第八届全国高中青年数学教师优质课大赛:空间向量的正交分解及其坐标表示教学设计(陈巴尔)

第八届全国高中青年数学教师优质课大赛:空间向量的正交分解及其坐标表示教学设计(陈巴尔)
第八届全国高中青年数学教师优质课大赛:空间向量的正交分解及其坐标表示教学设计(陈巴尔)

《空间向量的正交分解及其坐标表示》

p

浙江省温州中学陈巴尔

各位专家评委、老师们:

大家好!我是来自浙江省温州中学的数学教师陈巴尔.有机会参加本次全国青年教师课堂教学评比活动,并向全国的专家和老师们学习,我深感荣幸.

我的课题是《空间向量的正交分解及其坐标表示》,下面我就根据课程标准,结合我对教材的理解和所教学生的实际情况,从教学背景、教学目标、教学策略、教学过程、教学特点及反思五个方面对本节课作一个说明.希望各位专家评委、老师们对我的这节课例,多提宝贵意见.

一、教学背景分析

(一)教学内容解析

本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第三章《空间向量与立体几何》的3.1.4节《空间向量的正交分解及其坐标表示》属于新授课.

本章知识结构

《空间向量的正交分解及其坐标表示》属于空间向量及其运算部分中的第四节内容,位置处于在空间向量加减运算、数乘运算、数量积运算之后,坐标运算之前,意义十分明显,就是借助空间向量基本定理的建立,从而得出空间向量坐

标的定义,从而完成从向量到坐标的转化

.........,进而为后面的立体几何问题的解决服务.

但同时,学生已经在之前的必修4中学习过平面向量的相关知识.

因此,按照教学参考的教学建议,“宜多引导学生与平面向量及其运算作类比..,引导学生体会与平面向量及其运算有什么联系与区别,让学生经历向量由平面向空间推广的过程,使学生体会其中的数学思想方法:类比与归纳.....,体验数学在结.构.上的和谐性...与在推广过程中的问题,同时教学过程中,还应注意维度..增加..所带

来的影响.”

“又因为教材在本章专门安排了一个‘阅读与思考 向量概念的推广与应用’,把二维向量,三维向量,推广..

为高维向量,并说明了其应用. 有条件的地区,可以引导学生学习这个阅读材料,将空间向量的有关性质向多维推广....

.” 而事实上,之前学生所学习的向量共线定理,本质也是一样的,因此,

仔细研究教材的编写意图....,我们会发现这节课在整个高中向量课程教学中起到了一个重要的承上启下....

的作用,即:完成了从必修4到选修2-1中的向量共线定理,

平面向量基本定理,空间向量基本定理对比与统一

.....

.....,同时通过教材的阅读与思考环节,又将学生带入了高维向量的世界,完成了一个学生对于不同维度下向量空

间结构

..的认识的升华过程,巧妙至极!

(二)学生学情分析

在现行教材编写与教学过程安排中,学生已经在必修4中学习了平面向量的相关知识. 而在本节内容之前,学生又学习了空间向量的运算,因此具有了一定的基础知识储备.

因此,借助平面向量基本定理,类比得到空间向量基本定理分解的存在性是

容易

... 同时有了平面向量坐标的定义,得到..的,但是证明唯一性具有一定的难度

空间坐标的定义是容易

...的理解却

..的,但是学生对于单位正交基底的选择的合理性

是模糊

..的.

因此,我设置本节课的教学重点和难点如下:

重点:学生通过平面向量的类比与归纳,得到空间向量基本定理的表述形式,以及选择特殊的单位正交基底,通过正交分解得到空间向量的坐标定义.

难点:类比过程中空间向量基本定理分解的唯一性的证明,与坐标定义中选择单位正交基底的合理性.

二、教学目标设置

依据课程标准,同时基于上述分析,我确定本节课的教学目标如下:

1、通过类比

..平面向量基本定理理解空间向量基本定理的建立过程,掌握定理的表述形式;

2、理解如何通过反证法,证明分解的唯一性;

3、体会根据具体问题选择基底的重要性,特别是正交分解对于处理向量数量积

...

问题的意义

..所在;

4、掌握空间向量的坐标定义,并能写出给定的空间向量的坐标;

5、体会向量共线定理,平面向量基本定理,空间向量基本定理之间的内在联系,

体会不同维度的向量空间之间的结构异同点,了解高维向量定义的合理性与

必要性,并将本节课所获得的结果,在高维

..,培养学

..作简单的推广

..空间

..向量

生的类比归纳能力.

