表、无线通信设备及消费类电子产品中,构成150W以下的高压隔离式AC/DC电源变换器。

MC33370系列产品的内部框图如图2中虚线方框所示。各引脚的功能如下:

图 2 MC33370系列产品的内部框图

U CC为工作电源电压的输入端。

FB为反馈端。

GND为地。

SCI为状态控制端,只需配少量外围元件,即可实现以下6种状态控制方式:

1)利用按键触发方式来选择工作模式或备用模式;

2)配微控制器进行关断操作;

3)给状态控制器配以低压保护电路,使之在模式转换过程中不会引起开关电源输出电压的波动;

4)利用数字信号进行控制;

5)接上电延时电路;

6)禁止对状态控制器进行操作。

D为功率开关管漏极引出端。

MC33370的内部主要包括9部分:

1)振荡器;

2)并联调整器/误差放大器;

3)脉宽调制比较器与脉宽调制触发器;

4)外部关断电路及关断触发器;

5)电流极限比较器及功率开关管;

6)启动电路;

7)欠压锁定电路;

8)过热保护电路;

9)状态控制器。

由MC33374T/TV构成的15V/3.5A、52W开关电源的电路如图3所示。其交流输入电压u的允许变化范围是92V~276V。VD1~VD4为整流桥。初级保护电路由RC吸收电路(R2、C2)和钳位保护电路(VD Z、VD5)构成,能有效抑制高频变压器漏感产生的尖峰电压,保护MC33374内部的功率开关管不受损坏。VD Z采用 P6KE200A型瞬态电压抑制器( TVS),图中阻容元件R1、C3的序号空缺,根据需要亦可将R2、C2的串联电路,改成由R1(20 kΩ 、 2 W)和C3( 0.1 μ F、 400 V)并联后再串以超快恢复二极管,组成R、C、VD型保护电路。C5为U CC端的旁路电容。 SB为控制开关电源通、断状态的按键。VD6与C6组成反馈绕组输出端的高频整流滤波器。次级高频整流管采用 MBR20100CT( 20 A / 100 V)型肖特基二极管。此管属于共阴对管,两个阴极在内部短接,使用时需将两个阳极在外部连

通,作并联接法。由C8、C11、L、C12和C13组成输出滤波电路。设计印制板时还可预先留出C9、C10的位置,以便由C8~C11这 4只电容并联成滤波电容,进而使L0减小到L0/4。

图3 由MC33374T/TV构成52W开关电源的电路

由可调式精密并联稳压器TL431B构成外部误差放大器,它还与光耦合器MOC8103组成了光耦反馈电路。其稳压原理是当输出电压U o发生波动时,经R5、R6分压后得到的取样电压就与TL431B中的2.5V基准电压进行比较,产生外部误差电压U r′,再通过光耦合器使第2脚的反馈电流I FB产生相应的变化,并以此调节输出占空比,达到稳压目的。C14用来滤除由高频变压器初、次级耦合电容所造成的共模骚扰。C7为控制环路的补偿电容。

2.2 BTS412B型智能功率开关

BTS412B型智能功率开关采用TO-220封装,它有5个引出端:

U BB为工作电源电压端。

GND为公共地。

IN为控制信号输入端。

ST为状态输出端。

OUT为功率输出端。

芯片内部主要包括逻辑电路、电压检测电路、整流器、充电泵、功率MOSFET。此外,还有防止静电放电(ESD)的保护电路,过电压保护、过流保护、负载开路及短路保护电路,对电感负载的保护电路,对功率MOSFET 栅极进行保护的电路。

BTS412B的主要技术参数为U BB>50V,连续输出的负载电流I L=1.4A,最大峰值电流I LIMIT=25A,导通电阻R ON=0.25Ω。

使用两片BTS412B作高端开关,另用两只BUZ71L型50V、14A、40W 的N沟道场效应管作低端开关,可构成如图4所示的H桥双向直流电动机驱动电路。BUZ71L的导通电阻仅为0.1Ω。当发生故障时,从ST端输出的状态信号就通过晶体管JE9013驱动LED发光,作为报警指示。

图4 H桥双向直流电动机驱动电路

3 智能功率模块的原理与应用

由日本三菱电机公司开发出的IPM系列产品,属于第三代智能功率模块。它采用第三代IGBT来代替传统的功率MOSFET和双极型达林顿管,并配以功能完善的控制及保护电路,构成了一种理想的高频软开关模块。这类模块特别适用于正弦波输出的变压变频(VVVF)式变频器中。

IPM系列产品的内部框图如图5所示。模块内部主要包括欠压保护电路、驱动IGBT的电路、过流保护电路、短路保护电路、温度传感器及过热保护电路、门电路和IGBT。该系列产品配16位单片机后构成的通用VVVF 变频器的原理图,如图6所示。

