石德珂材料科学简答题

石德珂材料科学简答题
石德珂材料科学简答题

《材料科学基础》

简答题

第一章材料结构的基本知识

1、说明结构转变的热力学条件与动力学条件的意义。

答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。

2、说明稳态结构与亚稳态结构之间的关系。

答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。

3、说明离子键、共价键、分子键和金属键的特点。

答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。

共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。

分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。

当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。

4、原子中的电子按照什么规律排列?

答:原子核周围的电子按照四个量子数的规定从低能到高能依次排列在不同的量于状态下,同一原子中电子的四个量子数不可能完全相等。

第二章材料的晶体结构

1、在一个立方晶胞中确定6个表面面心位置的坐标。6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。

解八面体中的晶面和晶向指数如图所示。图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。

ABF面平行CDE面,其晶面指数为(111);

ABE面平行CDF面,其晶面指数为(111);

ADF面平行BCE面,其晶面指数为(111);

ADE 面平行BCF 面,其晶面指数为(111)。

棱边DC AB //,BC AD //,ED BF //,EC AF //,CF EA // ,DF EB // ,其晶向指数分别为[110],],101[]011[,[011],]110[,[101]。

对角线分别为EF AC DB ,,,其晶向指数分别为[100],[010],[001]

图 八面体中的晶面和晶向指数

2、标出图2中ABCD 面的晶面指数,并标出AB 、BC 、AC 、BD 线的晶向指数。

解:晶面指数:

ABCD 面在三个坐标轴上的截距分别为3/2a,3a,a,

截距倒数比为 3:1:21:3

1:32= ∴ABCD 面的晶面指数为 (213) 4分

晶向指数:

AB 的晶向指数:A 、B 两点的坐标为

A (0,0,1),

B (0,1,2/3) (以a 为单位)

则 )31,1,0(-=AB ,化简即得AB 的晶向指数]103[ 二(2)图

同理:BC 、AC 、BD 线的晶向指数分别为]230[,]111[,]133[。 各2分

3、如图所示立方晶胞晶格常数为a ,AO 的长度为2/3a , BD 的长度为1/2a ,CF 的长度为1/3a ,标出图中ABC 面的晶面指数,并标出AB 、BC 、AC 的晶向指数。

解:ABC 面的晶面指数:

ABC 面在x 、y 、z 三个坐标轴上的截距分别为4,2,2/3,(1分)

截距倒数比为 113::1:2:6422

= (1分) ∴ABC 面的晶面指数为 (126) (1分)

晶向指数:

AB 的晶向指数:A 、B 、C 点的坐标为

A (0,0,2/3),

B (1,0,1/2),

C (0,1,1/3) (以a 为单位)

则AB 的晶向指数[601]或[601] (1分) {1(1,0,)6AB =-u u u r } BC 的晶向指数[661]或[661] (1分) {1(1,1,)6

BC =-u u u r }

AC 的晶向指数[031]

或[031] (1分) {1(0,1,)3

AC =-u u u r }

4、求图中所示立方晶胞中ABCD面的指数;并求该晶面与晶胞所交的四边形四条边和对角线的晶向指数。

解:晶面指数:

ABCD 面在三个坐标轴上的截距分别为2a,a,2a

截距倒数比为 1:2:12

1:11:21= ∴ABCD 面的晶面指数为 (121) 2分

晶向指数:

AB 的晶向指数:A 、B 两点的坐标为

A (1,1/2,0),

B (0,1,0) (以a 为单位)

则 2

11+-=, AB 的晶向指数]102[ 2分 同理:BC 、AC 、BD 线的晶向指数分别为]210[,]011[,]111[。 各2分

回答下列问题:

(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:

(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236]

(2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。

(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。

解:1、

(132)

(111)

[112]

(110)

[111][123]

[236](112)

(111)(322)(101)(112)

[111](001)[210][110](101)

(011)(101)[111](011)(112)

(101)

[111]

(112)

面心立方结构和体心立方结构中有几种间隙,各有几个?

答:面心立方结构包含4个正八面体间隙和8个正四面体间隙;体心立方结构包含6个正八面体间隙和12个正四面体间隙。(数目:每个2分,类型:每个1分)

5、简述同素异构产生原因。

答:与该类原子的电子层结构的变化有关,即在不同的温度或压力下,通过参与键和的外层数分布状态的改变,而引起原子间结合能以致点阵的形式发生改变,过渡族金属多型性倾向较大,与此结构中的s能级和d能级十分接近有关

性能:发生多型性转变,由于晶体点阵致密度不同,伴随热涨,

6、在离子(陶瓷)晶体中正、负离子的堆积方式取决于哪些因素?

答:(1)正、负离子的电荷大小——晶体必须保持电的中性,即所有正离子的正电荷应等于所有负离子的负电荷。(2)正、负离子的相对大小——由于正、负离子的外层电子形成闭合的壳层,因此可以把离子看成具有一定半径的刚性圆球。在离子晶体中,一些原子失去其外层电子而成为正离子另一些则得到外层电子而成为负离子。(答对(1)、(2)中的任一点5分)

7、简要说明硅酸盐的几种结构单元的主要特点。

答:

第三章高分子材料的结构

1.简要说明加聚反应和缩聚反应的区别?

答:加聚反应是由不饱和的单体聚合成高分子的反应,其产物只有—种高分子化合物。参加缩聚反应的单体一般含有两种或两种以上能相互作用的官能团(两个或两个以上易断裂的共价键)的化合物,产物中除一种高分子化合物外,还生成有小分子。如H2O、HCl、NH3等。产物的组成与参加反应的任何一种单体均不相同。从反应机理上看,加聚反应是不饱和分子中的双键或叁键发生的,实质还是加成反应。所以,双键、叁键是发生加聚反应的内因。缩聚反应是通过单体中的官能团相互作用经缩合生成小分子,同时又聚合成大分子的双线反应。发生缩聚反应的内因是相互能作用的官能团(或较活动的原子)。发生加聚反应的单体不一定是一种物质,也可以是两种或两种以上。如丁苯橡胶就是由单体1,3-丁二烯和苯乙烯加聚而成,缩聚反应的单体不一定就是两种,也有一种的,如单糖缩聚成多糖、氨基酸缩聚成多肽,也可以是两种以上的。

2.写出下列化合物的链节结构,并指出有无氢键,若有,是分子内还是分子间的?

(1)聚氯乙烯;(2)聚乙烯醇;(3)尼龙-6;(4)涤纶;(5)纤维素

答:(1)-CH2CHCl- 、分子间氢键

(2)-CH2CHOH-、分子间氢键

(3)-HN(CH)5CO-、分子间氢键

(4)分子间氢键

(5)分子内和分子间都有氢键

3.聚合物的分子结构对主链的柔顺性有什么影响?

答:主链结构对高分子链的柔顺性的影响(1)主链杂原子使柔性增大,其中按照Si—O、C—O、C—C键的顺序柔性递减;(2)主链芳环使柔性下降;(3)共轭双键使柔性大为下降;(4)孤立双键使柔性大为增加。当主链结构相同时,可根据侧基情况来比较或判断链柔性大小。侧基对高分子链的柔顺性的影响(1)侧基极性越大柔性越小;(2)侧基对称取代会使柔性大大增加;(3)侧基不对称取代时的柔性会显著下降;(4)一般来说,侧基体积较大,柔性下降。但柔性侧基随着侧基增长,柔性增加。

4.试解释下列实验现象:将一个砝码系于聚乙烯醇纤维的一端,把砝码和部分纤维浸入盛有沸水的烧杯中。如果砝码悬浮在水中,则体系是稳定的;如果砝码挨着烧杯底部,则纤维被溶解了?

