声纳技术

声纳技术

声纳技术

1、举例说明声纳能够完成的主要功能(至少4种)。

2、举例说明声纳系统的战术指标(至少3种)。

3、声纳设备按装备对象可分为哪几类(至少3种)。

4、声功率为1W时其声源级为多少?

5、从信号波形上看,CW脉冲信号有什么特点?

6、从信号波形上看,LFM脉冲信号有什么特点?

7、信号的时间分辨力和频率分辨力分别取决于信号的哪些参数。

8、简述最大值测向方法的基本原理。

9、相位法测向时,若信号频率提高,测向的精度如何变化,基元间隔减小,又如何变化。

10、说明发射采用波束形成的意义。

11、基阵的方位分辨力取决于哪些参数。

12、说明基阵幅度加权的目的。

13、主动声纳探测15km目标时的回波时间约为多少?

14、说明接收系统中采用波束形成的意义。

15、回波时间为10秒的主动声纳估计目标的距离大致为多少。

16、连续信号能否进行目标距离的测量?举例说明。

17、写出目标与声纳相对运动速度为v时,频率为f0的发射信号的接收频率为何?

18、说明声纳设备采用收发转换开关的作用。

19、声纳接收机有哪些技术指标(至少3个)。

20、接收信号为10uv到100mv的动态范围用dB 表示为多少?

21、检测概率为95%的漏报概率为多少?

22、当接收机门限提高时,检测概率提高,虚警概率下降的说法是否正确?

23、什么是多普勒不变信号?

24、接收机的工作特性描述了哪几个参数之间的关系?

25、什么是接收机的动态范围压缩?

26、写出N元等间距线阵的第1栅瓣满足的关系式。

27、什么情况下说两个波束是独立的?

28、N元等间距线阵插入相移β时最大值指向的方

向为什么。

29、比较单波束系统与多波束系统的优缺点。

30、什么是基阵的自然指向性?

一、声纳技术答案:

1、答:探测、定位、跟踪、识别、通信、导航、制导、对抗等

2、答;作用距离、分辨率、盲区、搜索扇面、搜索速度、工作环境等

3、答:水面舰、潜艇、岸基、浮标、吊放

4、答:171dB

5、答:时间分辨力和频率分辨力不可兼得。

6、答:时间分辨力和频率分辨力可单独调整。

7、答:带宽和脉宽。

8、答:利用有指向性的换能器最大值的指向作为目标方向的方法。

9、答:提高、降低

10、答:能量更集中,距离更远。

11、答:波长(或频率)与阵长。

12、答:改善方向性,如主瓣宽度及旁瓣级。

13、答:20秒。

14、答:测向、抗噪声、分辨多目标。

15、答:7.5km。

16、答:能,如连续LFM信号等。

17、答:f0+2v/c*f0

18、答:防止烧毁及防止信号阻塞。

19、答:放大倍数、通频带、等效输入噪声、一致性、抗干扰能力、功耗等。

20、答:80dB。

21、答:5%。

22、答:不对。

23、答:对运动目标进行检测时检测性能不下降的信号波形。

24、答:信噪比、门限、检测概率、虚警概率。

25、答:为使大动态范围的水声接收信号适应有限动态范围后级处理设备而采取的技术措施。

26、答:sin d

θλ

=

27、答:两个波束互不包含各自最大值指向的目标方位信息时。

28、答:1

sin()

2d

βλ

θ

π

-

=

29、答:单波束,简单,但扫描速度慢,无法分辨多目标;而多波束正相反。

30、答:基阵各基元不经处理直接相加后形成的对不同方位目标的输出即基阵的自然指向性。

合成孔径声纳概述

合成孔径声纳 合成孔径声纳的研究起源于五十年代末期,但直到八十年代以后,合成孔径声纳的研究才逐步全面展开。目前国际上只有少数国家和地区研制出了合成孔径声纳原型机并进行了海上试验。 合成孔径声纳是一种新型高分辨水下成像声纳,合成孔径雷达原理推广到水声领域,就出现了合成孔径声纳。其基本原理是利用小孔径基阵的移动,通过对不同位置接收信号的相关处理,来获得移动方向(方位方向)上大的合成孔径,从而得到方位方向的高分辨力。从理论上讲,这种分辨力和探测距离无关。直观地说,距离越大,合成孔径长度就越长,合成阵的角分辨率就越高,从而抵消了距离增大的影响,保持了分辨力不变。 但合成孔径声纳作为一种水下成像设备,受水下复杂条件的影响,有不同于合成孔径雷达的特点。首先是声传播信道的非理想性比合成孔径雷达中电磁波传播的严重;其次是声纳拖体的运动稳定性比合成孔径雷达要差得多;再者因为声速大大低于电磁波在空间的传播速度,从而大大限制了拖体运动的速度;最后由于声纳中常采用宽带信号而使雷达中的一些窄带信号处理方法在合成孔径声纳中不再适用,需对已有的算法进行改进或研究新的算法。这正是合成孔径声纳研究极富挑战性之所在。 合成孔径声纳系统一般由三个分系统组成:1)声纳分系统,由合成孔径声纳基阵、发射机、接收机、数据采集、传输和存储子系统、声纳信号处理机和显控台等组成;2)姿态与位移测量分系统,由姿态、位移测量系统和GPS等组成;3)拖曳分系统,由绞车、拖缆和拖体等组成。 合成孔径声纳可以用于水下军事目标的探测和识别,最直接的应用就是进行沉底水雷和掩埋水雷的高分辨探测和识别。在国民经济方面,可以用于海底测量、水下考古和搜寻水下失落物体等,尤其可以进行高分辨海底测绘,对数字地球研究具有重要意义。 综合声纳技术研究室"九五"期间在国家863项目支持下,研制出国内第一套合成孔径声纳湖试样机。 合成孔径声纳成像算法 合成孔径声纳成像算法分为聚焦处理和非聚焦处理算法。这里只要介绍聚焦算法。聚焦处理成像算法较多,主要包括数字波束形成算法、距离-多普勒(R-D)算法、波数域(w-k)算法和调频变换(Chirp-Scaling)算法等。 波束形成算法 这种方法是一种逐点计算像素值的方法。根据声纳拖体运动过程中发射信号和接收信号传播路径的几何关系,计算出运动轨迹上各个接收位置的时间延迟或相位差,通过延时补偿后迭加的方法得出各像素点的值,从而得到合成孔径声纳的图像。这是一种逐点算法,计算量很大,适用于宽带信号的情况。 距离-多普勒(R-D)算法 这种算法首先对时域匹配滤波后得到的原始数据进行空间波数域变换,得到距离-多普勒域的结果,然后在距离-多普勒域通过数据的重排补偿时延的变化,最后实施横向空间压缩,从而获得最终的合成孔径的图像。这是一种逐线处理算法。 波数域(w-k)算法 这种算法把脉冲压缩后原始数据的图像经过二维付氏变换得到频率-波数域的图像,对这个图像进行适当处理后,在进行一种称作Stolt映射的变换,就得到了直角坐标的纯波数域的像,最后再经过二维逆付氏变换,就得到了最终合成孔径的图像。这是一种数据成块处理的算法,因而效率很高,适用于宽带信号的情况。