图5 IPM系列产品的内部框图

图6 通用VVVF变频器的原理图

功率场效应管原理

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

电力电子器件

新型电力电子器件 电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。又称功率电子器件。20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年代,普通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。 各种电力电子器件均具有导通和阻断两种工作特性。功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。可关断晶闸管、功率晶体管等器件,其门极信号既能控制器件的导通,又能控制其关断,称全控型器件。后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。这些器件构成装置不仅体积小、工作可靠,而且节能效果十分明显(一般可节电10%~40%)。 单个电力电子器件能承受的正、反向电压是一定的,能通过的电流大小也是一定的。因此,由单个电力电子器件组成的电力电子装置容量受到限制。所以,在实用中多用几个电力电子器件串联或并联形成组件,其耐压和通流的能力可以成倍地提高,从而可极大地增加电力电子装置的容量。器件串联时,希望各元件能承受同样的正、反向电压;并联时则希望各元件能分担同样的电流。但由于器件的个异性,串、并联时,各器件并不能完全均匀地分担电压和电流。所以,在电力电子器件串联时,要采取均压措施;在并联时,要采取均流措施。 电力电子器件工作时,会因功率损耗引起器件发热、升温。器件温度过高将缩短寿命,甚至烧毁,这是限制电力电子器件电流、电压容量的主要原因。为此,必须考虑器件的冷却问题。常用冷却方式有自冷式、风冷式、液冷式(包括油冷式、水冷式)和蒸发冷却式等。 1. 超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,(由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA (6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的"挤流效应"使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR>3.3kV)、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功率电压源的需

IGCT大功率器件

集成门极换流晶闸管(IGCT) 1.电力电子器件发展 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“机车’’。现代电力电子技术无论对改造传统-t-业(电力机械、矿冶、交通、化工、轻纺等),还是对高新技术产业(航天、激光、通信、机器人等)都至关重要,它已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为21世纪重要关键技术之一。 电力电子器件是现代电力电子设备的核心。它们以开关阵列的形式应用于电力变流器中,把相同频率或者不同频率的电能进行交流—直流(整流器),直流一直流(斩波器),直流一交流(逆变器)和交流一交流(变频器)变换。这种开关模式的电力电子变换在与国民经济发展密切相关的关键科学技术中有着重要的应用。首先,在节能和环保方面,电力电子变换在能源能量转换和能量输配过程中具有很高的效率,如果用很好的电力电子技术去转换,人类至少可节省约1/3的能源,而未来电力能源中的80%要经过电力电子设备的转换。其次,在信息和通信技术中,通过开关模式的电力电子变化可以为计算机与通信设备提供稳定的可靠的电源。此外,在交通运输中,电动汽车和电力机车的都和电力电子变换密切相关。 “一代器件决定一代电力电子技术。’’现代电力电子技术基本上是随着电力电子器件的发展而发展起来的。从1958年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。80年代末期和90年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,标志着传统电力电子技术已经进入现代电力电子时代。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%'-'--30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。因此对电力电子器件进行深入的研究和应用是非常重要的。 现代电力电子器件仍然在向大功率、易驱动和高频化方向发展。另外,电力电子模块化是电力电子向高功率密度发展的重要的一步。本文中提到的IGCT就是一种用于中大型电力电子设备中的新型大功率电力电子器件。它的应用使变流装置在功率、可靠性、开关速度、效率、成本、重量和体积等方面都取得了巨大进展,给电力电子成套装置带来了新的飞跃. 1.1 整流管 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV左右,反向恢复时间为PIN 整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。

功率二极管结构和工作原理

功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下: 如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N区之间形成一交界面。N区的多子(电子)向P区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为“扩散运动”。扩散到P区的电子不断地与空穴复合,同时P区的空穴向N区扩散,并与N区中的电子复合。交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为“漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定温度下达到动态平衡。即在单位时间内P区扩散到N区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩散电流,交界面的总电流为零。在动态平衡时,交界面两侧缺少载流子的区域称为“耗尽层“,这就形成了PN结。

如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN 结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过的正向电流较小时,二极管的电阻主要是作为基片的低掺杂N区的欧姆电阻,其阻值较高且为常量,因而管压降随正向电流的上升而增加;当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体电中性条件,其多子浓度也相应大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。电导调制效应使得PN结在正向电流较大时压降仍然很低,维持在1V左右,所以正向偏置的PN结表现为低阻态,为保护PN结,通常要在回路中串联一个限流电阻。