答:当砝码悬在水中时,聚乙烯醇纤维被拉伸取向,耐热性提高,纤维不被溶解,如果砝码挨着烧杯的底部,聚乙烯醇纤维未被拉伸取向,耐热性未提高,因此在沸水中溶解了。

5.高聚物主要有哪几种聚集态?什么样的聚集状态是高聚物独有的?

答:高聚物的聚集态有:液态、高弹态、玻璃态、取向态、结晶态、液晶态。其中高弹态是高分子所特有的。

6.提高高分子材料强度的方法有哪些?

答:提高高分子材料强度的方法有:

1.改变高分子材料的结晶度,结晶度增加,则高分子材料的强度提高;

2.改变侧基的性质,侧基体积越大、极性越大则高分子材料的强度提高;

3.改变主链结构,主链刚性越大,则高分子材料的强度提高;

4.共聚,与其他高强度高分子材料单体共聚,可提高高分子材料的强度;

5.拉拔强化,一些高分子材料在Tg温度附近冷拉,可提高其强度。

7.为什么聚乙烯容易结晶,而聚氯乙烯则难以结晶?为什么在热塑性塑料中完全结晶不大可能?

答:因为聚乙烯高分子链结构简单、对称所以容易结晶,而聚氯乙烯分子的对称结构被打乱,而且CHCl 体积比CH2大,因此结晶能力下降。由于高聚物分子链很长,不能象小分子化合物那样可以实现整个分子都进入“结晶区”而达到完全结晶。因此在热塑性塑料中完全结晶不太可能。

8.说明交联的作用,它如何改变聚合物的结构和性能?

答:交联作用是分子链之间生成化学键,形成网状结构。线型聚合物经适度交联后,其力学强度、弹性、尺寸稳定性、耐溶剂性等均有改善。

第四章晶体缺陷

1、为什么位错没有平衡浓度?

答:自由能分析:位错是由大量点缺陷串成线,混乱程度受到限制,熵的作用大减,主要考虑内能,位错总是增加内能,位错越多,越不稳定,热力学要求位错越少越好,故位错没有平衡浓度。虽然热力学

不稳定,但因其呈网状分布,故力学上是稳定的。

2、简述大角晶界特点;

答:1.过渡层厚度仅2~3个原子直径;2.原子排列混乱;3.相对稀疏。

3、简述物理吸附机理及特点。

答:物理吸附是由范德华耳斯力作用而相互吸引的

特点:任何固体对任何气体或其他原子都有这类吸附作用,(1、吸附无选择性、多层吸附),只是吸附的程度随气体或其他原子的性质不同而有所差异。2、物理吸附的吸附热较小。

4、某晶体中有一条柏氏矢量为a [001]的位错线,位错线的一端露头于晶体表面,另一端与两条位错线相连接,其中一条的柏氏矢量为/2[111]a ,求另一条位错线的柏氏矢量。

答:根据柏氏矢量的守恒性,另一条位错的柏氏矢量为:

[110][111][111]22

a a a -= 5、在图 4-52所示的晶体中,ABCD 滑移面上有一个位错环,其柏氏矢量

b 平行于AC

(1)指出位错环各部分的位错类型。 (2)在图中表示出使位错环向外运动所需施加的切应力方向。

(3)该位错环运动出晶体后,晶体外形如何变化?

答:(1)位错环和与AC 平行的直线相切的部分为纯螺位错,位错环和与AC 垂直的直线相切的部分为纯

刃位错,其余部分为混合位错,作图

(2)切应力与b 平行,作用在晶体上下两面上。t ×b →多余原子面,作图

(3)沿b 方向滑出一个柏氏矢量单位的距离

第五章 材料的相结构及相图

1、应用相律时须考虑哪些限制条件?

解:(1)相律只适用于热力学平衡状态。平衡状态下各相的温度应相等 (热量平衡);各相的压力应相等 (机械平衡);每一组元在各相 中的化学位必须相同 (化学平衡 )。

2)相律只能表示体系中组元和相的数目,不能指明组元或相的类型和含量。

3)相律不能预告反应动力学 (速度)。

4)自由度的值不得小于零 。

2、影响固溶体的无序、有序和偏聚的主要因数是什么?

答:溶质原子在溶剂品格中的分布状态,主要取决于因溶体中同类原子结合能与异类原子间结合能的相对大小:当同类原子间结合能人于异类原子间结合能时.溶质原子便倾向于聚集在一起,呈偏聚状念;当同类原子间结合能小于异类原子结合能时,溶质原子便倾向于按一定规则有序排列。如果溶质原子的有序分布只在短距离小范围内存在,称为短程有序;如果全部都达到有序状态,则称为长程有序。

3、影响有序化的因数有哪些?

答(1)、结合能小于零,必要条件,降低内能

(2)、T: T

(3)、成分:1:1或1:3(即AB或AB3),不是上述比时,一部分形成有序固溶体,另一部分由纯A 或纯B构成;例当Cu:Zn=1:3时,多出的Zn以纯Zn晶体存在

(4)、冷速:冷速过快,有序化来不及进行,因为有序化是原子迁移过程

4、影响置换式固溶体的固溶度的因素有哪些?

答:(1)尺寸因数:当一个溶质原子引起的点阵畸变能越大,溶质原子能溶入溶剂中的数量便越少,固溶体的溶解度就愈小;

(2)晶体结构因素:组元间晶体结构相同时,固溶度一般都较大,而且有可能形成无限固溶体。若组元间晶体结构不同,便只能形成有限固溶体

(3)电负性差因素:两元素间电负性差越小,则越易形成固溶体,而且所形成的固溶体的溶解度也就越大;随两元素间电负性差增大,固溶度减小,当溶质与溶剂的电负性差很大时,往往形成比较稳定的金属化合物;

(4)电子浓度因素:以贵金属Cu、Au、Ag为基的固溶体在尺寸因素有利的情况下,溶质元素的原子价越高,则其在Cu、Au、Ag中的溶解度越小。

5、影响陶瓷材料中离子代换或固湾度的因素有哪些?

答:影响陶瓷材料中离子代换或固溶度的因素,有些与金属固溶体类似,如原子半径差越小,温度越高.电负性差越小.离子间的代换越易进行.其固溶度也就越大,当两化合物的晶体结构相同.且在其他条件有利的情况下.相同电价的离子间有可能完全互换而形成无限固溶体,除以上因素以外、还须考虑以下情况:(1)为了保持晶格的电中性,代换前后离子的总电价必须相等;(2)晶格能量:当一种离子置换另—种离子而有利于降低晶体内能时.这样的代换就容易发生,而相反方向则不能进行。

6、陶瓷材料中的固溶方式与金属相比有何不同?

答:1)虽然离子型晶体也会产生弗兰克尔空位及肖脱基空位,但多数离子型晶体因其排列紧密,形成弗兰克尔空位的可能性较小,运成肖脱基空位时必须是电价总和为零的正、负离子同时移出晶体,在晶体中形成正、负离子的空位对;

2)为了保持电中性,离子间数量不等的置换会在晶体内部形成点缺陷;

3)若此类化合物中存在变价离子,当其电价改变时,也会在晶体中产生空位。

第六章材料凝固与气相沉积

1、对于有可能进行结晶的材料,决定液体冷却时是否能结晶或形成玻璃的主要因素有哪些?

答:首先,如果冷却速率足够高.任何液体原则上都可以转变为玻璃。其次,如果晶体结构的基元很难

由液相形成,结晶就会延缓而有利于玻璃的形成。例如:金属、陶瓷和聚合物在这方面有本质上的差别。金属晶体的基元只包含几个原子,而且大多只含有一个原子,因此很容易进行结晶。陶瓷晶体一般比较复杂,尽管大多数陶瓷材料可进行结晶,形成玻璃也是常见的,最后,长链高分子的结晶在结构上有以下两个困难:(1)难得会有简单的基元;(2)已有链段在既不使键断开也不重新形成的条件下进行重排,只能通过所有各链段的缓慢扩散来完成。(答对一项5分)

2、固溶体凝固与纯金属凝固相比有哪些不同?