测试技术的发展现状以及未来的发展趋势

测试技术的发展现状以及未来的发展趋势 姓名:赵新 班级:机械5-1班 学号: 10号

测试技术的发展现状以及未来的发展趋势 概述 测试是测量与试验的简称。 测量内涵:对被检测对象的物理、化学、工程技术等方面的参量做数值测定工作。 试验内涵:是指在真实情况下或模拟情况下对被研究对象的特性、参数、功能、可靠性、维修性、适应性、保障性、反应能力等进行测量和度量的研究过程。 试验与测量技术是紧密相连,试验离不开测量。在各类试验中,通过测量取得定性定量数值,以确定试验结果。而测量是随着产品试验的阶段而划分的,不同阶段的试验内容或需求则有相对应的测量设备和系统,用以完成试验数值、状态、特性的获取、传输、分析、处理、显示、报警等功能。 产品测试是通过试验和测量过程,对被检测对象的物理、化学、工程技术等方面的参量、特性等做数值测定工作,是取得对试验对象的定性或定量信息的一种基本方法和途径。 测试的基本任务是获取信息。因此,测试技术是信息科学的源头和重要组成部分。 信息是客观事物的时间、空间特性,是无所不在,无时不存的。但是人们为了某些特定的目的,总是从浩如烟海的信息中把需要的部分取得来,以达到观测事物某一本值问题的目的。所需了解的那部分信息以各种技术手段表达出来,提供人们观测和分析,这种对信息的表达形式称之为“信号”,所以信号是某一特定信息的载体。 信息、信号、测试与测试系统之间的关系可以表述为:获取信息是测试的目的,信号是信息的载体,测试是通过测试系统、设备得到被测参数信息的技术手段。 同时,在军事装备及产品全寿命周期内要进行试验测试性设计与评价,并通过研制相应的试验检测设备、试验测试系统(含软、硬件)确保军事装备和产品达到规定动作的要求,以提高军事装备和产品的完好性、任务成功性,减少对维修人力和其它资源要求,降低寿命周期费用,并为管理提供必要的信息。 全寿命过程又称为全寿命周期,是指产品从论证开始到淘汰退役为止的全过程。产品全寿命过程的划分,各国有不同的划分。美国把全寿命过程划分为6个阶段:初步设计、批准、全面研制、生产、使用淘汰(退役)。我国将全寿命周期划分为5个阶段:论证、研制、生产、使用、退役。 这五个阶段都必须采用试验、测量技术,并用试验手段,通过测量设备和测量系统确保研制出高性能、高可靠的产品。因此,测试技术是具有全局性的关键技术。尤其在高新技术领域,测试技术具有极其重要地位。 美军武器装备在试验与评定管理中,对试验与评定的类型分为:研制试验与评定、使用试验与评定、多军种试验与评定、联合试验与评定、实弹试验、核防护和生存性试验等类。 但最主要的和最重要的是研制性试验与评定、使用试验与评定两种。试验与评定是系统研制期间揭示关键性参数问题的一系列技术,这些问题涉及技术问题(研制试验);效能、实用性和生存性问题(使用试验);对多个军种产生影响问题(多军种联合试验);生存性和杀伤率(实弹试验)等。但核心是研制性试验与评定及使用性试验与评定,主要解决军工产品在研制过程中的技术问题和使用的效能、适应性和生存性问题。 研制试验与评定是为验证工程设计和研制过程是否完备而进行的试验与评定,通过研制试验与

2008年声纳技术考试试题B及答案_声纳技术

第2页 共 2页 (a ) (b )