电力电子器件的最新发展趋势

电力电子器件的最新发展趋势 现代的电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)至关重要,从而已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为本世纪乃至下世纪重要关键技术之一。近几年西方发达的国家,尽管总体经济的增长速度较慢,电力电子技术仍一直保持着每年百分之十几的高速增长。 从历史上看,每一代新型电力电子器件的出现,总是带来一场电力电子技术的革命。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%~30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。 众所周知,一个理想的功率器件,应当具有下列理想的静态和动态特性:在截止状态时能承受高电压;在导通状态时,具有大电流和很低的压降;在开关转换时,具有短的开、关时间,能承受高的di/dt和dv/dt,以及具有全控功能。 自从50年代,硅晶闸管问世以后,20多年来,功率半导体器件的研究工作者为达到上述理想目标做出了不懈的努力,并已取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1kHz以上。70年代中期,高功率晶体管和功率MOSFET问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅门控双极型晶体管(IGBT) 问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。它的迅速发展,又激励了人们对综合功率MOSFET和晶闸管两者功能的新型功率器件- MOSFET门控晶闸管的研究。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的性能改进、MOS门控晶闸管以及采用新型半导体材料制造新型的功率器件等。下面就近几年来上述功率器件的最新发展加以综述。 一、功率晶闸管的最新发展 1.超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA ( 6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的“挤流效应”使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR > 3.3kV )、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功

功率半导体器件是什么

“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。 在国际上与该技术领域对应的最权威的学术会议就叫做International Symposium on Power Semiconductor Devices and ICs,即功率半导体器件和功率集成电路国际会议。 “power”这个词可译为动力、能源、功率等,而在中文里这些词的含义不是完全相同的。由于行业的动态发展,“power”的翻译发生了变化。 从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。与此同时,与这些器件相应的技术学会为中国电工技术学会所属的电力电子分会,而中国电子学会并没有与之相应的分学会;其制造和应用的行业归口也划归到原第一机械工业部和其后的机械部,这些都是顺理成章的。实际上从直译看,国外并无与电力电子相对应的专业名词,即使日本的“电力”与中文的“电力”也是字型相同而含义有别。此外,当时用普通晶体管集成的小型电源电路———功率集成电路,并不归属于电力电子行业,而是和其他集成电路一起归口到原第四机械工业部和后来的电子工业部。 20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。 这一转变的主要原因是,这些器件或集成电路能在比以前高10倍以上的频率下工作,而电路在高频工作时能更节能、节材,能大幅减少设备体积和重量。尤其是集成度很高的单片片上功率系统(power system on a chip,简写PSOC),它能把传感器件与电路、信号处理电路、接口电路、功率器件和电路等集成在一个硅芯片上,使其具有按照负载要求精密调节输出和按照过热、过压、过流等情况自我进行保护的智能功能,其优越性不言而喻。国际专家把它的发展喻为第二次电子学革命。

智能功率器件的原理

智能功率器件的原理与应用 1 智能功率器件的特点及产品分类 1.1 智能功率器件的特点 所谓智能功率器件,确实是把功率器件与传感器、检测和操纵电路、爱护电路及故障自诊断电路等集成为一体并具有功率输出能力的新型器件。由于这类器件可代替人工来完成复杂的功率操纵,因此它被给予智能的特征。例如,在智能功率器件中,常见的爱护功能有欠电压爱护、过电压爱护、过电流及短路爱护、过热爱护。此外,某些智能功率器件还具有输出电压过冲爱护、瞬态电流限制、软启动和最大输入功率限制等爱护电路,从而大大提高了系统的稳定性与可靠性。 智能功率器件具有体积小、重量轻、性能好、抗骚扰能力强、使用寿命长等显著优点,可广泛用于单片机测控系统、变频调速器、电力电子设备、家用电器等领域。

1.2 智能功率器件的产品分类 智能功率器件可分成两大类,即智能功率集成电路与智能功率模块。 1)智能功率集成电路 智能功率集成电路的种类专门多,下面仅列出几种典型产品。 ——高压功率开关调节器(High Voltage Power Switching Regulator)。例如,美国摩托罗拉公司研制的MC33370系列产品。 ——智能功率开关(IntelligentP ower Switch)。例如,德国西门子(Siemens)公司生产的Smart SIPMOS智能功率开关,产品型号有BTS412B、BTS611等。 2)智能功率模块 智能功率模块是采纳微电子技术和先进的制造工艺,把智能功率集成电路与微电子器件及外围功率器件组装成一体,能实现智能功率操纵的商品化部件。模块大多采纳密封式结构,以保证良好的电气绝缘和抗震性能。用户只须了解模块的外特性,即可使用。因此,它能简化