⑴、固溶体凝固时,结晶出来的固相成分与原液相成分不同,所以固溶体凝固形核时,除需要能量起伏和结构起伏外,还需要成分起伏,因而固溶体凝固形核比纯金属困难;3分

⑵、固溶体凝固需要一定的温度范围,在此温度范围的每一温度下,只能凝固出来一定数量的固相,即固溶体凝固必须依赖异类原子的互相扩散,这需要时间,所以凝固速率比纯金属慢。2分

5、简述铸锭典型组织

答:通常铸锭的晶粒组织由三个区域组成:最外层由细小的等轴晶粒组成,即细晶粒区;接着是垂直于模壁、长而粗的柱状晶粒区;中心部分也是由等轴晶粒组成,但是比表层的晶粒大,这个区域叫做等轴晶粒区。细晶粒区总是很薄的一层,对性能的影响很小。3分

根据凝固条件的不同及其它因素的影响,有时只能见到一个或两个晶粒区。例如,不锈钢锭通常只有柱状晶粒区,而没有中心等轴晶粒区,细晶粒区也很薄或没有;而经过晶粒细化处理的铝合金铸锭,其组织全部是等轴晶粒。2分

6、简述二元合金平衡凝固的特点。

答:二元合金平衡凝固的特点:

1、液相中溶质原子通过迁移(对流+扩散)而分布均匀,固相中溶质原子通过扩散也分布均匀;

2、固相及液相的成分随温度变化而变化,但在任一温度下都达到平衡状态;

3、结晶后晶粒内成分均匀,无宏观偏析及微观偏析。

第七章扩散与固态相变

1、简述晶体结构对扩散的影响。

答:晶体结构反映了原子(离子)在空间排列的情况;扩散时原子要发生移动就必需克服周围原子对它的作用力。原子排列越紧密,原子间的结合力愈强,此时扩散激活能就越大,而扩散系数D就愈小;因此,晶体结构紧密的物质,扩散激活能就大,扩散系数小(3分)。金属的熔点高低和熔化时潜热的大小都能反映金属内部原子间作用力的大小,反映激活能的高低。金属的熔点越高、熔化时潜热越大,原子排列就越紧密,扩散激活能就越大,扩散系数就越小。2分

2、简述影响扩散激活能的因素。

答:1)扩散机制,间隙扩散激活能比空位激活能小很多;

2)晶体结构,密排结构的激活能要大一些;

3)原子结合力,原子结合力越强,扩散激活能越大;

4)合金成分,凡是使材料熔点降低的金属元素都使扩散激活能降低。

3、调幅分解反应和一般的形核长大机制有何不同?

答:调幅分解反应不需要形核,新相成分变化、结构不变,界面宽泛(初期无明显分界面),组织均匀规

则,原子扩散为上坡扩散,形核转变率高;形核不需克服能垒,但长大需要克服梯度能和表面能;

一般的形核长大需要形核,新相成分、结构均发生变化,界面明晰,组织均匀性差、不规则,原子扩散为下坡扩散,形核转变率低。形核、长大均需克服能垒。

4、简述原子结合键对扩散的影响

答:从扩散的微观机制可以看到,原了迁移到新位置上去时,必须挤开通路上的原子引起局部的点阵畸变,也就是说要部分地破坏原子结合键才能通过。因此,原子键力越强,扩散激活能Q值越高,扩散越困难,扩散系数小。反映原子结合能的宏观参量,如熔点、熔化潜热、升华潜热和膨胀系数等与扩散激活能Q成正比关系。

5、简述晶体缺陷的影响

答:原子沿晶界扩散比晶内扩散要快得多。扩散元素沿着晶界快速扩散到金属的内部,扩散元素在晶界处的浓度高于晶内,扩散元素又进一步由晶界向晶内扩散。晶界在这里好像是一个快速扩散的短路通道。晶内扩散是体扩散,晶内扩散速率小于晶界扩散速率是由于晶界处原子排列不规则,点阵畸变严重,空位密度和空位迁移率均比晶内为高所致。

沿晶体表面的扩散激活能,比晶界扩散激活能还小,扩散速率还要大,但除少数情况外表面扩散并不重要。

位错是晶体中的线缺陷,在位错线周围的点阵发生畸变,特别是刀型仿错线还存在着一条有一定空隙度的管道。扩散元素沿位错管道迁移,迁移激活能小,只有体扩散激活能的1/2,扩散速率较高。但是.由于位错在整个晶体的横截面上只占极小的比例,所以仔较高的温度下,位错对晶体总的扩散的贡献并不大,而在较低的温度时,沿位错的扩散将起到重要的作用。

第八章材料的变形与断裂

1、简述孪生的主要特点有哪些?

答1. ∵孪生是滑移受阻而引起的应力集中区,临界切应力比滑移大,如Mg的孪生临界切应力为

5.4~24.3Mpa,滑移:0.49 Mpa;

2.高速形成、爆发式,同时伴随应力集中松弛;

3.孪生本身对晶体形变量小,但改变晶体位向,使不利的滑移面有利于滑移。

2、简述孪生和滑移的主要区别

答:滑移主要特点:

⑴一部分晶体沿滑移面相对于另一部分晶体作切晶体作切变,切变时原子移动的距离是滑移方向原子间距的整数倍;

⑵滑移面两侧晶体位向不变;

⑶滑移所造成的台阶经抛光后,即使侵蚀也不会重现;

⑷滑移是一种不均匀切变,它只集中在某一些晶面上大量进行,而各滑移带之间的晶体并没发生滑移。与之相对应,孪生主要区别如下:

⑴一部分晶体沿孪晶面相对于另一部分晶体作切晶变,切变时原子移动距离不是孪生方向原子间距的整数倍;

⑵孪生面两边晶体位向不同,成镜面对称;

⑶孪晶经抛光后仍能显现,∵孪生改变晶体取向;

⑷孪生是一种均匀切变,即在切变区内,与孪晶面平行的每一层原子面均相对于其比邻晶面沿孪生方向位移了一定距离。

3、影响金属及合金再结晶过程的重要因素有哪些?

答:影响金属及合金再结晶过程的重要因素:

(1)为了能够进行再结晶,必须有一个最小变形量,又称临界变形量。(2)变形量愈小(超过临界变形量),再结晶温度愈高。(3)提高再结晶退火温度可以缩短再结晶完成的时间(4)再结晶后的晶粒尺寸取决于变形量。变形量愈大晶温度愈低,再结晶后的晶粒愈细。(5)原始晶粒尺寸愈大,为了得到相同再结晶温度所需的变形量也愈大:(6)再结晶温度随着金属纯度的提高而降低。固溶合金元素的加入总是提高再结晶温度。(答错1、2点,扣1分,其余扣2分)

4、简述影响再结晶的因数有那些?