第3页 共4页 第4页 共 4页 2008年声纳技术考试试题B (答案) 一、填空(60分) 1、低频、大功率、大尺寸基阵、信号处理技术 (4分) 2、主动式声纳、被动式声纳 (2分) 3、 ()2SL TL TS NL DI DT -+--=,()SL TL NL DI DT ---= (2分) 4、声源级、接收机的检测阈、工作频率、脉冲宽度、信号形式、接收机动态范围、基阵大小、 基阵灵敏度等(任意3个) (3分) 5、物理盲区、几何盲区、尾部盲区、脉冲宽度盲区和混响盲区等(任意4个)。 (4分) 6、时间函数、频谱函数、模糊函数 (3分) 7、0T T (), t [- ,]22 f t f kt =+∈ (1分) 8、多卜勒频移、正、负 (3分) 9、高于 (1分) 10、工作频率、信号时间宽度、信号的带宽 (3分) 11、2 0T T exp[(2)] , t [-,]22A j f t kt ππ+∈、0T T (), t [-,]22 f t f kt =+∈ (2分) 12、0T T exp[2] , t [-,]22A j f t π∈、0T T (), t [-,]22 f t f =∈ (2分) 13、声系统方向性主瓣的宽度、指示器的类型、声系统转动装置的精度,以及声呐操作员的 生理声学特性(任意4个)。 (4分) 14、最大值测向、相位法测向、振幅差值测向、正交相关测向(任意3个)。 (3分) 15、指向性。 (1分) 16、方向性、最窄的主瓣、最低的旁瓣、主旁瓣高度比 (4分) 17、指定主旁瓣比下的等旁瓣级 (1分) 18、12d λ≤或2 d λ≤ (1分) 19、()()()sin 21sin 2N R N ?βθ?β??- ???= ??- ? ?? (1分) 20、4、5 (2分) 21、t R c = 2 (1分) 22、测时误差、声速误差 (2分) 23、 1 2 c τ,其中τ为脉宽 (1分) 24、线性调频测距、三角波调频测距、阶跃调频测距、双曲线调频测距(任意3个)(3分) 25、多普勒测速、相关测速 (2分) 26、 02cos x v f c α (1分) 27、波形发生器(信号源)、多波束形成器、功率放大器、换能器、接收机,收发转换开关 (任意3个) (3分) 二、证明题(10分) 答:根据定义 ()()()-j2,e t s t s t dt ξχτξτ∞ *π-∞ = +? ()()()-j2111,e t s t s t dt ξχτξτ∞ *π-∞ = +? 又因为 ()()s t s t kt 12 =e j π 所以 ()()()()2 2 -j 21,e j k t j kt t s t e s t e dt πτπξχτξτ∞ * +π -∞??= +???? ? (2分) ()()() 2 2 -j2e j k t j kt t s t s t e e dt πτπξτ∞ -+*π-∞=+? ()()222j kt j k j t s t s t e dt πτπτπξτ∞ * ----∞=+? (2分) ()()()2 2j k t j k s t s t e dt e πτξπττ∞ -+*--∞=+?? (2分) ()()()2 2j k t j k s t s t e dt e πτξπττ∞ -+* --∞=+?? (2分) ()()()()2,j k t s t s t e dt k πτξτχττξ∞ -+*-∞ = +=+? (2分) 三、计算题(15分) 答:可以看作是三级复合阵, 第一级:1 1 ,为2元阵 (2分) 因此第一级的归一化指向性为()()()() () () 1sin /2sin cos /2sin /22sin /2N R N ??θ???= ==(2分) 第二级:1 1 ,为2元阵 (2分) 因此第二级的归一化指向性为()()()() () ()2sin /2sin cos /2sin /22sin /2N R N ??θ???===(2 分)

无人水下航行器声呐装备现状与发展趋势

无人水下航行器声呐装备现状与发展趋势 无人水下潜航器(UUV)最早出现于20世纪60年代。在发展初期,UUV主要用于深水勘探、沉船打捞、水下电缆铺设及维修等民用领域,后逐步扩展应用于水下声源探测、协助潜艇深水避雷、港口战术侦察等军事领域。近十几年来,随着平台、推进器、导航、控制系统以及传感器技术的发展,加上现代战争追求人员零伤亡的理念,UUV的军事应用得到高度重视,其在水下侦察、水下通信和反潜、反水雷作战、信息作战等领域的应用得到了空前发展。 美国国防部于2007~2013年间前后发布了4版《无人系统(一体化)路线图》,其中针对UUV的4个级别将任务按优先级扩充为17项,如表1所示:

美海军于2000年和2004年分别发布两版《海军无人水下潜航器总体主规划》,将UUV(不分级别)的任务按优先顺序归纳为9类:①情报/监视/侦察(ISR);②水雷对抗(MCM);③反潜战(ASW);④检查/识别;⑤海洋调查; ⑥通信/导航网络节点(CN3);⑦载荷投送;⑧信息作战; ⑨时敏打击。 不论是《海军无人水下潜航器总体主规划》,还是《无人系统(一体化)路线图》,这几版文件中对于所有级别的

UUV,情报/监视/侦察(ISR)、检查/识别和水雷对抗(MCM)这3项任务的排序都十分靠前,这也印证了在当今复杂国际环境下美国海军对于这3项UUV任务执行的迫切需求。 UUV执行各项任务无一不需要声呐的配合,尤其是对于ISR、检查/识别和MCM,声呐性能的优劣,往往是任务完成度的决定性因素。根据功能的不同,UUV声呐装备主要分为三大类:通信声呐、导航声呐和探测声呐,如图1所示。 通信声呐主要用于UUV与协同行动的其他UUV、母船(艇)或通信浮标之间的信息链接;导航声呐为UUV的安全航行和执行作业任务提供其位置、航向、深度、速度和姿态等信息;探测声呐主要用于警戒、探测、识别水中或沉底目标信息,对水下地形、地貌、地质进行勘察和测绘。承担不

声纳技术二

哈尔滨工程大学声纳技术实验报告 实验2 等间距线列阵的指向性 姓名: 班级:20100513 学号:201005130 2013年4 月20日

1.实验目的 加深对基阵指向性图的理解;掌握常用声基阵的设计方法。 2.基本原理 基阵的自然指向性 定义: 设一由N 个无方向性阵元组成的接收换能器阵,各阵元位于空间处,将所有阵元的信号相加得到的输出,就形成了基阵的自然指向性。 N 元等间距线阵的自然指向性 假设0 ()() 0cos F t A t ω= 那么,由图可知1号阵元的接收信号为: ()() 1cos F t A t ωφ=- 同理,2号阵元的接收信号为: ()() 2cos 2F t A t ωφ=- N-1号阵元的接收信号为: ()() cos n F t A t n ωφ=- 其中,A 为信号幅度;ω为信号角频率;φ为相邻阵元接收信号间的相位差 22sin d f πφπτθ λ == () Re ?为取实部的记号。阵输出为: ()()1 100,Re N N j t jn n n n s t F t A e e ωφθ----==?? ==?????∑∑ 指向性函数: τ=1 2

