第16讲热力学基础——循环过程卡诺循环内容6-56-61

第16讲热力学基础——循环过程卡诺循环内容6-56-61
第16讲热力学基础——循环过程卡诺循环内容6-56-61

第16讲:热力学基础——循环过程卡诺循环

内容:§6-5,§6-6

1.等温过程(10分钟)2.绝热过程(20分钟)3.循环过程(30分钟)4.卡诺循环(40分钟)要求:

1.掌握等温过程内能、功和热量的变化;

2.掌握绝热过程内能、功和热量的变化;

3.掌握循环过程的特点;

4.理解卡诺循环的特点;

5.掌握热机效率的计算方法。

重点与难点:

1.循环过程的特点;

2.热量效率的计算;

3.卡诺循环的特点。

作业:

思考题:P218:9,10,12,13

练习题:P221:17,19,21,23

外界对系统作功等于系统增加的内能

形式传给高温热源,其结果可使低温热源的温度更低,达到制冷的目的。吸热

两温度间工作的各种制冷机的制冷系数的最大值。

当高温热源温度一定时,低温热源的温度越低,制冷机的制冷系数越低。

分离课后习题及答案

第一章绪论1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度 提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分:

(方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?=οA A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分; B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示,οο M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。

第2章-化学热力学初步(习题解)

第二章化学热力学初步 1. 热力学第一定律W U- = Q ?,由于U为状态函数,所以Q和W也是状态函数,对吗?为什么? 答:不对。Q和W只有在能量交换的时候才会有具体的数值,并且随途径不同,共和热的数值都会有变化,所以不是状态函数。 2. 解释下列名词 (1) 体系与环境 (2) 热(Q) (3) 功(W) (4) 焓(H)和焓变(H ?) (5) 热力学能U (6) 恒容反应热(Q V)和恒压反应热(Q p) 答:(1) 热力学中称研究的对象为体系,称体系以外的部分为环境。 (2) 体系在变化过程中吸收的热量为Q。 (3) 体系对环境所做的功。 (4) H=U+PV 当泛指一个过程的时候,其热力学函数的改变量为焓变。 (5) 体系内一切能量的总和叫热力学能。 (6) 在恒容过程中完成的化学反应,其热效应称为恒容反应热。 在恒压过程中完成的化学反应,其热效应称为恒压反应热。 3. 什么叫状态函数?它具有何特性? 答:藉以确定体系状态的物理量称为体系的状态函数。它具有加和性。 4. 何谓热效应?测量方法有哪两种? 答:化学反应的热效应为当生成物和反应物的温度相同时,化学反应过程中的吸收或放出的热量。可以选择恒压和恒容两种条件下测量。 5. 什么叫热化学方程式?书写热化学方程式要注意哪几点? 答:表示出反应热效应的化学方程式叫做热化学方程式。书写化学方程式时要注意一下几点:(1)写热化学方式式,要注意反应的温度和压强条件,如果反应是在298K和1.013×105Pa下进行时,习惯上不予注明。(2)要注明物质的聚集状态和晶形。(3)方程式中的配平系数只是表示计量数,不表示分子数。但计量数不同时,同一反应的反应热数值也不同。 6. ①无机化学中常用的反应热有哪几种?反应热的实质是什么?什么类型的化学反应Q V=Q p?等摩尔的NaOH和NH3·H2O溶液分别与过量的HCl溶液中和所放热量是否相等?为什么? ②反应2N2(g)+O2(g)=2N2O(g)在298K时,ΔrH m?=164K J·mol-1, 求反应的ΔU? 答:①无机化学中常用的反应热有恒压反应热和恒容反应热。 反应热的实质是:当生产物与反应物的温度相同时,化学反应过程中的吸

分离课后习题及答案

第一章 绪论 1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。

热力学与统计物理第二章知识归纳

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 ?焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分

(4) 从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2)H(S,P)

同(2)式相比有 由得(8) (3)F(T,V) 同(3)式相比 (9) (4)G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。

热力学基本概念.