答:1、温度

温度越高,再结晶转变速度V再越快,完成再结晶所需时间也越短;

2、变形程度。

金属变形程度越大,储存能量越多,再结晶驱动力,因此,再结晶温度也越低,同时,V再也越快,变形量增加至某一程度,再结晶温度基本稳定不变,纯金属变形后,Tmin≈0.4Tm(熔点)

3、原始晶粒尺寸

⑴其他条件相同,晶粒越细,变形抗力越大,冷变形后储能越多,再结晶温度越低;

⑵相同变形度,晶粒越细,晶界总面积越大,可供形核场所越多,形核率越大,故再结晶速率加

快。

4、金属或合金成分影响

再结晶温度随金属纯度的提高而降低,固溶合金元素的加入总是提高再结晶温度;微量溶质原子的存在对再结晶有巨大影响,溶质与杂质原子和位错、晶界存在交互作用,偏聚在位错及晶界,对位错及晶界的迁移起阻碍作用,因此不利于在结晶晶核的形核与长大,使再结晶温度上升。

5、简述影响疲劳寿命的因数

答:1、应力集中:如果存在应力集中处,如缺口、孔、键槽或截面突变处,疲劳强度会大大降低。

图824所示的疲劳失效就起源于钢轴的键楷。如果精心设计,尽可能避免出现应力集中处,就可以使疲劳失效减到最少。

2、表面粗糙度:一般地说,金属试样表面加工愈光滑,疲劳强度就愈高。租糙的表面会造成应力

集中处,有利于疲劳裂纹的形成。

3、表面状态(化学成分):由于大多数疲劳失效起源于金属表面,任何表面状态的主要变化都会影

响到疲劳强度e例如,钢的表面硬化处理(渗碳、氮化)使表面硬度提高,从而提高了疲劳寿命。

反之,脱碳造成热处理钢件表面软化而使疲劳强度降低。在金属表面形成残余压应力层也会提高疲劳寿命。

4、环境:如果金属在承受周期应力时还有一个腐蚀性环境,所造成的腐蚀会大大加速裂纹扩展速

率。腐蚀和周期应力对金属的综合作用又称腐蚀疲劳。

6、陶瓷材料力学性能的特点.

特点:1、脆、硬;

2、抗拉强度差别大,0.69~7Gpa,同一材料抗拉、抗压差别大。

7、从拉伸试验如何获得常用的力学性能数据?

答:拉伸试验可用来测定金属材料的力学性能。在拉伸试验中,试样在比较短的时间内,以恒定的速率受到拉伸直至断裂。拉伸试验时由记录纸得出的负荷—伸长曲线可以转换为应力一应变曲线(又称应力一应变图)。(5分)从拉伸试验可以获得以下几项力学性能:①弹性模量;②规定非比例伸长应力;③抗拉强度;④断后伸长率;⑤断面收缩率。(各1分)这些性能数据对于工程上的结构设计和金属材料检验是很重要的。

8、简述金属或合金成分对再结晶影响?

答:再结晶温度随金属纯度的提高而降低,固溶合金元素的加入总是提高再结晶温度;微量溶质原子的存在对再结晶有巨大影响,溶质与杂质原子和位错、晶界存在交互作用,偏聚在位错及晶界,对位错及晶界的迁移起阻碍作用,因此不利于在结晶晶核的形核与长大,使再结晶温度上升。

9、从拉伸试验得来的表征材料的力学性能数据有哪些?

答:拉伸试验可用来测定金属材料的力学性能。从拉伸试验可以获得以下几项力学性能:①弹性模量;

②规定非比例伸长应力;③抗拉强度;④断后伸长率;⑤断面收缩率。(各1分)

10、简述延性断裂的典型断裂过程及特点。

答:金属的延性断裂是在进行了大量塑性变形后发生的,当加在试样上的应力超过其抗拉强度,经过一定时间,试祥就会断裂。延性断裂可以分为三个截然不同的阶段:①试样形成缩颈,随后孔洞在颈缩区形成;②颈缩处的孔洞在试样的中心处聚集形成裂纹,并沿垂直于外加应力的方向向试样表面扩展;③当裂纹接近表面时,其方向改变并与拉伸轴成45。角,结果形成了杯锥状断口。

其特征是裂纹扩展缓慢,断口呈杯锥状。

11、一低碳钢拉伸试样进行试验,如图(a)所示。拉伸时,其应力-应变曲线如曲线1所示,当变形到点E

时卸载、应力-应变曲线沿曲线2下降。试问:

(1)△ε1,△ε2,△ε3各表示什么意义? △ε3>△ε2说明了什么?

(2)若卸载后又立即加载,应力-应变曲线应如何变化?

解(1) △ε1表示应力去陈后不能恢复的变形,即塑性变形。△ε2表示应力去除后能够消除的变形,即弹性变形;△ε3表示屈服前的最大弹性变形量。△ε3>△ε2说明材料屈服以后,产生了加工硬化现象,强度提南,使得弹性交形量增大。

(2)若卸载以后又立即加载,其应力—应变曲线如图b中曲线3所示,在第—次拉伸时,已经产生了冷塑性变形,引起了工硬化效应,在第2次拉伸时,应力—应变曲线应沿原卸载路线上升。

12 、陶瓷晶体塑性变形有何特点?

解:作为一类材料,陶瓷是比较脆的。晶态陶瓷缺乏塑性是由于其离子键和共价键造成的。在共价键合的陶瓷中,原子之间的键合是特定的并具有方向性,如图7—6(a)所示。当位错以水平方向运动时,必须破坏这种特殊的原子键合,而共价键的结合力是很强的,位错运动有很高的点阵阻力。因此,以共价键键合的陶瓷,无论是单晶体还是多晶体,都是脆的。

具有离子键的单晶体,如氧化铁和氯化钠,在室温受压应力作用时可以进行相当多的塑性变形,但是具有离子键的多晶陶瓷则是脆的,并在晶界形成裂纹。这是因为可以进行变形的离子晶体,如图7—6(b)所示,当位错运动一个原子间距时,同号离子的巨大斥力,使位错难以运动;但位错如果沿450方向而不是水平方向运动,则在滑移过程中相邻晶粒面始终由库仑力保持相吸,因而具有相当好的塑性。但是多晶陶瓷变形时,相邻晶必须协调地改变形状,由于滑移系统较少而难以实现,结果沿晶界产生开裂,最终导致脆性断裂。

13、金属铸件能否通过再结晶退火来细化晶粒?

解 再结晶退火必须用于经冷塑性变形加工的材料.其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般都在临界点以下,若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。

第九章 固体材料的电子结构与物理性能

1、简述绝缘体和半导体的电子能带结构.

在绝缘体和半导体中,原子的价电子被共价键或离子键紧紧地束缚在键合原子上。从能带结构模型来看,在绝缘体和半导体中,能量较低的、被价电子所充满的价带与能量较高的未填充电子的导带之间,在原子平衡间距处没有交叠,即价带与导带之间被能量间隙为Eg 的禁带所隔开。要使价带中的一个价电子参与导电,首先必须有足够的能量激发它,使之越过禁带进入导带。绝缘体的禁带宽度约为5~10 ev ,在通常条件下,绝缘体中自由电子的数目寥寥无几,电导率极低。与绝缘体相比.半导体的禁带宽度比较窄,约为0.2—3ev ,在通常条件下,单位体积内的自由电子数目为191610~10

个/m ;,因此其电导率介于金

属与绝缘体之间。(答对一项5分)

2、简述影响材料电阻率的因数;

答:⑴ 温度影响 )1(20t αρρ+= α为电阻温度系数,温度愈高,金属的电阻率愈高。图10.8

⑵ 杂质的影响

杂质增加电子的散射,使ρ增加;晶格畸变、杂质原子散射

⑶ 塑性变形的影响

形变上升,导致位错密度上升,使ρ增加

3、用能带理论解释n 型半导体导电机理。

答:n 型半导体由5价原子掺入Si 制成,如Sb As P ,,取代Si ,多1个非键合电子,就以很弱的静电作用松散地与杂质原子相结合。每个松散结合的电子能级正好位于本征硅靠近导带的禁带中,它的能量与本征硅导带最低能级之差很小(<0.1 lev ,),很容易被激发到导带中去。这种在激发中能向本征硅导带供给电子的杂质称为施主,其能级称为施主能级。只需很小能量就可将电子激发进入导带,不产生空穴。因而在外电场作用下,这些电子在导带中向较高的空能级转移时,没有反向电子转移与之抵消,可形成电流,因此表现出导电性。