三、教学策略分析

鉴于学生已经具有一定的平面向量知识的基础,制定如下教学策略: 1、通过回顾平面向量基本定理,引导学生通过类比得到空间向量基本定理的表示,并证明分解的唯一性;

2、通过具体实例,让学生真实体会单位正交基底与正交分解对于数量积问题的重要性,得出向量的正交分解与坐标表示;

3、完成从二维到三维的类比之后,再引导学生完成一维向量空间的类比,从而让学生体会到不同维度向量空间的结构..特点上的统一性...,并通过简单探究将向量空间进一步推广到高维时的情形,同时将空间向量基本定理作进一步的推广;

四、教学过程

为了达到以上教学目标,在具体教学中,我把这节课分为以下七个环节:

接下来,我将对每一教学环节中涉及的主要问题,教学步骤以及设计意图作出说明. (一)引入

问题1:如图,已知a ,b 是给定的向量,对于任意的p ,请问p 能用a ,b 表示吗?

【学生活动】学生思考是否能够表示,有学生认为可以,理由是之前学习的平面向量基本定理,还有学生认为不一定,因为p 可能与a ,b 不共面.

【设计意图】本节课的采用通过从平面向量到空间向量的类比..得到空间向量的相关内容的类比教学策略,因此设置该问题,让学生意识到我们现在不单单是研究平面向量,同时研究空间向量,但容易发现它们之间有类似的地方,因此本节课的目的就是要弄清推广过程中的不同之处,并加以解决.

(二)温故知新,建立定理

问题2:如果a ,b ,p 是共面的,那该怎么表示呢? 【学生活动】学生提出通过作平行四边形的方法,可以得到

''OP OA OB xOA yOB =+=+,

所以

x y =+p a b .

并回顾了平面向量基本定理的表述:

平面向量基本定理:如果向量a ,b 不共线,那么对于平面中的任一向量p ,存.在唯一...

有序实数组{,}x y ,使得x y =+p a b ,其中{a ,}b 称为平面的一组基底. 【教师总结】这个就是我们之前在必修4中所学习的平面向量基本定理,同时我

O

O

们知道这个分解不但存在..,而且唯一..

! 【设计意图】用这个问题,帮助学生回顾之前所学习的平面向量基本定理,同时为后面推广为空间向量基本定理作好铺垫. 问题3:如果a ,b ,p 是不共面的,那该怎么办呢? 【学生活动】学生思考提出应该再给出一个向量 问题4:随便再给出一个向量都行吗?

【学生活动】学生提出新给出的向量应该与a ,b 不共面.

问题5:如果再给出一个与a ,b 不共面的c ,现在该怎么表示p ? 【学生活动】学生回答类似平面向量基本定理的做法,先过点P 作OC 的平行线,交a ,b 所在的平面于点M ,连接OM ,可以得到

OP OM MP =+

由平面向量基本定理可知OM x y =+a b ,再作'PC 平行于OM 交直线OC 于点

'C ,则'MP OC z ==c ,所以

x y z =+p a b+c .

【教师总结】这个过程与平面向量基本定理十分相似,如果我们也给这个定理取一个名字,就可以把它叫做空间向量基本定理.

问题6:我们可以通过修改平面向量基本定理的表述,得到空间向量基本定理吗?

【学生活动】可以,只需要作出以下修改:

空间向量基本定理:如果向量a ,b ,c 不共面,那么对于空间中的任一向量p ,存在唯一....有序实数组{,,}x y z ,使得x y z =++p a b c ,其中{,a ,}b c 称为空间的一组基底.

【设计意图】通过类比平面中的分解过程,让学生在本质..上体会空间向量在类似问题的处理上方法的相通之处;同时通过修改..平面向量基本定理的方法来得到空间向量基本定理的表述,让学生再从形式..

上体会两个定理的相似之处,从

而体现了类比..的思想方法. (三)严格论证,完善定理

问题7:我们在平面向量基本定理中知道,p 在基底{a ,}b 下的分解不但存在,而且唯一,那么空间向量基本定理中的分解也唯一吗?

【学生活动】学生认为分解唯一,且通过刚才作图过程的唯一性来说明. 【教师总结】从刚才分解过程来看,作图过程是唯一的,但是如果我先将p 按照其他方式分解成几个向量,然后再分别在基底{,a ,}b c 下分解,分解系数仍然不变吗?我们发现通过作图观察问题是一个非常直观有效的方法,但是缺乏必要的逻辑推理,因此无法代替严格的证明,那么请同学们思考,该如何证明分解的唯一性?.