常见电子元器件介绍

常见电子元器件介绍 第一部分:功率电子器件 第一节:功率电子器件及其应用要求 功率电子器件大量被应用于电源、伺服驱动、变频器、电机保护器等功率电子设备。这些设备都是自动化系统中必不可少的,因此,我们了解它们是必要的。 近年来,随着应用日益高速发展的需求,推动了功率电子器件的制造工艺的研究和发展,功率电子器件有了飞跃性的进步。器件的类型朝多元化发展,性能也越来越改善。大致来讲,功率器件的发展,体现在如下方面: 1.器件能够快速恢复,以满足越来越高的速度需要。以开关电源为例,采用双极型晶体管时,速度可以到几十千赫;使用MOSFET和IGBT,可以到几百千赫;而采用了谐振技术的开关电源,则可以达到兆赫以上。 2.通态压降(正向压降)降低。这可以减少器件损耗,有利于提高速度,减小器件体积。 3.电流控制能力增大。电流能力的增大和速度的提高是一对矛盾,目前最大电流控制能力,特别是在电力设备方面,还没有器件能完全替代可控硅。 4.额定电压:耐压高。耐压和电流都是体现驱动能力的重要参数,特别对电力系统,这显得非常重要。 5.温度与功耗。这是一个综合性的参数,它制约了电流能力、开关速度等能力的提高。目前有两个方向解决这个问题,一是继续提高功率器件的品质,二是改进控制技术来降低器件功耗,比如谐振式开关电源。 总体来讲,从耐压、电流能力看,可控硅目前仍然是最高的,在某些特定场合,仍然要使用大电流、高耐压的可控硅。但一般的工业自动化场合,功率电子器件已越来越多地使用MOSFET和IGBT,特别是IGBT获得了更多的使用,开始全面取代可控硅来做为新型的功率控制器件。 第二节:功率电子器件概览 一.整流二极管: 二极管是功率电子系统中不可或缺的器件,用于整流、续流等。目前比较多地使用如下三种选择: 1.高效快速恢复二极管。压降0.8-1.2V,适合小功率,12V左右电源。 2.高效超快速二极管。0.8-1.2V,适合小功率,12V左右电源。 3.肖特基势垒整流二极管SBD。0.4V,适合5V等低压电源。缺点是其电阻和耐压的平方成正比,所以耐压低(200V以下),反向漏电流较大,易热击穿。但速 度比较快,通态压降低。 目前SBD的研究前沿,已经超过1万伏。 二.大功率晶体管GTR 分为: 单管形式。电流系数:10-30。 双管形式——达林顿管。电流倍数: 100-1000。饱和压降大,速度慢。下图虚线部 分即是达林顿管。

功率器件知识

功率器件知识 功率器件的主要功能是进行电能的处理与变换(比如变压、变流、变频、功放等)。主要应用领域是开关电源、电机驱动与调速、UPS 等等,这些装置都需输出一定的功率给予电器,所以电路中必须使用功率半导体。另一重要应用领域是发电、变电与输电,这就是原本意义上的电力电子。 功率器件的应用领域:消费电子24%,工业控制23.4%,计算机21.8%,网络通信20.5%,汽车电子5.2%。 任何电器设备都需要电源,任何用电机的设备都需要电机驱动。作为目前国际上主流的功率半导体器件,包括VD-MOSFET和IGBT,克服了以前功率半导体器件工业频率低、所需要的配套电感、电容、变压器等体积大、能耗高等缺点,制备工艺使用的设备和工艺线的要求与集成电路基本相同,完全不同于用台面技术和粗放光刻的晶闸管、台面二极管、功率BJT的制造。 全球能源需求的不断增长以及环境保护意识的逐步提升使得高效、节能产品成为市场发展的新趋势。MOSFET等功率器件越来越多地应用到整机产品中。我国用于电机的电能占我国总发电量的60%多。如果全国电机的驱动都采用功率半导体进行变频调速就可以节能大约 1/4 到 1/3,也就是说可节约全国总发电量的15%至20%。功率半导体还是信息产品、计算机、消费电子和汽车这4C产业的基础产品,当前用于4C产业的功率半导体已占功率半导体总量的70%多。

功率器件包括功率IC(半导体元件产品统称)和功率分立器件。 功率分立器件主要包括功率MOSFET、大功率晶体管和IGBT等半导体器件。功率IC和MOSFET的市场份额较大,分别占40.4%和26.0%市场份额,是中国功率半导体市场上最重要两个产品,此外大功率晶体管、达林顿管、IGBT和晶闸管也占有一定市场份额。 功率器件的中国市场结构:电源管理IC 40.4%,MOSFET26.0%,大功率晶体管13.7%,达林顿管5.3%,IGBT4.2%,晶闸管1.8%。 由于下游终端产品很多已向国内转移,其上游的功率器件市场也一直保持较快的发展速度。02-06年中国功率器件市场复合增长率29.4%,未来5年复合增长率19.1%,2011年达1680.4亿元。 国外厂商处于主导地位,国内厂商奋起直追。从功率半导体厂商的类型来看,多数功率芯片厂商是IDM(智能分销管理系统)厂商,Fabless(无生产线的IC设计公司)也占据了一定比例。美国、日本和欧洲功率芯片厂商大部分属于IDM 厂商,而中国台湾厂商则绝大多数属于Fabless厂商。 其中MOSFET在中国目前的市场规模为174.8亿元。MOSFET根据不同的耐压程度,有着不同的应用:耐压20v-应用领域手机、数码相机,30v-计算机主板、显卡,40v-机顶盒和电动自行车,60v-UPS、汽车雨刷、汽车音响、马达控制,80v-LCD TV、LCD 显示器和其他仪器仪表,150-400v-照明、CRT 电视、背投电视、电热水器和洗衣机等,400-800v-发动机启动器、车灯控制、电机控制,嵌入式电源和电源适配器,500-1000v-高压变频器、发电和变电设备。