() sin sin sin 2sin sin sin 2N N d R d N N φπθλθφπθλ???? ? ?????== ???? ? ? ???? 含相移β的指向性函数: () 000sin ()sin (sin sin )2,1sin ()sin (sin sin )2N N d R d N N πφβθθλθθπφβθθλ????-- ? ? ????= =????-- ? ? ???? 其中0sin d πβθλ = 3.实验内容 (1)画出均匀间距线列阵的自然指向性图,分析主波束宽度、第一副极大位 置、第一副极大级、零点个数,与理论值比较; 参数:阵元数为30,阵元间距为半波长,信号中心频率为1.5kHz ,声速为c =1500m/s 。 (2)分析均匀间距线列阵指向性图的性能与各参数的关系。 波束宽度、极大值之间零点个数及零点间隔与线列阵阵元数的关系,与理 论值是否一致; 中心非模糊扇面宽度与阵元间距的关系; 中心非模糊扇面内的独立波束数与阵元数的关系,与阵元间距的关系。 (3 )通过理论计算阵元间距为和中心频率分别为1kHz 时主瓣宽度均为20 度的参数,并画出指向性图,分析其差别。4. 实验结果及数据分析 首先,画0θ=0,d 与λ不同关系时的波形: 4. 实验结果及数据分析 clear all close all clc X=-2*pi:0.01:2*pi;

三维合成孔径声呐成像系统

三维合成孔径声呐成像系统 所属领域:电子信息 完成人:张学武等 成果简介: 系统主要由四个部分组成:湿端组件(拖体)、拖曳系统、信号处理机和控制台,各组成部分之间通过千兆以太网进行通信,协同完成超声波信号的发射、接收、声数据处理、和声图像的成像功能。控制命令由干端显控台发出,通过光纤传输到湿端组件,湿端数据采集传输和控制中心通过串口与传感器进行通信;采集获得的声数据通过光纤发送到显控 台进行处理。 数据采集传输和控制中心的硬件 平台包含两块数据采集传输模块和一 块控制中心模块。数据采集板与接收 机共用一个水密电子舱;控制中心板 与系统电源共用一个水密电子舱。 主要技术指标 本三维合成孔径声呐成像系统具 有数据采集、传输与控制功能,其主要技术指标如下: (1)同步触发信号最高支持256路16bit AD同步采样,采样频率等于100kHz。 (2) AD采集差分输入,输入信号动态范围-1.625~1.625V。输出通道幅度 不一致性小于1dB,相位不一致性小于3度,通道噪声小于1mV(有效值)。 (3)传感器数据、控制命令与AD采集数据通过千兆以太网信号经控制中心 电光转换后,进行单模光纤传输。 (4)湿端数据采集传输模块为+5. 7V直流电源供电,每个模块电流4A,电 源输出纹波峰峰值电压≤100mV。 (5)数据采集功能分为 两块电路板完成,每块电路 板完成128通道数据采集, 通过母板与接收机连接,每 块板配置温度传感器芯片。 (6)通过串口接收信号 采集板转发的显控台控制命 令,进行命令解析和分包, 再通过各串口分别发送各种 对应的控制命令和设置参数 给控制电机和各个传感器。 (7)提供3路线性调濒脉冲信号的发射信号源,DA频率大于200kHz。信号 形式:1路15kHz-30kHz正调频脉冲;1路6kHz-15kHz正调频脉冲;1路6kHz-15kHz 正调频脉冲或15kHz-6kHz反调频脉冲。信号幅度3.3V, 1.65V, 0.825V, 0.4125V可调,脉冲宽度5ms,10ms, 20ms可调。 (8)数据传输总数据率256路*100kHz * 16bit =409. 6Mbit/s,分两路传输。

无人水下航行器声呐装备现状与发展趋势

无人水下潜航器(UUV)最早出现于20世纪60年代。在发展初期,UUV主要用于深水勘探、沉船打捞、水下电缆铺设及维修等民用领域,后逐步扩展应用于水下声源探测、协助潜艇深水避雷、港口战术侦察等军事领域。近十几年来,随着平台、推进器、导航、控制系统以及传感器技术的发展,加上现代战争追求人员零伤亡的理念,UUV的军事应用得到高度重视,其在水下侦察、水下通信和反潜、反水雷作战、信息作战等领域的应用得到了空前发展。 美国国防部于2007~2013年间前后发布了4版《无人系统(一体化)路线图》,其中针对UUV的4个级别将任务按优先级扩充为17项,如表1所示。 表1 不同级别UUV任务需求优先级

美海军于2000年和2004年分别发布两版《海军无人水下潜航器总体主规划》,将UUV(不分级别)的任务按优先顺序归纳为9类:①情报/监视/侦察(ISR);②水雷对抗(MCM);③反潜战(ASW);④检查/识别;⑤海洋调查;⑥通信/导航网络节点(CN3);⑦载荷投送;⑧信息作战;⑨时敏打击。

不论是《海军无人水下潜航器总体主规划》,还是《无人系统(一体化)路线图》,这几版文件中对于所有级别的UUV,情报/监视/侦察(ISR)、检查/识别和水雷对抗(MCM)这3项任务的排序都十分靠前,这也印证了在当今复杂国际环境下美国海军对于这3项UUV任务执行的迫切需求。 UUV执行各项任务无一不需要声呐的配合,尤其是对于ISR、检查/识别和MCM,声呐性能的优劣,往往是任务完成度的决定性因素。根据功能的不同,UUV声呐装备主要分为三大类:通信声呐、导航声呐和探测声呐,如图1所示。 图1 UUV主要声呐装备