【学生活动】鉴于这个问题有一定的难度,教师要求学生先进行独立思考.......,然后在有自己的想法之后,分成4人小组讨论..这个问题,并且最后邀请一位学生上台通过实物投影仪来讲述自己的证明方法:

证明:假设存在两种分解,即111x y z =+p a b +c ,且222x y z =+p a b +c ,则有

121212()()()x x y y z z =-+--0a b +c

(i )若120z z -=,则1212()()x x y y =-+-0a b ,由平面向量基本定理分解的唯一.............性.

可知12120x x y y -=-=,所以是同一种分解; (ii )若120z z -≠,则

1212

2121

x x y y z z z z --=

+--c a b , 那就会有c 与a ,b 共面,矛盾! 所以,只存在一种分解.

【教师总结】这位同学通过代数方法证明了分解的唯一性,很好!这样,我们就得到了完整的空间向量基本定理.

【设计意图】分解的唯一性...

在选秀2-1教材的定理表述中并没有指出,但考虑到以下两点原因:1、在必修..4.平面向量基本定理的表述中提到..了唯一性;2、教学参考要求这个节课要让学生体会从平面向量基本定理到空间向量基本定理

9

的类比..

过程,那么唯一性的证明就无法回避了. 事实上唯一性的证明,既保持了两个定理的一致性,能够更完整..地让学生体会到其中的类比过程,又让学生体会了反证法的意义及应用,以及作图过程不能作为唯一性的证明,只能作为直观上的验证,提高了学生思维的严密..

性,最后分解的唯一性保证了空间向量与三元有序数组之间能够建立一一对应....关系,为本节课后续的坐标定义....的合理..性.做下重要铺垫;

(四)实例探究,应用定理 问题8:

例1:如图,在三棱锥O ABC -中,G 为OAB ?的重心,1OA OB OC ===,且OA ,

OB OC ,两两垂直;

(1)试用AC ,AO ,AB 表示CG ; 【学生活动】学生通过计算得到

11

=33

CG AO AB AC +-

【设计意图】空间向量基本定理的简单应用,即给定一组空间的基底,就可以将任意一个向量分解成基向量的组合.

例1:如图,在三棱锥O ABC -中,G 为OAB ?的重心,1OA OB OC ===,且OA ,

OB OC ,两两垂直;

(2)你能选择另外一个基底来表示CG ? 【学生活动】学生经过讨论,选择,提出了不同基底的选择方案,其中选择最多的是

{}OA OB OC ,,,此时11

=33

CG OA OB OC +-;

但是有一个男生轻声说了一句:“选CG .”即选择CG 作为一个基向量,如

{}CG CA CB ,,,此时=CG CG !

【设计意图】让学生熟悉向量在不同基底下的分解,并体会基底的选择并不唯一,课堂上绝大部分学生选择了{}OA OB OC ,,,回答理由是因为两两垂直,但

A

A

是垂直条件在这个问题中,并没有为解题过程带来方便,而{}CG CA CB ,,却使得问题的解决更加简单, 因此可以看出,学生对于基底的选择很多时候是盲目的. 所以这个问题的设置主要目的....是让学生初步体会在问题解决中需要根据具体问题....选择合理的基底,为后面的寻找单位正交基并得出空间向量坐标定义做下了铺垫..

; 例1:如图,在三棱锥O ABC -中,G 为OAB ?的重心,1OA OB OC ===,且OA ,

OB OC ,两两垂直; (3)试求AB CG ?;

【学生活动】学生经过对比,容易发现选择{}OA OB OC ,,作为基底,在这个问题中具有很大的优势,因为两两垂直的单位向量之间的数量积运算结果非常简单!

学生通过简单计算,得到

22

1111=()()=03333

AB CG OB OA OA OB OC OB OA ?-?+--=.

【教师总结】通过这个问题的解决我们可以发现,在处理向量的数量积问题时,选择两两垂直的单位向量作为基底,会为问题的解决带来很大的方便,因此我们有理由对于这样的基底产生足够的重视.

我们不妨设OA =i ,OB =j ,OC =k ,且把这种基底称作单位正交基底. 特别的,如果我们以i ,j ,k 作为x 轴,y 轴,z 轴的正方向建立空间直角坐标系

Oxyz ,那么由空间向量基本定理,我们知道对于空间的任意p ,都能表示为

x y z =+p a b+c ,而且这种表示是唯一..的,所以空间的任意p ,都与有序实数组{}x y z ,,之间形成了一一对应....的关系,我们就称x ,y ,z 是p 在单位正交基底

{},,i j k 下的坐标,记为()x y z =,,p .