功率器件简要介绍

一功率半导体简介 功率半导体器件种类很多,器件不同特性决定了它们不同的应用范围,常用半导体器件的特性如下三图所示。目前来说,最常用的功率半导体器件为功率MOSFET和IGBT。总的来说,MOSFET的输出功率小,工作频率高,但由于它导通电阻大的缘故,功耗也大。但它的功耗随工作频率增加幅度变化很小,故MOSFET更适合于高频场合,主要应用于计算机、消费电子、网络通信、汽车电子、工业控制和电力设备领域。IGBT的输出功率一般 10KW~1000KW之间,低频时功耗小,但随着工作频率的增加,开关损耗急剧上升,使得它的工作频率不可能高于功率MOSFET,IGBT主要应用于通信、工业、医疗、家电、照明、交通、新能源、半导体生产设备、航空航天以及国防等领域。 图1.1 功率半导体器件的工作频率范围及其功率控制容量

图1.2 功率半导体器件工作频率及电压范围 图1.3 功率半导体器件工作频率及电流范围 二不同结构的功率MOSFET特性介绍 功率MOSFET的优点主要有驱动功率小、驱动电路简单、开关速度快、工作频率高,随着工艺的日渐成熟、制造成本越来越低,功率MOSFET应用范围越来越广泛。我们下面主要介绍一些不同结构的MOSFET的特性。VVMOSFET 图2.1 VVMOS结构示意图

VVMOS采用各向异性腐蚀在硅表面制作V 形槽,V形槽穿透P与N+连续扩散的表面,槽的角度由硅的晶体结构决定,而器件沟道长度取决于连续扩散的深度。在这种结构中,表面沟道由V 形槽中的栅电压控制,电子从表面沟道出来后乡下流到漏区。由于存在这样一个轻掺杂的漂移区且电流向下流动,可以提高耐压而并不消耗表面的面积。 这种结构提高了硅片的利用率,器件的频率特性得到很大的改善。同时存在下列问题:1,V形槽面之下沟道中的电子迁移率降低;2,在V槽的顶端存在很强的电场,严重影响器件击穿电压的提高;3,器件导通电阻很大;4,V槽的腐蚀不易控制,栅氧暴露,易受离子玷污,造成阈值电压不稳定,可靠性下降。 VUMOSFET 图2.2 VUMOS结构示意图 VUMOS的结构是基于VVMOS改进得到的。这里的的U槽是通过控制腐蚀V槽的两个斜面刚进入N-漂移区但还未相交时停止腐蚀得到的,当这种结构的栅极施加正偏压时,不仅在P型沟道区中会形成反型层,而且在栅极覆盖的N-漂移区中还会产生积累层,于是源极电流均匀分配到漏极。适当选取栅极覆盖的漂移区宽度,可大大减小导通电阻,同时避免V槽顶端强电场的产生。 但是,VUMOS的U 槽同样存在难于控制腐蚀、栅氧暴露的问题。VDMOSFET

功率半导体器件 LDMOS VDMOS

关于功率MOSFET(VDMOS & LDMOS)的报告 ---时间日期:2009.11.12 ---报告完成人:祝靖1.报告概况与思路 报告目的:让研一新同学从广度认识功率器件、了解功率器件的工作原理,起到一个启蒙的作用,重点在“面”,更深层次的知识需要自己完善充实。 报告内容:1)从耐压结构入手,说明耐压原理; 2)从普通MOS结构到功率MOS结构的发展;(功率MOS其实就是普通MOS结构和耐 压结构的结合); 3)纵向功率MOS(VDMOS)的工作原理; 4)横向功率MOS(LDMOS)的工作原理; 5)功率MOSFET中的其它关键内容;(LDMOS和VDMOS共有的,如输出特性曲线)报告方式:口头兼顾板书,点到即止,如遇到问题、疑惑之处或感兴趣的地方,可以随时打断提问。 2.耐压结构(硅半导体材料) 目前在我们的研究学习中涉及到的常见耐压结构主要有两种:①反向PN结②超结结构(包括); 2.1 反向PN结(以突变结为例) 图2.1所示的是普通PN结的耐压原理示意图,当这个PN结工作在一定的反向电压下,在PN结内部就会产生耗尽层,P区一侧失去空穴会剩下固定不动的负电中心,N区一侧会失去电子留下固定不动的正电中心,并且正电中心所带的总电量=负电中心所带的总电量,如图2.1a所示,A区就是所谓耗尽区。 图2.1b所示的是耗尽区中的电场分布情况(需熟悉了解),耗尽区以外的电场强度为零,Em称为峰值电场长度(它的位置在PN,阴影部分的面积就是此时所加在PN P区和N区共同耐压。图2.2所示的是P+N结的情况,耐压原理和图1中的相同,但是在这种情况中我们常说N负区是耐压区域(常说的漂移区) (a) (b) 图2.1 普通PN结耐压示意图(N浓度=P浓度)图2.2 P+N结耐压示意图(N浓度<