4、试述导体、半导体与绝缘体的电子能带结构区别。

答:在绝缘体和半导体中,原子的价电子被共价键或离子键紧紧地束缚在键合原子上。从能带结构模型来看,在绝缘体和半导体中,能量较低的、被价电子所充满的价带与能量较高的未填充电子的导带之间,在原子平衡间距处没有交叠,即价带与导带之间被能量间隙为Eg 的禁带所隔开。要使价带中的一个价电子参与导电,首先必须有足够的能量激发它,使之越过禁带进入导带。绝缘体的禁带宽度约为5~10 ev ,在通常条件下,绝缘体中自由电子的数目寥寥无几,电导率极低。与绝缘体相比.半导体的禁带宽度比较窄,约为0.2~3ev ,在通常条件下,单位体积内的自由电子数目为191610~10

个/m ;,因此其电导率

介于金属与绝缘体之间。(答对导体4分,其余每项3分)

5、用能带理论解释p 型半导体导电机理。

答:在半导体中加入三价杂质原子(如Al ,B ,Ga 等)、则在这类原子周围的共价键就缺一个电子,这种缺电子位置可看作与杂质原子微弱结合的空穴。每个三价杂质原子在本征半导体的禁带中引进一个靠近其价带的能级,很容易接受从价带激发出来的电子,从而在价带中留下一个空穴。这类杂质原子称为受主,所在能级为受主能级,它的能量与本征硅价带能级之差很小。只需很小能量就可将价带电子激发进入受主能级,同时在价带中产生等同数量的空穴。因而在外电场作用下,这些电子和空穴同时参与导电,因此表现出导电性。

6、半导体掺杂的离子注入技术有哪些优点?

答:该技术的一个优点是掺杂在室温下进行。首先把掺杂原子离子化,并使离子在50~l00 kv 的电场下被加速。当离子打到晶片上时,它们进人晶体内部,其深度取决于离子质量、能量、晶片表面保护的类型。高速离子可能引起硅晶片的损伤,但大多数损伤可通过适当的热处理来恢复。离子注入技术常用于注入掺杂需要精确控制的元器件上。离子注入的另一个优点是可以通过薄的氧化层进行。这种技术使调

整金属一氧化物一半导体晶体管的阂值电压成为可能。

7、简述金属材料的电子能带结构

答:晶体的能带结构随材料而异,有些能带的能量范围发生交叉,部分交叠,交叠程度随材料而异;有的不重叠,形成能隙。以每个能带可容纳的最大电子数与实际容纳的电子数的异同,将能带划分作满带、空带和导带。满带对导电没有贡献;导带中有未被电子占据的能级,电子可以在不同能级间改变其分布状态,在外场作用下可以得到净电子流,从而具有导电性;空带中没有电子,对导电没有贡献。如果空带与相邻的满带部分重叠,满带中的电子可以流入空带,使原来的空带成了导带,而原来的满带形成空带,也就成了导带,具有这样能带结构的材料也是导体。因此,导体有两种能带结构:一种有部分填充带;另一种的空带与相邻的满带部分重叠。

8、描述超导体宏观性质的指标有哪些?

答:

2个重要性能:

2分

3个性能指标: 3分

9、如图所示为n 型非本征半导体的电导率与温度的关系图,定性解释之。

答:在低温,ln σ随1/T 线性减少,其原因是非本征半导体的电导率取决于单位体积内被激活(离子化)的杂质原子数。温度愈高,被激活的杂质原于数愈多,从而参与导电的电子或空穴数就愈多,因而其电导率随温度的上升而增加。但是,由于使杂质原子离子化所需的能量E c-Ed 远远比本征半导体的禁带宽度小,因此,尽管在相同的温度下非本征半导体的电导率比本征半导体的大得多,但它们的电导率对温度的依赖性却要小得多。

在耗尽区:对n 型半导体来说叫耗尽区,因为所有的施主杂质原子都因失去电子而离子化了;这个温所有施主都离化,但温度不足以在本征基材中激发出大量电子-空穴对, 与T 无关。

在高温:当温度超过了非本征半导体的耗尽区的上限温度时,则由于热能已足以激发本征基材价带中的

完全导电性

完全抗磁性 临界电流Tc

临界磁场强度Hc 临界电流密度Jc

电子越过禁带进入导带,而由掺杂物决定的非本征电导率又基本维持恒定值,所以在非本征半导体的电导率与温度的关系中,本征基材的电导率与温度的关系占统治地位,即1nσ—1/T 曲线的斜率与本征半导体材料的相同,为-Eg /2k 。这个区叫本征区。

10、画出软磁材料和硬磁材料典型的B —H 曲线,在图上标出:(1)起始磁导率;(2)最大磁导率;(3)饱和磁感应强度;〔4)剩磁,5)矫顽力。并说明软磁材料和硬磁材料在性能上的主要差别。

答:软磁材料和硬磁材料典型的B-H 曲线如图1: 各1分

图1 图2

起始磁导率、最大磁导率、饱和磁感应强度、剩磁、矫顽力如图2所示。 各1分

软磁材料和硬磁材料在性能上的主要差别: 软磁材料具有高磁导率、饱和磁感应强度,矫顽力小,磁滞损耗小;而硬磁材料矫顽力大,剩磁高,最大磁能积max )(BH 大。 4分,标错一个扣1分

15、铁磁性物质是怎样实现自发磁化的?为什么通常未经磁化的铁都不具有磁性?

答:在铁磁性物质内部由于存在不满的内壳层,原子具有固有磁矩,由于存在强烈的交换作用,使得原子具有固有磁矩彼此平行排列,导致铁磁性物质的自发磁化;

由于退磁场的作用,铁磁性材料晶粒内分为许多磁畴,磁畴内原子的磁矩相互平行,各个磁畴大小不等,它们的磁矩也就不同,但磁化强度却都相等(即自发磁化强度)。未经磁化时,不同磁畴之间磁化方向不同,以至于各磁畴之间的磁矩相互抵消,导致材料整体不具有磁性。

16、物质具有强磁性所必需的条件有哪些?

答:①材料中必须含有内壳层末被电子填满的元素,而且这些元素在形成大块材料后仍能保留有不满的

电子壳。 2分

②磁性电子间必须有交换作用使原子磁矩能作有序的排列。 2分

③当交换作用力负时,还要求相互反平行取向的两组原子的磁矩互不相等.

17、交换相互作用模型的内容分别是什么?

答:海森堡交换相互作用模型认为铁磁性自发磁化起源于电子间的静电交换相互作用。这种交换作用只

发生在近邻原子之间。系统内部原子之间的自旋相互作用能为: ex i j E 2A S S =-∑g 近邻

式中,A 为交换积分,S i 和S j 为发生交换相互作用原子的自旋。原子处于基态时,系统最为稳定,即E ex <0,

当A <0时, (S i ?S j ) <0,自旋反平行为基态,即反铁磁性排列系统能量最低;两个磁矩反平行 当A >0时, (S i ?S j ) >0,自旋平行为基态,即铁磁性排列系统能量最低。两个磁矩平行

因此,交换作用有正负两种。正的交换作用使磁性电子的自旋磁矩互相平行,而负的交换作用使磁性电子的自旋磁矩互相反平行,磁性电子的相互取向就取决于交换作用的性质。

材料科学基础习题及参考答案复习过程

材料科学基础习题及 参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213) (112) (102) [111] [110] [120] [321] 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面: (1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112) 2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向: [1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011] 4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为 晶格常数。该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。请据此确定晶面指数。 h:k:l=cos α:cos β:cos γ l k h d a 2 22hk l ++= 5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

材料科学基础简答题(doc 12页)