【设计意图】通过具体事例,体会到单位正交基底的选择对于处理数量积问题所带来的方便..,然后又由之前已经证明的空间向量定理中分解的存在性...和唯一..性.,强调突出我们成功让向量和数组形成了一一对应....

,进而很自然地得到了空

A

间向量的坐标定义.

例1:如图,在三棱锥O ABC -中,G 为OAB ?的重心,1OA OB OC ===,且OA ,O B O C ,两两垂直;

(4)在如图所示的坐标系下,请写出OC ,

OG ,CG 的坐标;

【学生活动】学生通过空间向量坐标的定义,容易得出

=001(0,0,1)OC ++=i j k ,

同理有11(,,0)33OG =,11

(,,1)33

CG =-.

【设计意图】巩固空间向量坐标的定义,以及空间向量坐标的得出,为后续的空间向量的坐标运算,与立体几何问题中的几何元素如何用向量坐标表示作下铺垫...

(五)回顾历程,审视定理

问题9:请同学们现在回顾一下,我们通过推广平面向量基本定理,得到了空间向量基本定理,而且我们发现两个定理本质上是一样的,只不过是同一个定理在二维空间推广到三维空间的不同表述而已,简单地说就是给我两个(不共线的)向量,就能表示出平面中的任意一个向量;给我三个(不共面的)向量,就能

表示出空间中的任意一个向量. 那么如果将二维空间往后退化,那会是什么情况呢?

【学生活动】学生很快反应过来,比二维空间更加简单的是一维空间,也就是直线,从而只需要给出一个非零向量,就可以表示出直线上的所有向量.

平面向量基本定理空间向量基本定理a

b

p

p =x a +y b

a b

c

p =x a +y b +z c

a

p

p =x a

【教师总结】这就是我们之前学习过的向量共线定理,原来这三个定理,本质..上都是一样的,只是同一个定理,在不同维度..空间下的不同表述形式而已.

【设计意图】揭示了高中阶段三个有关向量空间分解定理的内在本质,让学生以一种联系..的观点来重新审视..自己学习过的知识,将旧知识与新知识加以联系,更重要的是,为下面的高维向量的推广作下自然的铺垫...

(六)大胆猜想,推广定理

问题10:那么,请同学们思考一下,空间向量基本定理还可以推广吗? 【学生活动】学生认为可以推广,但也有所犹豫,因为至于什么是四维空间,将向量推广到比三维更高的维度,是否具有意义,都存在着疑惑,因此引导学生阅读选修2-1教材p99的“阅读与思考.....””——“向量概念的推广与应用”. 【教师总结】通过课本的阅读,相信同学们知道了,向量不但可以推广到四维,甚至可以是任意的n

维,都是具有实际意义的. 那么现在你们认为可以将空间向量基本定理进一步推广吗?

【学生活动】学生认为可以,那就是给定四个不在同一个(三维)空间的向量,就可以用它们来表示四维空间内的任意一个向量!

【设计意图】通过学生的大胆猜测,培养学生的合理猜想....与类比推理....的能力是非常重要的,同时选取合适的内容,让学生采取自行阅读学习的方式,又在课堂上很好地培养了学生的阅读与自学能力.

这样一来,在一节课中既利用了教

向量共线定理

平面向量基本定理空间向量基本定理a

p

p =x a

a

b

p

p =x a +y b

a b

c

p =x a +y b +z

c

材的丰富教学资源,又让学生从课堂知识起步,通过猜想与类比去思索未知的高维空间,最后又回到课本中的“阅读与思考”材料走向疑问的解答,完成了一次源于..课本,高于..课本,最后又回归..课本的教学过程,合理地利用教材,对课堂教学知识进行了重组与提高.

(七)小结

这节课我们通过推广平面向量基本定理,建立了空间向量基本定理,类似于我们由平面向量基本定理得到了平面向量的坐标的概念,我们也通过空间向量基本定理,得到了空间向量坐标的概念.

同时我们发现共线定理,平面向量基本定理,空间向量基本定理,只不过是同一个定理在不同维度空间下的不同表述而已,简单地说就是这样三句话:

给我一个(非零)向量,我就得到了直线; 给我两个(不共线)向量,我就掌握了平面; 给我三个(不共面)向量,我就拥有了空间!

像我们今天这种将复杂的空间结构分解为有限个要素的表示的想法,并不是我们独有的,很荣幸,有一位伟大的数学家和我们的想法是一样的.