heu声纳技术期末考试复习总结

1.水下目标探测是指利用自身发出的声波和目标的回波确定目标的存在; 水下定位则是利用自身发出的声波和目标回波来确定目标的位置,包括目标的距离、方位、及深度。 2.(二战后)声呐技术发展的主要特点是采用低频、大功率、大尺寸基阵,并广泛采用信号处理技术。 3.若按位置体系分类:声呐可分为舰用声呐、潜艇用声呐、岸用声呐、航空吊放声呐和声呐浮标、海底声呐;按工作原理分类:主动声呐、被动声呐。 4.除噪声外,主动声呐特有的一种干扰形式是混响(海面混响、海底混响、体积混响)。5.被动声呐的隐蔽性和作用距离一般由于主动声呐,但主动声呐可以探测静止不发声目标,而被动声呐则不能。 6.战术指标是反映和表征战术性能的那些参数,例如①作用距离②方位角测量范围及精度③定位精度④分辨率⑤搜索速度⑥跟踪距离⑦环境条件及盲区等。 7.科学地评价声呐作用距离一般包括以下三个主要因素:信噪比,虚警概率,探测概率。8.主动声呐信号常从三个方面来描述:时间函数,频谱函数,模糊函数。 9.信号为a(+)exp[jφ(+)]的瞬间频率表示式是f(t)=1/2π·dφ(t)/dt 10.当目标与声呐发射机/接收机有相对运动时,会使接收的脉冲信号波形发生改变,表现 相对运动时,多谱勒频移为正,向背运动时则为负。 12.信号的时间分辨力取决与信号的带宽,频率分辨力取决于脉宽(时宽)。 13.LFW脉冲信号的时间波形表达式Aexp[j(2πf o t+πkt2)] t∈[-T/2,T/2] 瞬时频率表达式f(t)= f o+kt t∈[-T/2,T/2] 14.最大值测向方法的测向精度主要取决于①声系统方向性主瓣的宽度②指示器的类型③声系统转动装置的精度④声呐操作员的生理声学特征 15.相位法测向是一种直接测量法,它测定两等效阵元之间的相位差,从而达到测量目标方位的目的。一般来说,它比最大值测向的精度高,但当两基元间距增大时,可能存在相位多值性,从而导致测向模糊的问题。 16.声呐波束形成的目的:是使多阵元构成的基阵经适当处理得到在预定方向的指向性。17.接收系统具有指向性,则可抑制噪声,多目标分辨和准确测向。 18.将基阵各基元输出直接相加之后获得的指向性称之为基阵的自然指向性。 19.在等间隔线阵的情况下,一种最常用的幅度加权法是道夫·契比雪夫加权,它可实现在指定主旁瓣比下获得等旁瓣级效果。 20.设有一个束宽为Θ的单波束声呐,依靠通过旋转基阵搜索一个扇面θs为观察扇面内直到距离R的所有目标,要求最短时间为T min=2R/c·θs/Θ 21.一个N元等间距线阵的归一化自然指向性函数在±90°范围内非正前方信号之外的某些角度上出现最大值,这些方向称之为基阵的栅瓣,它满足sinθ=kλ/d,k≠0 22.利用波束形成使主波束在空间一个扇面内转动时,这一扇面的宽度实际上不是任意的,存在一个极限值,当扇面超过这个极限时,将会出现方向模糊,这个扇面称之为中心非模糊扇面,若要求这个扇面为-90°≤sinθs≤90°,则要求d/λ≤1/2。DFT波束形成器可以完成这个扇面内N个相互独立波束形成的任务。 23.若N个阵元组成的等间距线阵,间距为2d,则其中心非模糊扇面的全开角2θs=2sin-1(λ/4d) 24.脉冲测距是利用接收回波与发射脉冲信号间的时间差来测距的方法。若有一目标与换能器的距离为R,则换能器发射声脉冲经目标反射后往返传播时间为t=2R/c

科学技术与人类发展

科学技术与人类发展 近代以来科学技术得到了飞速发展,他给我们人能的生存与发展带来了极大的益处,已经融入到了我们日常生活与工作的方方面面,比如现代式楼宇、汽车、手机等等;但同时他们又给我们带来了各种各样的问题和危害,可以说随处可见,大气污染、水污染、固体垃圾污染等。科学技术就好比一把双刃剑,我们用得好的时候就得益于我们,反之则伤害我们。因此我们必须要真确的认识他们,认识他们之间的关系,认识到他们与我们人类发展的关系,这样我们才能很好地利用好这把双刃剑。 关键字:科学技术发展人类

科学是什么?从1834年英国哲学家惠威尔首次提出科学一词,不同时代的人对科学都有不同的定义。 在哲学家你在看来,人类记忆力有限,他认为科学其实是一种人类活动,它包括社会的活动、科学历史的活动和文化活动。科学的关键在于发明,而不是发现自然规律的固有存在。当然我们是不信的,但在某些后现代主义哲学家眼里,这就是真理,比如费耶阿本德和罗蒂两位大哲学家。他同时认为,我们不能陷入科学主义深渊里,因为科学主义观点坚信科学最终能够解决我们人类所面临的一切问题,或者发现那些在我们经验感觉到的现实世界背后的一些真实世界的潜藏的真理。当然,现今社会对科学的定义同样存在不同程度的争议,随意引用很容易出现错误。 《辞海》1979年版:“科学是关于自然界、社会和思维的知识体系,它是适应人们生产斗争和阶级斗争的需要而产生和发展的,它是人们实践经验的结晶。”法国《百科全书》:“科学首先不同于常识,科学通过分类,以寻求事物之中的条理。此外,科学通过揭示支配事物的规律,以求说明事物。”前苏联《大百科全书》:“科学是人类活动的一个范畴,它的职能是总结关于客观世界的知识,并使之系统化。‘科学’这个概念本身不仅包括获得新知识的活动,而且还包括这个活动的结果。”《现代科学技术概论》:“可以简单地说,科学是如实反映客观事物固有规律的系统知识。” 1888年,达尔文曾给科学一个定义:“科学就是整理事实,从中发现规律,做出结论”。达尔文给出的科学的定义是我们当下大家所认可的,我们认为这就是科学的本质含义,我们称之为事实和规律。科学就是我们人通过实践所或得的事物本身的事实或者是规律,然后再依此为根据,做到实事求是,不依靠我们的大脑去构建。规律,则是客观实在的事物之间和其内部的本质联系。 二、技术 世界知识产权组织在1977年版的《供发展中国家使用的许可证贸易手册》中,给技术下的定义:"技术是制造一种产品的系统知识,所采用的一种工艺或提供的一项服务,不论这种知识是否反映在一项发明、一项外形设计、一项实用新型或者一种植物新品种,或者反映在技术情报或技能中,或者反映在专家为设计、安装、开办或维修一个工厂或为管理一个工商业企业或其活动而提供的服务或协助等方面。"这一定义是当今世界上有关技术的定义最为全面和完整的定义。这一定义实际是把所有能够产生社会经济效益的科学技术知识都定义