简答题 第一章材料结构的基本知识 1、说明结构转变的热力学条件与动力学条件的意义。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 2、说明稳态结构与亚稳态结构之间的关系。 答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 3、说明离子键、共价键、分子键和金属键的特点。 答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。 共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。 分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。 当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。 第二章材料的晶体结构 1、在一个立方晶胞中确定6个表面面心位置的坐标。6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。

解八面体中的晶面和晶向指数如图所示。图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。 ABF面平行CDE面,其晶面指数为; ABE面平行CDF面,其晶面指数为; ADF面平行BCE面,其晶面指数为; ADE面平行BCF面,其晶面指数为(111)。 棱边,,,,, ,其晶向指数分别为[110],,[011],,[101]。 对角线分别为,其晶向指数分别为[100],[010],[001] 图八面体中的晶面和晶向指数 2、标出图中ABCD面的晶面指数,并标出AB、BC、AC、BD线的晶向指数。 解:晶面指数: ABCD面在三个坐标轴上的截距分别为3/2a,3a,a, 截距倒数比为 ABCD面的晶面指数为(213) 晶向指数: AB的晶向指数:A、B两点的坐标为 A(0,0,1),B(0,1,2/3) (以a为单位) 则,化简即得AB的晶向指数 同理:BC、AC、BD线的晶向指数分别为,,。

石德珂材料科学选择题

《材料科学基础》 选择题 第一章材料结构的基本知识 1、原子结合健中 B 的键的本质是相同的 A、金属键与离子键 B、氢键与范德瓦尔斯键 C、离子键与共价键 2、钨、钼熔点很高,其结合键是 A 的混合键 A、金属键和离子键 B、金属键和共价键 C、离子键和共价键 3、MgO、Al2O3等的结合键是 C 的混合键 A、金属键和离子键 B、金属键和共价键 C、离子键和共价键 4、工程材料的强度与结合键有一定的联系,结合键能高的其强度也 A 些。 A、高 B、低 5、激活能反应材料结构转变 B 的大小; A、动力 B、阻力 6、材料处于能量最低状态称为 A ; A、稳态结构 B、亚稳态结构 7、一般而言,晶态结构的能量比非晶态要 B ; A、高 B、低 C、相等 第二章材料的晶体结构 1.氯化铯(CsCl)为有序体心立方结构,它属于 C A、体心立方 B、面心立方 C、简单立方点阵; 2.理想密排六方结构金属的c/a为 B A、 B、2(2/3)1/2; C、2/3 3.对面心立方晶体而言,表面能最低的晶面是 c A、 (100); B、(110), C、(111); D、(121) 4.下列四个六方晶系的晶面指数中,哪一个是错误的: C A、(1322); B、(0112); C、(0312); D、(3122) 5.面心立方结构的铝中,每个铝原子在本层(111)面上的原子配位数为 B

A 、12; B 、6; C 、4; D 、3 6. 简单立方晶体的致密度为 C A 、100% B 、65% C 、52% D 、58% 7. 立方晶体中(110)和(211)面同属 D 晶带 A 、[110] B 、[100] C 、[211] D 、[111] 8. 立方晶体中(111)和(101)面同属 D 晶带 A 、[111] B 、[010] C 、[011] D 、]011[ 9. 原子排列最密的一族晶面其面间距 A 、最小 B 、最大 10. 六方晶系中和(1121)晶面等同的晶面是 A A 、(1211)面; B 、(1112)面; C 、(1211)面; D 、(2111)面 11. 配位数是指晶体结构中: B A 、每个原子周围的原子数; B 、每个原子周围最邻近的原子数; C 、每个原子周围的相同原子数; D 、 每个原子周围最邻近的和次近邻的原子数之和 12. 密排六方与面心立方均属密排结构,他们的不同点是: D A 、晶胞选取方式不同; B 、原子配位数不同; C 、密排面上,原子排列方式不同; D 、原子密排面的 堆垛方式不同 13. 在立方晶系中,与(101)、(111)同属一晶带的晶面是: d A 、(110); Bb 、(011); C 、(110); D 、(010) 14. TiC 与NaCl 具有相同的晶体结构,但它们不属于同一类中间相,这是因为: D A 、TiC 是陶瓷,NaCl 是盐; B 、NaCl 符合正常化合价规律,Ti C 不符合正常化合价规律; C 、TiC 中电子浓度高, D 、NaCl 的致密度高 15. 立方晶体中(110)和(310)面同属 D 晶带 A 、[110] B 、[100] C 、[310] D 、[001] 16. 14种布拉菲点阵: A A 、按其对称性分类,可归结为七大晶系; B 、按其点阵常数分类,可归结为七大晶系;

材料科学基础复习题

第一章原子结构 一判断题 1.共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 2. 范德华力既无方向性亦无饱和性,氢键有方向性但无饱和性。 3. 绝大多数金属均以金属键方式结合,它的基本特点是电子共有化。 4. 离子键这种结合方式的基本特点是以离子而不是以原子为结合单元。 5. 范德华力包括静电力、诱导力、但不包括色散力。 二、简答题 原子间的结合键对材料性能的影响 第二章晶体结构 一、填空 1.按晶体的对称性和周期性,晶体结构可分为7 空间点阵,14 晶系, 3 晶族。 2.晶胞是能代表晶体结构的最小单,描述晶胞的参数是 a ,b ,c ,α,β,γ。 3. 在立方,菱方,六方系中晶体之单位晶胞其三个轴方向中的两个会有相等的边长。 4. 方向族<111>的方向在铁的(101)平面上,方向族<110>的 方向在铁的(110)平面上。 5. 由hcp(六方最密堆积)到之同素异形的改变将不会产生体积的改变,而由体心最密堆积变成即会产生体积效应。 6. 晶体结构中最基本的结构单元为,在空间点阵中最基本的组元称之为。 7.某晶体属于立方晶系,一晶面截x轴于a/2、y轴于b/3、z轴于c/4,则该晶面的指标为 8. 硅酸盐材料最基本的结构单元是,常见的硅酸盐结构有、、、。 9. 根据离子晶体结构规则-鲍林规则,配位多面体之间尽可能和 连接。

二判断题 1.在所有晶体中只要(hkl)⊥(uvw)二指数必然相等。 2. 若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 3. 所谓原子间的平衡距离或原子的平衡位置是吸引力与排斥力的合力最小的位置。 4.晶体物质的共同特点是都具有金属键。 5.若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 6. 在立方晶系中若将三轴系变为四轴系时,(hkIl)之间必存在I=-(h+k)的关系与X1,X2,X3,X4间夹角无关。 7.亚晶界就是小角度晶界,这种晶界全部是由位错堆积而形成的。 8.面心立方与密排六晶体结构其致密度配位数间隙大小都是相同的,密排面上的堆垛顺序也是相同的。 9.柏氏矢量就是滑移矢量。 10.位错可定义为柏氏回路不闭合的一种缺陷,或说:柏氏矢量不为0的缺陷。 11.线缺陷通常指位错,层错和孪晶。 12实际金属中都存在着点缺陷,即使在热力学平衡状态下也是如此。 三选择题 1.经过1/2,1/2,1/2之[102]方向,也经过。 (a) 1,.0,2, (b) 1/2,0,1, (c) –1,0,-2, (d) 0, 0,0, (e) 以上均不是 2. 含有位置0,0,1之(112)平面也包含位置。 (a)1,0,0, (b)0,0,1/2, (c)1,0,1/2。 3.固体中晶体与玻璃体结构的最大区别在于。 (a)均匀性(b)周期性排列(c)各向异性(d)有对称性 4.晶体微观结构所特有的对称元素,除了滑移面外,还有 (a)回转轴(b)对称面(c)螺旋轴(d)回转-反映轴 5.按等径球体密堆积理论,最紧密的堆积形式是。 (a)bcc; (b)fcc; (c)hcp 6.在MgO离子化合物中,最可能取代化合物中Mg2+的正离子(已知各正离子半径 (nm)分别是:(Mg2+)0.066、(Ca2+)0.099、(Li+)0.066、(Fe2+)0.074)是_(c)____。 (a)Ca2+; (b)Li+; (c)Fe2+ 7.下对晶体与非晶体描述正确的是:

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

最新材料科学基础-综合复习题

材料科学基础复习题 一、选择题 1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是. (A) 金属键(B) 离子键(C) 分子键(D) 共价键 2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是. (A) 氢键(B) 离子键(C) 分子键(D) 共价键 3. 工业用硅酸盐属于. (A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料 4. 布拉菲点阵共有中. (A) 8 (B) 10 (C) 12 (D) 14 5. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为. (A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 4 6. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是. (A) 在简单立方点阵中, 低指数的晶面间距较大 (B) 在简单立方点阵中, 高指数的晶面间距较大 (C) 晶面间距越大, 该晶面上原子排列越紧密 (D) 晶面间距越大, 该晶面上原子排列越稀疏 7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为. (A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 12 8. 密堆积结构的致密度为. (A) 0.68 (B) 0.74 (C) 0.82 (D) 1.0 9. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为. (A) 4 (B) 6 (C) 8 (D) 10 10. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是. (A) 原子结合键为共价键 (B) 原子配位数为4 (C) 单位晶胞包含8个原子 (D) 属于面心立方点阵, 为密堆积结构 11. 下述晶体缺陷中属于点缺陷的是. (A) 空位(B) 位错(C) 相界面(D) 间隙原子 12. 下述晶体缺陷中属于线缺陷的是. (A) 空位(B) 位错(C) 晶界(D) 间隙原子 13. 下述晶体缺陷中属于面缺陷的是. (A) 表面(B) 位错(C) 相界面(D) 空位 14. 下述界面中界面能最小的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 15. 下述界面中界面能最大的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 16. 理想密排六方金属的c/a为. (A) 1.6 (B)(C) (D) 1

材料科学基础试题

第一章原子排列 本章需掌握的内容: 材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性; 晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用 空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。 晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点; 晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。 典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp; 晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角 晶体中原子堆垛方式,晶体结构中间隙。 了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性 了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb 非晶态结构:非晶体与晶体的区别,非晶态结构 分子相结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为 ___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al的晶体结构是__________________, -Fe的晶体结构是____________。Cu的晶体结构是_______________, 7点阵常数是指__________________________________________。 8图1是fcc结构的(-1,1,0 )面,其中AB和AC的晶向指数是__________,CD的晶向指数分别 是___________,AC所在晶面指数是--------------------。

(完整版)材料科学基础练习题

练习题 第三章晶体结构,习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b)在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。1:1和2:1 (b)对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。 3-3 MgO晶体结构,Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。并说明为什么其体积分数小于74.05%?

材料科学基础试题库答案

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编

东华理工大学材料科学与工程系 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r 与时 间t 的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、 _____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、 _____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl 晶胞中(001)面心的一个球(Cl- 离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008. 一个立方晶系晶胞中,一晶面在晶轴X 、Y 、Z 上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O 含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 2+进入到KCl 间隙中而形成0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca 点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。 0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel 缺陷时,晶体体积_________,晶体密度_________;而有Schtty 缺陷时,晶体体积_________, 晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大 时,_________是主要的。 0016.少量CaCl2 在KCl 中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其 缺陷反应式为_________。 0017.Tg 是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg 比慢冷时_________ ,淬冷玻璃比 慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的 三种熔体,其粘度大小的顺序为_________。 0019.三T 图中三个T 代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2 组成的熔体,若保持Na2O 含量不变,用CaO 置换部分SiO2 后,电导_________。 0022.在Na2O-SiO2 熔体中加入Al2O3(Na2O/Al2O3<1), 熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2 的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 2

石德珂材料科学填空题

《材料科学基础》 填空题 第一章材料结构的基本知识 1. 原子核外电子的分布与四个量子数有关,且服从下述两个基本原理:泡利不相容原理和最低能量原理 2. 原子结合键中一次键(强健)有离子键、共价键、金属键;二次键(弱健)有范德瓦尔斯键、氢键、____________ 离子晶体和原子晶体硬度高,脆性大,熔点高、导电性差。 3. 金属晶体导电性、导热性、延展性好,熔点较高。 4. 能量最低的结构称为稳态结构或平衡态结构,能量相对较高的结构则称为亚稳态结_____ 5. 材料的稳态结构与亚稳态结构由热力学条件和动力学条件共同决定; 第二章材料的晶体结构 1、晶体结构中基元就是化学组成相同、空间结构相同、排列取向相同、周围环境相同的基本单元; 2、简单立方晶胞中(100)、( 110)、( 111)晶面中,面间距最小的是(111)面,最大的是(100) 面; 3、晶面族{100}包含(100) (010) (001)及平行(100IX 010 H201)等晶面; 4、(100) , (210), (110) , (2 1)等构成以[001]为晶带轴的晶带: (01 ) (01) (10) (11)等构成以[111]为晶带轴的晶带; 5、晶体宏观对称元素只有1, 2, 3, 4, 6,丄,m, £_等8种是基本的 6、金属中常见的晶体结构有面心立方、体心立方、密排六方三种; 7、金属密堆积结构中的间隙有四面体间隙和八面体间隙两种类型 &面心立方晶体中1个晶胞内有4个八面体间隙,8个四面体间隙。 9、陶瓷材料是以离子键、共价键以及离子键和共价键的混合键结合在一起; 10、硅酸盐的基本结构单元是硅 11、_____________________________________ Siθ2中主要化学键为共价键与离子键; 12、硅酸盐几种主要结构单元是岛状结构单元、双四面体结构单元、环状结构_________

材料科学基础2复习题与参考答案

材料科学基础2复习题及部分参考答案 一、名词解释 1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶 粒的过程。 2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。 3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点 强度和节约材料为目的。(《笔记》聚合物拉伸时出现的细颈伸展过程。) 4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。(《书》晶体中某处一列或者若 干列原子发生了有规律的错排现象) 5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位 置有差别),形成所谓的“柯氏气团”。(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。) 6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。 7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。 8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。(《书》晶体开始滑移时,滑移方向上的分切应力。) 9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬 化。(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。) 10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。(《书》使金属在再结晶温度以上发生加 工变形的工艺。) 11、柏氏矢量:是描述位错实质的重要物理量。反映出柏氏回路包含的位错所引起点阵畸变的总积累。(《书》揭 示位错本质并描述位错行为的矢量。)反映由位错引起的点阵畸变大小的物理量。 12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。 13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为 层错面)两侧附近原子的错排的一种面缺陷。 14、位错的应变能:位错的存在引起点阵畸变,导致能量增高,此增量称为位错的应变能。 15、回复:发生形变的金属或合金在室温或不太高的温度下退火时,金属或合金的显微组织几乎没有变化,然而性能 却有程度不同的改变,使之趋近于范性形变之前的数值的现象。(《书》指冷变形金属加热时,尚未发生光学显微组织变化前(即再结晶前)的微观结构及性能的变化过程。) 16、全位错:指伯氏矢量为晶体点阵的单位平移矢量的位错。 17、弗兰克尔空位:当晶体中的原子由于热涨落而从格点跳到间隙位置时,即产生一个空位和与其邻近的一个间 隙原子,这样的一对缺陷——空位和间隙原子,就称为弗兰克尔缺陷。(《书》存在能量起伏的原子摆脱周围原子的约束而跳离平衡位置进入点阵的间隙中所形成的空位(原子尺度的空洞)。) 18、层错能:单位面积层错所增加的能量。(《书》产生单位面积层错所需要的能量。) 19、表面热蚀沟:金属长时间加热时,与表面相交处因张力平衡而形成的热蚀沟。(《书》金属在高温下长时间加热时, 晶界与金属表面相交处为了达到表面张力间的平衡,通过表面扩散产生的热蚀沟。) 20、动态再结晶:金属在热变形过程中发生的再结晶。 二、填空题 1、两个平行的同号螺位错之间的作用力为排斥力,而两个平行的异号螺位错之间的作用力为吸引力。 2、小角度晶界能随位向差的增大而增大;大角度晶界能与位向差无关。 3、柏氏矢量是一个反映由位错引起的点阵畸变大小的物理量;该矢量的模称为位错强度。 4、金属的层错能越低,产生的扩展位错的宽度越宽,交滑移越难进行。 5、螺型位错的应力场有两个特点,一是没有正应力分量,二是径向对称分布。 6、冷拉铜导线在用作架空导线时,应采用去应力退火,而用作电灯花导线时,则应采用再结晶退火。 7、为了保证零件具有较高的力学性能,热加工时应控制工艺使流线与零件工作时受到的最大拉应力的方向 一致,而与外加的切应力方向垂直。 8、位错的应变能与其柏氏矢量的模的平方成正比,故柏氏矢量越小的位错,其能量越低,在晶体中越稳定。 9、金属的层错能越高,产生的扩展位错的宽度越窄,交滑移越容易进行。