数学家柯西曾经说过这样一句话:

向量共线定理

平面向量基本定理空间向量基本定理

a p p =x a a

b p p =x a +y b a b

c p =x a +y b +z c 平面向量的坐标表示

空间向量的坐标表示

请同学们课后思考一下,柯西的这句话和我们今天的课堂内容有什么联系.

好的,今天的课就上到这里,下课!

【设计意图】通过空间向量基本定理的建立与三个向量定理的类比与推广的思考,既让学生经历了从一维,到二维,到三维,再到四维的从低维空间到高维空间的类比

..研究过程,同时也让学生体会我们可以用有限个向量去研究无限个向量,这是一种从无限到有限的转化思想.

最后以数学家柯西的一句话来结束课堂的讨论,留给学生一些进一步思考的余地,引导学生进入课后更加深入的学习中去.

五、教学特点及反思

(1)类比与猜想的紧密结合

本节课紧扣教学参考的要求,通过类比的方式从平面向量基本定理推广得到了空间向量基本定理,进而再由正交分解得到空间向量的坐标表示,利用学生已有的知识学习新的知识,教学过程中考虑到学生的最近发展区,同时其中不乏一些猜想,比如空间向量基本定理中的分解的唯一性,又特别的加入了如能否将定理进一步推广到四维空间,如果推广到四维空间,表述形式又如何等猜想.

类比与猜想,是十分重要的数学研究手段,本节课利用高中生容易接受的知识,所以本节课合理地将类比与猜想能力的培养融入到课堂教学之中,更是设置了一些学生自主思考,小组讨论等交流平台,充分了挖掘了本节课的思维的深度与广度.

(2)课堂与教材的有机整合

教材是教学的蓝本,研究教材,合理使用教材,是每一位中学教师都要做好的基本功. 但使用教材应该是合理地根据课堂教学内容进行有机整合,而非照本宣科.

本节课的教学过程设置,先是从必修4中的平面向量基本定理出发,得到了本节课所需讲授的空间向量基本定理,然后通过引导学生进行大胆地猜想与推广,最后又回到课本,利用课本后续的“阅读与思考”内容,完成学生心目中的疑问的解答,成功地将高中教材中属于两本课本的高一与高二的学习内容,以及同一课本的课堂教学与课后阅读内容,进行了有机的整合,从而让学生通过教材的使用,充分体会到了知识之间的联系,也学习到了更为完整的数学.

以上就是我的课堂教学设计,真诚地希望得到各位专家的批评指正,谢谢!

高二数学向量知识点总结

高二数学向量知识点总结 导读:我根据大家的需要整理了一份关于《高二数学向量知识点总结》的内容,具体内容:数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相... 数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相关资料,供您阅读。 (一) 考点一:向量的概念、向量的基本定理 【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。 注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐

标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。 【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。 【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面向量与函数问题的交汇 【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。 【命题规律】命题多以解答题为主,属中档题。 考点六:平面向量在平面几何中的应用 【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

(完整word)高中数学平面向量基础练习及答案

基础练习 1、若(3,5)AB =u u u r ,(1,7)AC =u u u r , 则BC =u u u r ( ) A .(-2,-2) B .(-2,2) C .(4, 2) D .(-4,-12) 2、已知平面向量→a =(1,1),→b =(1,-1),则向量12→a -32→b = ( ) A 、(-2,-1) B 、(-2,1) C 、(-1,0) D 、(-1,2) 3、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r 垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 4、若平面向量b r 与向量a r =(1,-2)的夹角是180°,且|b r |=,则b r =( ) A .(-1,2) B .(-3,6) C .(3,-6) D .(-3,6)或(3,-6) 5、在ABC AB BC AB ABC ?=+??则中,若,02是( ) A .锐角三角形 B . 直角三角形 C .钝角三角形 D .等腰直角三角形 6、直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC 的三等分点,则·=( ) (A )20 (B )21 (C )22 (D )23 7.在四边形ABCD 中,AB =a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四 边形ABCD 为( ) A.平行四边形 B.矩形 C.梯形 D.菱形 8.已知()() 3,4,223,a b a b a b ==++=r r r r r r g 那么a r 与b r 夹角为( ) A 、60? B 、90? C 、120? D 、150? 9.已知D 、E 、F 分别是△ABC 的边BC 、CA 、AB 的中点,且BC =a r ,=b r ,=c r , 则下列各式: ①=21c r -21b r ②=a r +2 1b r ③CF =-21a r +2 1b r ④++CF =0r 其中正确的等式的个数为( ) A.1 B.2 C.3 D.4 10.已知向量a =(3,-4),b =(2,x ), c =(2,y )且a ∥b ,a ⊥c .求|b -c |的值.