潍坊职业学院教案案首

3)孤立体系(isolated system ) 体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。有时把封闭体系和体系影响所及的环境一起作为孤立体系来考虑 注意: 可见,体系与环境的划分并不是绝对的,实际上带有一定的人为性。原则上说,对于同一问题,不论选哪个部分作为体系都可将问题解决,只是在处理上有简便与复杂之分。因此,要尽量选便于处理的部分作为体系。一般情况下,选择哪一部分作为体系是明显的,但是在某些特殊场合下,选择方便问题处理的体系并非一目了然。 2 、状态函数

体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。具有这种特性的物理量称为状态函数(state function)。 状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。 状态函数在数学上具有全微分的性质。 体系的性质-状态函数性质 用宏观可测性质来描述体系的热力学状态,故这些性质又称为热力学变量。可分为两类: 广延性质(extensive properties) 又称为容量性质,它的数值与体系的物质的量成正比,如体积、质量、熵等。这种性质有加和性,在数学上是一次齐函数。 强度性质(intensive properties) 它的数值取决于体系自身的特点,与体系的数量无关,不具有加和性,如温度、压力等。它在数学上是零次齐函数。指定了物质的量的容量性质即成为强度性质,如摩尔热容。 3.过程与途径 (1)体系状态的任何变化称过程(process)。 始态————————————————→终态 过程(具体可通过不同的途径来实现) (2) 实现状态变化的具体步骤称为途径(path)。 根据过程有无相变及化学反应分: 简单状态变化过程:T,p,V变化 化学变化过程 相变过程 常见的变化过程 ◆恒温过程:T始=T终=T外=常数 ◆恒压过程: p始=p终=p外=常数

循环过程,卡诺循环,热机效率,致冷系数

1. 摩尔理想气体在400K 与300K 之间完成一个卡诺循环,在400K 的等温线上,起始体积为0.0010m 3,最后体积为0.0050m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量。 解答 卡诺循环的效率 %25400 300 1112=-=- =T T η (2分) 从高温热源吸收的热量 2110.005 ln 8.31400ln 53500.001 V Q RT V ==??=(J ) (3分) 循环中所作的功 10.2553501338A Q η==?=(J ) (2分) 传给低温热源的热量 21(1)(10.25)53504013Q Q η=-=-?=(J ) (3分) 2. 一热机在1000K 和300K 的两热源之间工作。如果⑴高温热源提高到1100K ,⑵低温热源降到200K ,求理论上的热机效率各增加多少?为了提高热机效率哪一种方案更好? 解答: (1) 效率 %701000300 1112=-=- =T T η 2分 效率 %7.721100 300 1112=-=- ='T T η 2分 效率增加 %7.2%70%7.72=-=-'='?ηηη 2分 (2) 效率 %801000 2001112=-=- =''T T η 2分 效率增加 %10%70%80=-=-''=''?ηηη 2分 提高高温热源交果好

3.以理想气体为工作热质的热机循环,如图所示。试证明其效率为 1112121-??? ? ??-???? ??-=P P V V γη 解答: )(22211V p V p R C T C M M Q V V mol -=?= 3分 )(22122V p V p R C T C M M Q p P mol -=?= 3分 )1()1( 1)()(112 12 1 222122121 2---=--- =- =p p V V V p V p C V p V p C Q Q V p γη 4. 如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED 是任意过程,组成一个循环。若图中EDCE 所包围的面积为70 J ,EABE 所包围的面积为30 J ,过程中系统放热100 J ,求BED 过程中系统吸热为多少? 解:正循环EDCE 包围的面积为70 J ,表示系统对外作正功70 J ;EABE 的面积为30 J ,因图中表示为逆循环,故系统对外作负功,所以整个循环过程系统对外 作功为: W =70+(-30)=40 J 3 分 设CEA 过程中吸热Q 1,BED 过程中吸热Q 2 ,由热一律, W =Q 1+ Q 2 =40 J 3 分 p V O A B E D C 2 V 1 V p p

相关文档
最新文档