大功率电子元器件及设备结构的热设计

大功率电子元器件及设备结构的热设计 电子元器件以及电子设备已经在人们生产生活当中的各个领域内所应用。随着电子元器件的集成度越来越高以及功率要求越来越大,因此必然会引起电器元器件的热效应,因此对于大功率电子元器件或电子设备需要进行热设计。文章对大功率电子元器件及设备结构热设计的考虑因素,设计流程及要求以及主要参数计算等均作了简单阐述,可以对研究大功率电子元器件及设备结构的热设计起到积极作用。 标签:大功率;电子元器件;电子设备;热设计 前言 随着现代社会的发展,电子设备已经在人们的生产生活当中得到普遍应用。因此电子设备的可靠性对于人们的生产生活具有十分重要的作用。特别是在一些关键或核心领域,即使是一个小的电子元器件出现问题,都极易可能造成极大的危害。特别是近些年随着硅集成电路的普遍应用,电路的集成得到了成倍的增加,因此各电子元器件或芯片的热量也得到了相应的增加。同时在电子产品小型化,高功率的背景下,电子元器件或电子设备的散热问题就成为了保障设备安全可靠的关键性问题。因此对于现代电子元器件或电子设备若想保持安全可靠性就需要采取科学合理的热设计。 1 大功率电子元器件及设备结构热设计的考虑因素 1.1 大功率电子元器件及设备结构的传热方式 大功率电子元器件及设备结构的传热方式有三种,即导热、对流和辐射。其中导热基本是由气体分子不规则运动时相互碰撞,金属自由电子的运动,非导电固体晶格结构的振动以及液体弹性波产生的。对流则是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着导热现象。流体流过某物体表面时所发生的热交换过程称为对流。辐射主要为电磁波一般考察与太阳、空间环境间的传热时才考虑,其辐射传热系数为: 1.2 大功率电子元器件结温 从广义上将元器件的有源区称为“结”,而将元器件的有源区温度称为“结温”。元器件的有源区可以是结型器件的Pn结区,场效应器件的沟道区或肖特器件的接触势垒区,也可以是集成电路的扩散电阻或薄膜电阻等,默认为芯片上的最高温度。大功率电子元器件的最高结温,对于硅器件塑料封装为125~150℃,金属封装为150~200℃。对于锗器件为70~90℃当结温较高时(如大于50℃),结温每降低40~50℃,元器件寿命可提高约一个数量级。所以对于航空航天和军事领域应用的元器件,由于有特别长寿命或低维护性要求,并受更换费用限制以及须承受频繁的功率波动,平均结温要求低于60℃。

13种常用的功率半导体器件介绍

13种常用的功率半导体器件介绍 电力电子器件(Power Electronic Device),又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。 1. MCT (MOS Control led Thyristor):MOS控制晶闸管 MCT 是一种新型MOS 与双极复合型器件。如上图所示。MCT是将MOSFET 的高阻抗、低驱动图MCT 的功率、快开关速度的特性与晶闸管的高压、大电流特型结合在一起,形成大功率、高压、快速全控型器件。实质上MCT 是一个MOS 门极控制的晶闸管。它可在门极上加一窄脉冲使其导通或关断,它由无数单胞并联而成。它与GTR,MOSFET,IGBT,GTO 等器件相比,有如下优点: (1)电压高、电流容量大,阻断电压已达3 000V,峰值电流达1 000 A,最大可关断电流密度为6000kA/m2; (2)通态压降小、损耗小,通态压降约为11V; (3)极高的dv/dt和di/dt耐量,dv/dt已达20 kV/s ,di/dt为2 kA/s; (4)开关速度快,开关损耗小,开通时间约200ns,1 000 V 器件可在2 s 内关断; 2. IGCT(Intergrated Gate Commutated Thyristors) IGCT 是在晶闸管技术的基础上结合IGBT 和GTO 等技术开发的新型器件,适用于高压大容量变频系统中,是一种用于巨型电力电子成套装置中的新型电力半导体器件。 IGCT 是将GTO 芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点。在导通阶段发挥晶闸管的性能,关断阶段呈现晶体管的特性。IGCT 芯片在不串不并的情况下,二电平逆变器功率0.5~ 3 MW,三电平逆变器1~ 6 MW;若反向二极管分离,不与IGCT