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

《空间向量的正交分解及其坐标表示》教学设计

《空间向量的正交分解及其坐标表示》 教学设计 杨华 燕大附中

3.1.4空间向量的正交分解及其坐标表示教学设计 一、教学任务及对象 1、教学内容分析 《空间向量的正交分解及其坐标表示》是选修2-1第三章第一节的内容,前面学生已经把平面向量及其加减和数乘运算推广到空间,本节内容从空间向量的正交分解出发,学习空间最重要的基础定理——空间向量分解定理,这个定理是立体几何数量化的基础,有了这个定理,空间结构变得简单明了,整个空间被三个不共面的向量所确定,空间一个点或一个向量和实数组(x,y,z)建立起一一对应的关系。 2、教学对象分析 本节课授课的对象是高二年级的学生,他们已掌握了平面向量的基本原理,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但在把向量推广到空间中缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。 二、教学目标 依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下: 1、知识与技能:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。 2、过程与方法:通过类比、推广等思想方法,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会类比、推广的思想方法,对向量加深理解。 3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断拓展创新的学习习惯和品质。 三、重、难点分析 重点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示; 难点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示; 四、教学策略 为了突出重点、突破难点,在教学中采取了以下策略: 1.教法分析 为了充分调动学生学习的积极性,采用“学、研、导、练”模式,培养学生的创新精神,使学生在解决问题的同时,形成了方法.另外恰当的利用多媒体课件进行辅助教学,借助信息技术创设情境激发学生的学习兴趣. 2.学法分析 本节课通过类比平面向量基本定理及坐标表示,推广到空间向量,让学生体会类比、推广思想,加深对向量的理解;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、分析问题和解决问题的能力.

3.1.4 空间向量的正交分解及其坐标表示

3.1.4 空间向量的正交分解及其坐标表示 课时目标 1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解基底、基向量及向量的线性组合的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标. 1.空间向量基本定理 (1)设i 、j 、k 是空间三个两两垂直的向量,且有公共起点O ,那么,对于空间任一向量p ,存在一个______________,使得____________,我们称______,______,______为向量p 在i 、j 、k 上的分向量. (2)空间向量基本定理:如果三个向量a ,b ,c ________,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得________________. (3)如果三个向量a ,b ,c 不共面,那么所有空间向量组成的集合就是___________.这个集合可看作是由向量a ,b ,c 生成的,我们把{a ,b ,c }叫做空间的一个________,a ,b ,c 都叫做__________.空间中任何三个________的向量都可构成空间的一个基底. 2.空间向量的坐标表示 若e 1、e 2、e 3是有公共起点O 的三个两两垂直的单位向量,我们称它们为____________________,以e 1、e 2、e 3的公共起点O 为原点,分别以e 1、e 2、e 3的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系Oxyz ,那么,对于空间任意一个向量p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3,把x ,y ,z 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作____________. 一、选择题 1.在以下3个命题中,真命题的个数是( ) ①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面; ②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底. A .0 B .1 C .2 D .3 2.已知O 、A 、B 、C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a 、b 不能构成空间基底的是( ) A. OA → B .OB → C.OC → D.OA →或OB → 3.以下四个命题中,正确的是( ) A.若OP =12OA →+13 OB →,则P 、A 、B 三点共线 B .设向量{a ,b ,c }是空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底 C .|(a·b )c |=|a|·|b|·|c | D. △ABC 是直角三角形的充要条件AB →·AC →=0 4.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3G ,G 1若OG =xOA →+yOB →+zOC →,则(x ,y ,z )为( ) A .(14,14,14) B .(34,34,34 ) C .(13,13,13) D .(23,23,23 ) 5.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高中数学 3.1.4空间向量的正交分解及其坐标表示教案 新人教A版选修2-1