一种声呐流量计的孔径宽度确定方法

一种声呐流量计的孔径宽度确定方法 本文提出了一种高端流量检测仪表,声呐流量监测系统,该系统采用管道外部缠绕道的阵列式PVDF压电薄膜传感器侦听流体经过管壁时对流漩涡产生的振动信号。其受被测流体温度、压力等流体特性参数的影响微弱,是国产高端自动化仪表。本文结合案例给出了声呐流量检测系统的关键处理步骤。阵列信号孔径确定方法。 1 阵列信号处理的窗函数孔径计算 流经管道的流体参数用一个空间阵列来测量,空间阵列有沿管道不同轴向位置排列的8个传感器。每一个压力传感器提供一个时域信号,指示管道内相应轴向位置处的不稳定压力。来自每个压力传感器的时域信号,用持续时间为D的时窗分成几个时窗段,然后几个时窗段被转换成几个频谱。时窗段可以重叠。调节时窗的持续时间D来反应流体参数。在具体实施方案中,持续时间D按照至少两个传感器的空间阵列的孔径长度函数确定。例如,持续时间D可以确定为:D=C (Aperture)/u这里,C是常数,Aperture是空间阵列的间隔,u是流体的平均流速。 另一方面,调节几个频谱的时间频率范围来反应流体参数。定义时间频率范围的最小和最大频率限确定为:fmin=Cminu/Δx和fmax=Cmaxu/Δx这里,fmax和fmin分别是最大和最小频率限,Cmax 和Cmin是常数,Δx是空间阵列中传感器的间隔。开始通过可能的流速范围粗略的分割发现该流体的近似流速,例如,每一个比前一个高约5%。对于每一步,一个频率范围被选择用于分析,避免了空间混叠和共模噪声。 作为输入提供给FFT逻辑的时域压力信号P1(t)…PN(t),每个都用时窗长度D和一个已知的窗函数(例如汉明窗、贝塞尔窗等)分成较短的时间。每个时窗段可以是彼此独立的,也可以是重叠的。 传感器的输入信号P1(t),P2(t)…,或PN(t),根据情况被

国内外虚拟现实技术发展现状和发展趋势

浅析:国内外虚拟现实技术发展现状和发展趋势 国外虚拟现实技术及产品有Google Earth, Microsoft Map Live, Intel Shockwave3D, Cult3D, ViewPoint, Quest3D,Virtools,WEBMAX等…… 一. 国内外虚拟现实几种主流技术的介绍 VRML技术 虚拟现实技术与多媒体、网络技术并称为三大前景最好的计算机技术。自1962年,美国青年(Morton Heilig),发明了实感全景仿真机开始。虚拟现实技术越来越受到大众的关注。以三个I,即Immersion沉浸感,Interaction交互性,Imagination思维构想性,作为虚拟现实技术最本质的特点,并融合了其它先进技术。在国际互联网发展迅猛的今天,具有广泛的应用前景。重大的发展过程如下: VRML开始于20世纪90年代初期。1994年3月在日内瓦召开的第一届WWW大会上,首次正式提出了VRML这个名字。1994年10月在芝加哥召开的第二届WWW大会上公布了规范的VRML1.0标准。VRML1.0可以创建静态的3D景物,但没有声音和动画,你可以在它们之间移动,但不允许用户使用交互功能来浏览三维世界。它只有一个可以探索的静态世界。 1996年8月在新奥尔良召开的优秀3D图形技术会议-Siggraph'96上公布通过了规范的VRML2.0标准。它在VRML1.0的基础上进行了很大的补充和完善。它是以SGI公司的动态境界Moving Worlds提案为基础的。比VRML1.0增加了近30个节点,增强了静态世界,使3D场景更加逼真,并增加了交互性、动画功能、编程功能、原形定义功能。 1997年12月VRML作为国际标准正式发布,1998年1月正式获得国际标准化组织ISO 批准(国际标准号ISO/IEC14772-1:1997)。简称VRML97。VRML97只是在VRML2.0基础进行上进行了少量的修正。但它这意味着VRML已经成为虚拟现实行业的国际标准。 1999年底,VRML的又一种编码方案X3D草案发布。X3D整合正在发展的XML、JA V A、流技术等先进技术,包括了更强大、更高效的3D计算能力、渲染质量和传输速度。以及对数据流强有力的控制,多种多样的交互形式。 2000年6月世界web3D协会发布了VRML2000国际标准(草案),2000年9月又发布了VRML2000国际标准(草案修订版)。预计将在2002年,正式发表X3D标准。及相关3D浏览器。由此,虚拟现实技术进入了一个崭新的发展时代。 Wed3D协会其组织包括各种97家会员公司。主要公司如下:Sun、Sony、Hp、Oracle 、Philips 、3Dlabs 、ATI 、3Dfx 、Autodesk /Discreet、ELSA、Division、MultiGen、Elsa、NASA、Nvidia、France Telecom等等。 其中以Blaxxun和ParallelGraphics公司为代表,它们都有各自的VR浏览器插件。并各自开发基于VRML标准的扩展节点功能。使3D的效果,交互性能更加完美。支持MPEG,Mov、Avi等视频文件,Rm等流媒体文件,Wav、Midi、Mp3、Aiff等多种音频文件,Flash 动画文件,多种材质效果,支持Nurbs曲线,粒子效果,雾化效果。支持多人的交互环境,VR眼镜等硬件设备。在娱乐、电子商务等领域都有成功的应用。并各自为适应X3D的发展,以X3D为核心,有Blaxxun3D等相关产品。在虚拟场景,尤其是大场景的应用方面,以VRML标准为核心的技术具有独特的优势。相关网址如下:https://www.360docs.net/doc/931579821.html, , https://www.360docs.net/doc/931579821.html, 应用的画面:慕尼黑机场(电子商务)