智能功率器件的原理与应用

智能功率器件的原理与应用

————————————————————————————————作者:————————————————————————————————日期:

天马行空官方博客:https://www.360docs.net/doc/9311993991.html,/tmxk_docin;QQ:1318241189;QQ群:175569632 智能功率器件的原理与应用 1 智能功率器件的特点及产品分类 1.1 智能功率器件的特点 所谓智能功率器件,就是把功率器件与传感器、检测和控制电路、保护电路及故障自诊断电路等集成为一体并具有功率输出能力的新型器件。由于这类器件可代替人工来完成复杂的功率控制,因此它被赋予智能的特征。例如,在智能功率器件中,常见的保护功能有欠电压保护、过电压保护、过电流及短路保护、过热保护。此外,某些智能功率器件还具有输出电压过冲保护、瞬态电流限制、软启动和最大输入功率限制等保护电路,从而大大提高了系统的稳定性与可靠性。 智能功率器件具有体积小、重量轻、性能好、抗骚扰能力强、使用寿命长等显著优点,可广泛用于单片机测控系统、变频调速器、电力电子设备、家用电器等领域。 1.2 智能功率器件的产品分类 智能功率器件可分成两大类,即智能功率集成电路与智能功率模块。 1)智能功率集成电路 智能功率集成电路的种类很多,下面仅列出几种典型产品。 ——高压功率开关调节器(High Voltage Power Switching Regulator)。例如,美国摩托罗拉公司研制的MC33370系列产品。 ——智能功率开关(IntelligentP ower Switch)。例如,德国西门子(Siemens)公司生产的Smart SIPMOS智能功率开关,产品型号有BTS412B、BTS611等。 2)智能功率模块 智能功率模块是采用微电子技术和先进的制造工艺,把智能功率集成电路与微电子器件及外围功率器件组装成一体,能实现智能功率控制的商品化部件。模块大多采用密封式结构,以保证良好的电气绝缘和抗震性能。用户只须了解模块的外特性,即可使用。因此,它能简

功率开关器件的驱动电路是什么原理

功率开关器件的驱动电路是什么原理? 功率开关器件在电力电子设备中占据着核心位置,它的可靠工作是整个装置正常运行的基本条件。功率开关器件的驱动电路是主电路与控制电路之间的接口,是电力电子装置的重要部分。它对整个设备的性能有很大的影响,其作用是将控制回路输出的控制脉冲放大到足以驱动功率开关器件。简而言之,驱动电路的基本任务就是将控制电路传来的信号,转换为加在器件控制端和公共端之间的可以使其导通和关断的信号。 同样的器件,采用不同的驱动电路将得到不同的开关特性。采用性能良好的驱动电路可以使功率开关器件工作在比较理想的开关状态,同时缩短开关时间,减小开关损耗,对装置的运行效率,可靠性和安全性都有重要的意义。因此驱动电路的优劣直接影响主电路的性能,驱动电路的合理化设计显得越来越重要。晶闸管体积小,重量轻,效率高,寿命长,使用方便,可以方便的进行整流和逆变,且可以在不改变电路结构的前提下,改变整流或逆变电流的大小。IGBT是MOSFET和GTR的复合器件,它具有开关速度快、热稳定性好、驱动功率小和驱动电路简单的特点,又具有通态压降小、耐压高和承受电流大等优点。IGBT作为主流的功率输出器件,特别是在大功率的场合,已经被广泛的应用于各个领域。一般来说,功率 开关器件理想的驱动电路应满足以下要求: (1)功率开关管开通时,驱动电路能够提供快速上升的基极电流,使得开启时有足够的驱动功率,从而减小开通损耗。 (2)开关管导通期间,驱动电路提供的基极电流在任何负载情况下都能保证功率管处于饱和导通状态,保证比较低的导通损耗。为减小存储时间,器件关断前应处于临界饱和状态。 (3)关断时,驱动电路应提供足够的反向基极驱动,以迅速的抽出基区的剩余载流子,

功率器件

功率器件的基础知识 概念: 功率半导体器件,以前也被称为电力电子器件,简单来说,就是进行功率处理的,具有处理高电压,大电流能力的半导体器件。典型的功率处理,包括变频、变压、变流、功率管理等等。 种类; 根据开关特性不同,可分为: 半控型器件:通过门极信号只能控制其导通而不能控制其关断的器件,如SCR; 全控型器件:通过门极信号既能控制其导通又能控制其关断的器件,如BJT、IGBT、GTO、IGCT。 根据控制极(包括门极、栅极或基极)信号的不同性质,可分为:电流控制型器件:一般通过从控制极注入或抽出控制电流的方式来实现对导通或关断的控制,如SCR; 电压控制型器件:利用场控原理控制的电力电子器件,其导通或关断是由控制极上的电压信号控制的,控制极电流极小,如IGBT。 根据半导体器件内部电子和空穴两种载流子参与导电的情况,可分为: 单极型器件:由一种载流子参与导电的器件,如MOSFET;单极型器件只有一种载流子(多数载流子)参与导电,是电压控制型器件,具有控制功率小、驱动电路相对简单、工作频率高、无二次击穿问题、安全工作区宽等显著特点,其缺点是通态压降大、导通损耗大。