3. 1.4 空间向量的正交分解及其坐标表示 教学目标 1.能用坐标表示空间向量,掌握空间向量的坐标运算。 2.会根据向量的坐标判断两个空间向量平行。 重、难点 1.空间向量的坐标表示及坐标运算法则。 2.坐标判断两个空间向量平行。 教学过程 1.情景创设: 平面向量可用坐标表示,空间向量能用空间直角坐标表示吗? 2.建构数学: 如图:在空间直角坐标系O xyz -中,分别取与x 轴、y 轴、z 轴方向相同的单位向量,,i j k 作为基向量,对于空间任一向量a ,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a xi y j zk =++;有序实数组(x ,y ,z )叫做向量a 的空间直角坐标系O xyz -中的坐标,记作a =(x ,y ,z )。 在空间直角坐标系O -xyz 中,对于空间任意一点A (x ,y ,z ),向量OA 是确定的,容易得到 OA =xi y j zk ++。 因此,向量OA 的坐标为OA =(x ,y ,z )。 这就是说,当空间向量a 的起点移至坐标原点时,其终点的坐标就是向量a 的坐标。 类似于平面向量的坐标运算,我们可以得到空间向量坐标运算的法则。 设a =(123,,a a a ),b =(123,,b b b ),则

a + b =(112233,,a b a b a b +++), a - b =(112233,,a b a b a b ---), λa =(123,,a a a λλλ)λ∈R 。 空间向量平行的坐标表示为 a ∥ b (a ≠0)112233,,()b a b a b a λλλλ?===∈R 。 例题分析: 例1:已知a =(1,-3,8),b =(3,10,-4),求a +b ,a -b ,3a 。 例2:已知空间四点A (-2,3,1),B (2,-5,3),C (10,0,10)和D (8,4,9),求证:四边形ABCD 是梯形。 例3:求点A (2,-3,-1)关于xOy 平面,zOx 平面及原点O 的对称点。 练习:见学案 小结: 作业:见作业纸

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

专题3-空间向量的正交分解与坐标表示

23,,e e 为有公共起点O 的三个两两

点O 重合,得到向量OA =a .由空间向量基本定理可知,存在有序实数组{,,}x y z ,使得 =a __________.我们把x ,y ,z 称作向量a 在单位正交基底123,,e e e 下的坐标,记作=a __________. 注:向量的坐标由起点、终点的坐标共同决定,并不受起点位置的影响. 5.单位正交基底之间的数量积运算 (1)因为单位正交基底123,,e e e 互相垂直,所以121323?=?=?=e e e e e e __________. (2)因为123,,e e e 为单位向量,所以1122331?=?=?=e e e e e e . 6.空间向量的坐标运算 空间向量的加法、减法、数乘及数量积运算的坐标表示都可以类似平面向量的坐标运算得到. 设123(,,)a a a =a ,123(,,)b b b =b ,则 (1)112233(,,)a b a b a b +=+++a b , 112233(,,)a b a b a b -=---a b , 123(,,)a a a λλλλ=a , 112233a b a b a b ?=++a b ; (2)112233,,a b a b a b λλλλ?=?===∥a b a b , 11223300a b a b a b ??=?++=⊥a b a b , =?=|a |a a __________, 112233 22222 2 123123cos ,a b a b a b a a a b b b ++= ++++<>a b ; (3)在空间直角坐标系中,已知点111()A x y z ,,,222()B x y z ,,,则A ,B 两点间的距离 ||d AB == 222121212()()()x x y y z z -+-+-. 注:进行向量运算时,在能建系的情况下尽量建系,将向量运算转化为坐标运算,一般按照右手系建系.

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高中数学向量总结归纳

平面向量的数量积及平面向量的应用 1.定义及运算律. 两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”. 设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |·|b |·cos θ叫做a 与b 的数量积,记作a ·b 若a =(x 1,y 1),b =(x 2,y 2),则a ·b =2121y y x x +. 其运算满足“交换律”“结合律”以及“分配律”,即:a ·b =b ·a ,(λ·a )·b =λ(a ·b ),(a ±b )·c =a ·c ±b ·c . 2.平面向量数量积的重要性质. ①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=| |||) (b a b a ??;|a ·b |≤|a |·|b |,当且仅当a ,b 共线时取等号. ②设a =(x 1,y 1),b =(x 2,y 2),则:|a |= 21 21y x +;cos θ= 22 22 21 21 2121) (y x y x y y x x + ? + +;|x 1x 2+y 1y 2|≤ 2 2 222121y x y x +?+ 3.两向量垂直的充要条件 若a ,b 均为非零向量,则:a ⊥b ?a ·b =0. 若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0. 4.向量的模及三角不等式 |a |2=a ·a 或|a |=a a ?;|a ·b |≤|a |·|b |;|a |2-|b |2=(a +b )·(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |. 5.三角不等式的推广形式 |a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