声纳技术

声纳技术 1、举例说明声纳能够完成的主要功能(至少4种)。 2、举例说明声纳系统的战术指标(至少3种)。 3、声纳设备按装备对象可分为哪几类(至少3种)。 4、声功率为1W时其声源级为多少? 5、从信号波形上看,CW脉冲信号有什么特点? 6、从信号波形上看,LFM脉冲信号有什么特点? 7、信号的时间分辨力和频率分辨力分别取决于信号的哪些参数。 8、简述最大值测向方法的基本原理。 9、相位法测向时,若信号频率提高,测向的精度如何变化,基元间隔减小,又如何变化。 10、说明发射采用波束形成的意义。 11、基阵的方位分辨力取决于哪些参数。 12、说明基阵幅度加权的目的。 13、主动声纳探测15km目标时的回波时间约为多少? 14、说明接收系统中采用波束形成的意义。 15、回波时间为10秒的主动声纳估计目标的距离大致为多少。 16、连续信号能否进行目标距离的测量?举例说明。 17、写出目标与声纳相对运动速度为v时,频率为f0的发射信号的接收频率为何? 18、说明声纳设备采用收发转换开关的作用。 19、声纳接收机有哪些技术指标(至少3个)。 20、接收信号为10uv到100mv的动态范围用dB 表示为多少? 21、检测概率为95%的漏报概率为多少? 22、当接收机门限提高时,检测概率提高,虚警概率下降的说法是否正确? 23、什么是多普勒不变信号? 24、接收机的工作特性描述了哪几个参数之间的关系? 25、什么是接收机的动态范围压缩? 26、写出N元等间距线阵的第1栅瓣满足的关系式。 27、什么情况下说两个波束是独立的? 28、N元等间距线阵插入相移β时最大值指向的方 向为什么。 29、比较单波束系统与多波束系统的优缺点。 30、什么是基阵的自然指向性? 一、声纳技术答案: 1、答:探测、定位、跟踪、识别、通信、导航、制导、对抗等 2、答;作用距离、分辨率、盲区、搜索扇面、搜索速度、工作环境等 3、答:水面舰、潜艇、岸基、浮标、吊放 4、答:171dB 5、答:时间分辨力和频率分辨力不可兼得。 6、答:时间分辨力和频率分辨力可单独调整。 7、答:带宽和脉宽。 8、答:利用有指向性的换能器最大值的指向作为目标方向的方法。 9、答:提高、降低 10、答:能量更集中,距离更远。 11、答:波长(或频率)与阵长。 12、答:改善方向性,如主瓣宽度及旁瓣级。 13、答:20秒。 14、答:测向、抗噪声、分辨多目标。 15、答:7.5km。 16、答:能,如连续LFM信号等。 17、答:f0+2v/c*f0 18、答:防止烧毁及防止信号阻塞。 19、答:放大倍数、通频带、等效输入噪声、一致性、抗干扰能力、功耗等。 20、答:80dB。 21、答:5%。 22、答:不对。 23、答:对运动目标进行检测时检测性能不下降的信号波形。 24、答:信噪比、门限、检测概率、虚警概率。 25、答:为使大动态范围的水声接收信号适应有限动态范围后级处理设备而采取的技术措施。 26、答:sin d θλ = 27、答:两个波束互不包含各自最大值指向的目标方位信息时。 28、答:1 sin() 2d βλ θ π - = 29、答:单波束,简单,但扫描速度慢,无法分辨多目标;而多波束正相反。 30、答:基阵各基元不经处理直接相加后形成的对不同方位目标的输出即基阵的自然指向性。

当代科学技术发展的特点和趋势以及对未来的影响

当代科学技术发展的特点和趋势以及对未来的影响 摘要:正当今世界,科学技术发展异常迅猛,学科交叉融合加快,重大创新不断涌现,技术更新和成果转化的周期日益缩短。科学技术不仅成为推动全球产业结构升级和调整的根本动力,也成为引领社会发展的先导力量和国际竞争的核心要素。总体来看,当前世界科技发展呈现出以下基本特征和新趋势。 关键词:双刃剑高度分化国际竞争管理体制信息技术产业结构升级 引言 当今时代,科技发展突飞猛进,极大的推动了社会的进步,改变了人类生活的面貌。尤其是第二次世界大战以来,科学技术的发展更是日新月异,不少学者称之为"第三次技术革命",以表明其划时代的意义或用"知识爆炸"来形容现代科技发展的高速度。随着科学技术的不断发展以及与人类社会的紧密结合,人们也开始思考关于科技发展的哲学命题:例如科学技术的本质问题、科技与自然的关系问题、科技与社会的关系问题、科技与人的自身关系问题等等。同时,科学技术本身也呈现出了超越以往时代的特点。 正文 一. 关于科学技术

科学是关于自然、社会和思维的知识体系。科学的任务是揭示事物发展的客观规律,探求客观真理;而技术则泛指根据生产实践经验和自然科学原理而发展成的各种工艺操作方法与技能。在现代,随着科学技术化和技术科学化的趋势日益加强,科学和技术作为两个既有本质区别又有内在联系的概念已成为一个有机的整体。 科技就其本质而言,是人类的一种有目的的活动。科学技术自从产生以来,已经给人类带来了数不清的实际利益。它既是利用自然的资源为人类服务,也是以人为主体进行改造自然的活动;科技作为一种社会历史现象,也与社会有着双向依赖关系;人类发展科学技术的初衷在于使科学技术造福人类,使人获得更大的自由与解放,从而使人获得全面发展,在当代科技更是与人类自身的发展建立了密不可分的关系。 然而,科学技术是一把双刃剑。由于科学技术本身存在某种非人性化的因素,加上人类自身对科技的不合理使用,导致技术的异化。在这种状态下,技术不再是为人服务的工具,对于人自身而言,技术反倒成为统治自己的异己力量,造成了人类社会的灾难,带来科学技术的负面效应,即科学技术的进步带给人类的并不尽是鲜花和满意的微笑,还有困惑和苦恼。 在当代,科学技术与自然,社会和人类自身的联系更加紧密;围绕着这些关系,科学技术的发展呈现出了鲜明的时代特点。 二.科学与技术的关系: 在当代科学技术的发展,主要在于揭示事物本质的规律,总的来说具有以下的特点: 首先,随着工程的系统化,工程项目规模越来越庞大,结构愈来愈精巧;因此科学与工程、技术的关系日益紧密,在工程技术中的比重越来越大;离开