材料科学基础选择题汇总

1、极化会对晶体结构产生显著影响,可使键性由( B )过渡,最终使晶体结构类型发生变化。 A: 共价键向离子键B: 离子键向共价键 C: 金属键向共价键D: 键金属向离子键 2、离子晶体中,由于离子的极化作用,通常使正负离子间的距离( B ),离子配位数()。 A: 增大,降低B: 减小,降低 C: 减小,增大D: 增大,增大 3、氯化钠具有面心立方结构,其晶胞分子数是(C )。 A: 5 B: 6 C: 4 D: 3 4、NaCl单位晶胞中的“分子数”为4,Na+填充在Cl-所构成的( B )空隙中。 A: 全部四面体B: 全部八面体 C: 1/2四面体D: 1/2八面体 5、CsCl单位晶胞中的“分子数”为1,Cs+填充在Cl-所构成的( C )空隙中。 A: 全部四面体B: 全部八面体 C: 全部立方体D: 1/2八面体 6、MgO晶体属NaCl型结构,由一套Mg的面心立方格子和一套O的面心立方格子组成,其一个单位晶胞中有( B )个MgO分子。 A: 2 B: 4 C: 6 D: 8 7、萤石晶体可以看作是Ca2+作面心立方堆积,F-填充了( D )。 A: 八面体空隙的半数B: 四面体空隙的半数 C: 全部八面体空隙D: 全部四面体空隙 8、萤石晶体中Ca2+的配位数为8,F-配位数为( B )。 A: 2 B: 4 C: 6 D: 8 9、CsCl晶体中Cs+的配位数为8,Cl-的配位数为( D )。 A: 2 B: 4 C: 6 D: 8 10、硅酸盐晶体的分类原则是(B )。 A: 正负离子的个数B: 结构中的硅氧比 C:化学组成D:离子半径 11、锆英石Zr[SiO4]是( A )。 A: 岛状结构B: 层状结构 C: 链状结构D: 架状结构 12、硅酸盐晶体中常有少量Si4+被Al3+取代,这种现象称为( C )。 A: 同质多晶B: 有序—无序转变 C: 同晶置换D: 马氏体转变 13. 镁橄榄石Mg2[SiO4]是( A )。 A: 岛状结构B: 层状结构 C: 链状结构D: 架状结构 14、对沸石、萤石、MgO三类晶体具有的空隙体积相比较,其由大到小的顺序

上大材料科学基础简答题

A1(fcc)密排面:(100)密排方向:【110】h+k+l全基或全偶衍射 A2(bcc)密排面:(110)密排方向:【111】h+k+l为偶数衍射 A3(hcp)密牌面:(001)密排方向:【100】 2dsinθ=λ 性质、结构成分(研究对象)、合成/制备=效用 1.如何理解点缺陷是一种热力学平衡缺陷? 随着点缺陷数量增加,熵增加导致自由能下降,但是同时内能增加导致自由能增加,所以有一个平衡浓度,此时有最低的自由能值。 2.何谓位错的应变能。何谓位错的线张力,其估算值为多少。 位错在晶体中引起畸变,使晶体产生畸变能,称之为位错的应变能或位错的能量。

线张力的定义为:位错线增加一个单位长度时,引起晶体能量的增加。 通常用Gb2/2作为位错线张力的估算值。 请问影响合金相结构的因素主要有哪几个。 原子尺寸、晶体结构、电负性、电子浓度。 3.请简要说明:(1)刃型位错周围的原子处于怎样的应力状态(为切应力还是正应力,为拉应力还是压应力);(2)若有间隙原子存在,则间隙原子更容易存在于位错周围的哪些位置(可以以图示的方式说明)。 (1)刃型位错不仅有正应力同时还有切应力。所有的应力与沿位错线的方向无关,应力场与半原子面左右对称,包含半原子面的晶体受压应力,不包含半原子面的晶体受拉应力。 (2)对正刃型位错,滑移面上方的晶胞体积小于正常晶胞,吸引比基体原子小的置换式溶质原子或空位;滑移面下方的晶胞体积大于正常晶胞,吸引间隙原子和比基体原子大的置换式溶质原子。 4.铁素体钢在拉伸过程中很易出现屈服现象,请问:(1)产生屈服的原因?(2)如何可以消除屈服平台? 由于碳氮间隙原子钉扎位错,在塑性变形开始阶段需使位错脱离钉扎,从而产生屈服延伸现象;当有足够多的可动位错存在时,或者使间隙原子极少,或者经过预变形后在一段时间内再拉伸。 5.如何提高(或降低)材料的弹性?举例说明,并解释。 选择弹性模量小的材料、或者减小材料的截面积、或者提高材料的屈服强度都可以提高弹性。 6.何谓加工硬化、固溶强化、第二相强化、细晶强化,说明它们与位错的关系 加工硬化:晶体经过变形后,强度、硬度上升,塑性、韧性下降的现象称为加工硬化。随着变形的进行,晶体内位错数目增加,位错产生交互作用,使位错可动性下降,强度上升。 固溶强化:由于溶质原子的存在,导致晶体强度、硬度增加,塑性、韧性下降的现象叫固溶强化。由于溶质原子的存在阻碍或定扎了位错的运动,导致强度的升高。 第二相强化:由于第二相的存在,导致晶体强度、硬度上升,塑性、韧性下降的现象叫第二相强化。由于第二相的存在,导致位错移动困难,从而使强度上升。 细晶强化:由于晶粒细化导致晶体强度、硬度上升,塑性、韧性不下降的现象叫细晶强化。 由于晶粒细化,使晶界数目增加,导致位错开动或运动容易受阻,使强度上升;又由于晶粒细化,使变形更均匀,使应力集中更小,所以,细晶强化在提高强度的同时,并不降低塑性和韧性。 7.说明金属在塑性变形后,其组织和性能将发生怎样的变化 金属塑性变形后,组织变化包括晶粒和亚结构的变化,其中,晶粒被拉长,形成

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面 是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,, 晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。 3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平 面上的方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ; (2) ;(3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。 6)间隙固溶体是 ,间隙化合物是 。 二、 问答 1、 分析氢,氮,碳,硼在?-Fe 和?-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼:0.091nm ,?-Fe :0.124nm ,?-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空 1. 在液态纯金属中进行均质形核时,需要 起伏和 起伏。 2 液态金属均质形核时,体系自由能的变化包括两部分,其中 自由能

相关文档
最新文档