双极型器件:由电子和空穴两种载流子参与导电的器件,如BJT;双极型器件中两种载流子都参与导电,具有通态压降小、导通损耗小的显著特点,多数属于电流控制型,其缺点是控制功率大、驱动电路较复杂、工作频率较低、有二次击穿问题等。 混合型器件:由单极型和双极型两种器件组成的复合器件,如IGBT。混合型器件又称复合型器件,综合了单极型和双极型各自的优点,利用双极型器件作为它的输出级,而利用单极性器件作为它的输入级 特性: 功率半导体器件是电力电子电路的重要组成部分,一个理想的功率半导体器件应该具有好的静态和动态特性,在截止状态时能承受高电压且漏电流要小;在导通状态时,能流过大电流和很低的管压降;在开关转换时,具有短的开、关时间;通态损耗、断态损耗和开关损耗均要小。同时能承受高的 di/dt 和 du/dt 以及具有全控功能。应用市场: 功率器件包括功率IC和功率分立器件,功率分立器件则主要包括功率MOSFET、大功率晶体管和IGBT等半导体器件,功率器件几乎用于所有的电子制造业,所应用的产品包括计算机领域的笔记本、PC、服务器、显示器以及各种外设;网络通信领域的手机、电话以及其它各种终端和局端设备;消费电子领域的传统黑白家电和各种数码产品;工业控制类中的工业PC、各类仪器仪表和各类控制设备等。除了保证这些设备的正常运行以外,功率器件还能起到有效的节能作用。由于电子产品的需求以及能效要求的不断提高,中国功率器件市

光伏逆变器中功率电子器件的选择

光伏逆变器中功率电子器件的选择 简介 太阳能光伏系统的应用领域越来越广泛。尤其是移动系统,不用花一分钱,就从太阳能中受益。同时由于常规电能成本不断攀升,太阳能对家庭应用具有很大的吸引力。太阳能电池本身和连接太阳能电池与公共电网或分布电源的太阳能逆变器的能源效率,是这一技术取得成功的关键所在。如今,最大输出功率为5kW的高级太阳能逆变器拥有两级拓扑。图1显示了此类太阳能逆变器的多组配置。 每组都和自己的功率调节器相连,然后连接至共用直流母线。功率调节器能够使太阳能电池以最大效率工作。太阳能逆变器可产生馈入市电的交流电压。请注意,图1所示的电源网是一种可用于任何逆变器拓扑的虚设电路,外加一个市电变压器和一个输出滤波器,变压器可阻止直流分量进入市电。

但是,也有一些系统是不用变压器的,这取决于太阳能逆变器销售所在国家的法律背景。允许不采用变压器的国家的目的是提高系统效率,因为变压器导致效率下降1~2个百分点。另一方面,逆变器必需避免直流分量,要求电流小于5mA。虽然这很难做到,但是为了获得更高的效率,我们还是成功地实现了。表1给出了每一级对系统损耗、系统尺寸和系统成本的贡献值。 很容易可以看出,变压器是系统损耗和成本的主要贡献者。然而,变压器在许多国家是必须使用的,因此,它不在减小损耗的考虑范围之内。输出滤波器可减弱由输出逆变器级产生的电流纹波,该滤波器的大小和成本与逆变器开关频率成反比。开关频率越高,滤波器的尺寸越小、价格越便宜。但是,这种关系与硬转换状态下开关频率和开关损耗之间的关系形成了折衷——开关频率越高,损耗越大,因此效率就越低。从16kHz~20kHz的开关频率,由于具备较低音频噪声和较高效率,可以满足太阳能逆变器的要求。因此,功率电路还有待于进一步研究。 下文将比较适用于这两级的几种半导体技术的优势。 用于DC/AC升压变换器的功率半导体 DC/DC变换器是在100kHz或以上的开关频率下状态下运行的。变换器以连续模式运行,这意味着,升压电感器内的电流在额定条件下会产生连续波形。当晶体管关闭时,二极管作为续流二极管使用时,晶体管可为电感器充电。这就是说,当晶体管再次打开时,二极管可以主动关闭。下图给出了常用硅二极管的典型反向恢复特性(图2中的黑色和红色曲线)。

相关文档
最新文档