《声纳原理》课程教学大纲

《声纳原理》课程教学大纲 一、课程基本信息 1、课程代码:0330190 2、课程名称(中文):声纳原理课程名称(英文):Principles of Sonar 3、学时/学分:48/6 4、先修课程:水声学原理与换能器基阵,0330140 5、面向对象:信息对抗技术专业 6、开课院(系):航海学院声学与信息工程系 7、教材、教学参考书: 教材: 《声呐技术》,田坦、刘国枝、孙大军编,哈尔滨工程大学出版社,2000年教学参考书: 《数字式声纳设计原理》,李启虎,安徽教育出版社,2002年 Underwater Acoustic System Analysis, Williams S. Burdic, Prentice Hall, 1991 二、课程性质和任务 航海学院信息对抗技术专业主要为国防水声行业培养人才,故本课程是该专业的专业必修课程。通过本课程的学习,期望学生掌握声纳的基本工作原理,主要是声纳的波束形成方法、测向方法、测距方法和测速方法。在掌握这些方法之后,学生需要通过参与课堂演示实验深入理解这些方法的实际运用。最后,结合主讲教师的科研经历,向学生介绍当前国内外最先进的声纳系统的基本系统结构以及工作原理,从而为学生将来从事水声科研工作奠定基础。 三、教学内容和基本要求 声纳原理的教学内容分为八部分,具体内容和相应的基本要求如下(括号中标识数字为该部分的计划学时):

第一章绪论(4) 1.声纳的发展简史和现状 2.声纳系统的分类 3.声纳系统的战术指标和技术指标 4.声纳方程 要求:了解声纳的发展简史和现状,掌握声纳系统的分类方法和主要战术指标、技术指标,熟练掌握声纳方程及其内涵。本部分将采用中英文对照授课。 第二章声纳系统定向方法(4) 1.声纳系统定向的基本原理 2.最大值测向 3.相位法测向 4.振幅差值测向法 5.相关法测向 6.互谱法精确测向 要求:理解声纳系统定向的基本原理;熟练掌握最大值测向方法、相位法测向;了解振幅差值测向法、相关测向法;掌握互谱法精确测向。 第三章声纳的波束形成技术(8) 1.声纳波束形成的一般原理 2.直线多波束阵的有关问题 3.直线阵相移波束形成器 4.直线阵时延波束形成器 5.圆阵波束形成 6.频域波束形成 7.接收方向性指数

声纳技术及其应用与发展

声纳技术及其应用与发展 王云罡(04011115) (东南大学信息科学与工程学院南京 211189) 摘要:声纳技术是声学检测新技术在水下介质中的具体应用。文章简要阐述了声纳技术的原理及其发展历史,介绍了声纳技术的主要应用及其最新进展。 关键词:声纳技术原理应用发展 APPLICATION AND DEVELOPMENT OF SONAR TECHNOLOGY Wang Yungang (04011115) (Department of Information Science and Engineering, Southeast University, Nanjing,211189) Abstract : Sonar technology is the specific application of acoustic detection techniques in underwater media. Its principle and development as well as its main applications and progress are reviewed. Key words:sonar technique principle applications development

声波是人类迄今为止已知可以在海水中远程传播的能量形式.,声纳( sonar)一词是第一次世纪大战期间产生的, 它是由声音( sound)、导航( navigation)和测距( ranging ) 3个英文单词的字头构成的.。声纳设备利用水下声波判断海洋中物体的存在、位置及类型,同时也用于水下信息的传输。 [1] 近年来,随着科学技术的高速发展,人类对覆盖地球总面积70 %的海洋的认识逐渐深化,海洋因其经济上的巨大潜力和战略上的重要地位越来越被人们所重视.。美国加州海洋研究中心的罗伯逊博士说:“海洋的开发对人类带来的利益要比那些耗资庞大的太空计划实惠得多。”1998 年曾被定为“国际海洋年”,有人说,21 世纪是海洋的世纪。 众所周知,电磁波是空气中传播信息最重要的载体,例如,通信、广播、电视、雷达等都是利用电磁波.。但是在水下,它几乎没有用武之地。这是因为海水是一种导电介质,向海洋空间辐射的电磁波会被海水介质本身所屏蔽,它的绝大部分能量很快地以涡流形式损耗掉了,因而电磁波在海水中的传播受到严重限制。至于光波,本质上属于更高频率的电磁波,被海水吸收损失的能量更为严重,因此,它们在海水中都不能有效地传递信息。实验证实,在人们所熟知的各种辐射信号中,以声波在海水中的传播性能为最佳。正因为如此,人们利用声波在水下可以相对容易地传播及其在不同介质中传播的性质不同,研制出了多种水下测量仪器、侦察工具和武器装备,即各种“声纳”设备.。声纳技术不仅在水下军事通信、导航和反潜作战中享有非常重要的地位,而且在和平时期已经成为人类认识、开发和利用海洋的重要手段。本文将简单介绍声纳技术的原理、应用及其发展。 一、定义及其发展史 声纳就是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置。它是SONAR一词的“义音两顾”的译称,SONAR是Sound Navigationand Ranging(声音导航测距)的缩写。 声呐技术至今已有100年历史,它是1906年由英国海军的刘易斯?尼克森所发明。他发明的第一部声呐仪是一种被动式的聆听装置,主要用来侦测冰山。这种技术,到第一次世界大战时被应用到战场上,用来侦测潜藏在水底的潜水艇[2]。 二、工作原理 声波在水中传播的优点: 1.在水中进行观察和测量,具有得天独厚条件的只有声波。 2.光在水中的穿透能力很有限,然而,声波在水中传播的衰减就小得多,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。 三、结构与分类 1.结构 (1)基阵:水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。(2)电子机柜:发射、接收、显示和控制等分系统。 (3)辅助设备:包括电源设备、连接电缆、水下接线箱和增音机、与声纳基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳等装置,以及声纳导流罩等。 2.分类 可按其工作方式,装备对象,战术用途、基阵

相关文档
最新文档