高中数学向量基础知识

高中数学的平面向量知识向量的概念表c,.......(物理学中叫做矢量),向量可以用a,b,既有方向又有大小的量叫做向量(物示,也可以用表示向量的有向线段的起点和终点字母表示。只有大小没有方向的量叫做数量)。在自然界中,有许多量既有大小又有方向,如力、速度等。我们为了研究理学中叫做标量这些量的这个共性,在它们的基础上提取出了向量这个概念。这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。向量的几何表示是印刷体,AB。(AB有向线段,以A为起点,B为终点的有向线段记作具有方向的线段叫做也就是粗体字母,书写体是上面加个→) AB|。AB的长度叫做向量的模,记作| 有向线段个因素:起点、方向、长度。有向线段包含3 相等向量、平行向量、共线向量、零向量、单位向量: 相等向量。长度相等且方向相同的向量叫做共线向量,两个方向相同或相反的非零向量叫做平行向量或 ,,零向量与任意向量平行,即0//a、向量ab平行,记作a//b 在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量 共线就是指两条是平行向量)”是有区别。(注意粗体格式,实数“0”和向量“0零向量,记作 0长度等于0的向量叫做的)的方向是任意的;且零向量与任何向量都平行,垂直。零向量。1个单位长度的向量叫做单位向量模 等于 平面向量的坐标表示作为基底。任作ji、x 在直角坐标系内,我们分别取与轴、 y轴方向相同的两个单位向量 ,使得、y,由平面向量基本定理知,有且只有一对实数x一个向量a +yj a=xi 的(直角)坐标,记作)叫做向量,ya 我们把(x ),,y( a=x 向量的坐标表示。在y轴上的坐标,上式叫做叫做在其中 x叫做ax轴上的坐标,ya 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。而点的坐标是绝对 ),)那么该向量上的所有点都可以用(,的。若一向量的起点在原点,例如该向量为(12a2a1 / 5 表示。即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标。关系是的比例的一样

高中数学平面向量公式

1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ①当且仅当a、b同向时,左边取等号; ②当且仅当a、b反向时,右边取等号。 4、定比分点

高中数学选修2-1精品教案1:3.1.4 空间向量的正交分解及其坐标表示教学设计

3.1.4 空间向量的正交分解及其坐标表示 教学目标: 掌握空间向量的正交分解及空间向量基本定理和坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直. 教学重点:空间向量基本定理、向量的坐标运算. 教学难点:理解空间向量基本定理. 教学过程: 一.复习引入 平面向量基本定理及应用 二.思考分析 在一次消防演习中,一消防官兵特别行动小组接到命令,由此往南500米,再往东400米处的某大厦5楼发生火灾.行动小组迅速赶到现场,经过1个多小时的奋战,终于将大火扑灭.火灾的发源地点是由消防官兵驻地“南500米”“东400米”“5楼”三个量确定.设e1是向南的单位向量,e2是向东的单位向量,e3是向上的单位向量. 问题1:这三个向量能作为该空间的一组基底吗? 提示:能. 问题2:若每层楼高3米,请把“发生火灾”的位置由向量p表示出来? 提示:p=500e1+400e2+15e3. 三.抽象概括 1.空间向量基本定理 定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量. 2.空间向量的正交分解及其坐标表示 (1)单位正交基底 三个有公共起点O的两两垂直的单位向量e1,e2,e3称为单位正交基底. (2)空间向量的坐标表示 以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴,y轴,z轴的正方向建立空间直角坐标系Oxyz. 对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量OP―→=p.由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3.把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z). (1)空间任意三个不共面的向量都可以作为空间向量的一个基底. (2)0与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着

高一数学必修四平面向量基础练习题及答案

平面向量的基本定理及坐标表示 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21- a +23 b B 、21a 23-b C 、23a 2 1-b D 、2 3- a + 21b 2、已知,A (2,3),B (-4,5),则与AB 共线的单位向量是 ( ) A 、)10 10 ,10103(- =e B 、)10 10 ,10103()1010,10103(-- =或e C 、)2,6(-=e D 、)2,6()2,6(或-=e 3、已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量OP =(2,1),OA =(1,7),OB =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA ?的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1(-==n m 分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos α,sin β),b =(cos α ,sin β ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于α-β B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i OP θθsin 3cos 3+=, i OQ -=∈),2 ,0(π θ。若用 来表示OP 与OQ 的夹角,则 等于 ( ) A 、θ B 、 θπ +2 C 、 θπ -2 D 、θπ- 8、设πθ20<≤,已知两个向量()θθsin ,cos 1=OP ,()θθcos 2,sin 22-+=OP ,则向

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

相关文档
最新文档