DSP选型和介绍

DSP选型和介绍
DSP选型和介绍

DSP简介

DSP数字信号处理(DIGITAL Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。德州仪器、FREESCALE等半导体厂商在这一领域拥有很强的实力。

DSP的发展

DSP的发展历史大致可以分成四个阶段:萌芽阶段、成长阶段、成熟阶段、突破阶段。

萌芽阶段:1982年以前

在这段时期里为解决Von Neumann结构在进行数字信号处理时总线和存储器之间的瓶颈效应,许多公司投入大量人力和物力开展了很多探索性的工作,研制出了一些DSP的雏形,如AMI的S2811、INTEL的2920、AT&T的DSP-1和NEC的uPD7720。但这些产品的运算速度都太慢,而且开发工具严重不足,无法进行大规模的开发工作,还不能称作真正意义上的DSP。第一片DSP是1982年TI公司出品的

TMS320C10,它是—个16位的定点DSP,采用了哈佛(Harvard)结构,有一个乘加器和一个累加器。TMS320C10完成—次乘加操作需要390ns,即在一秒钟的时间内可以完成250万次左右的乘加运算。或许正是因为生产出了第一个DSP,TI公司在此后的三十几年中一直是DSP界的领军人物。

成长阶段:1982-1987年

这段时间内各公司相继研制出了自己的DDSP并不断地改进。如1985年,TI推出了TMS320C20,它具备单指令循环的硬件支持,寻址空间达到64K字,有专门的地址寄存器,一次乘加运算只需耗时200ns。1987年,MOTOROLA公司推山了DSP56001,采用24位的数据和指令,有专门的地址寄存器,可以循环寻址,累加器有保护位,一坎乘加运算只需耗时75ns。此外,在这段时期中还有一些代表产品,如AT &T的DSPl6A、AD的ADSP-2100,TI的TMS320C50。

成熟阶段:1987-1997年

在这个阶段里各公司不断借鉴相互的优点,并完善自身的设计,推出了特点分明的产品,如TI的

TMS320C54系列、AD的ADSP2100系列、Lucent(前身为AT&T)的DSPl600系列和MOTOROLA的DSP56000系列。它们在供电上都支持3.3v,片上的存储器也较大,都有JTAG模块支持用户在线调试。另外,TI等公司还专门提供DSP的内核,为一些专用集成电路(ASIC)的开发提供了空间。此外,在成熟阶段还首次出现了多处理核的DSP,如TI的TMS320C80和MOTOROLA的MC68356等,虽然它们的推出在商业上并不算成功,但却指明了一个有潜力的发展方向。

突破阶段:1997年直至现在

这段时间里DSP的发展非常迅速,各公司相继建立了自己从定点到浮点,从低端到高端,从通用到专用完整的产品系列,并且在DSP设计上有了大的飞跃,推出了一些性能突出的产品。很多公司相继采用先进技术研制了计算性能很高的DSP,如AD的SHARC系列、TI的TMS320C6000系列、MOTOROLA和Agere(前身为Lucent微电子)的StarPro等,每秒钟可以完成1G条以上的指令,计算速度惊人。TI公司还研制出功耗最小的DSP TMS320C55系列,为便携式设备提供了一个明智的选择。

回顾DSP发展的二十几年,也正是电子、信息和微电于技术快速发展的二十年,正是后者为DSP提供了必要的技术支持和应用的广阔空间,使得DSP及其相关的技术日益受到人们的重视。

DSP的应用

语音处理:语音编码、语音合成、语音识别、语音增强、语音邮件、语音储存等。

图像/图形:二维和三维图形处理、图像压缩与传输、图像识别、动画、机器人视觉、多媒体、电子地图、图像增强等。

军事;保密通信、雷达处理、声呐处理、导航、全球定位、跳频电台、搜索和反搜索等。

仪器仪表:频谱分析、函数发生、数据采集、地震处理等。

自动控制:控制、深空作业、自动驾驶、机器人控制、磁盘控制等。

医疗:助听、超声设备、诊断工具、病人监护、心电图等。

家用电器:数字音响、数字电视、可视电话、音乐合成、音调控制、玩具与游戏等。

生物医学信号处理举例:

CT:计算机X射线断层摄影装置。(其中发明头颅CT英国EMI公司的豪斯菲尔德获诺贝尔奖。)CAT:计算机X射线空间重建装置。出现全身扫描,心脏活动立体图形,脑肿瘤异物,人体躯干图像重建。

心电图分析。

TI DSP 的选型

主要考虑处理速度、功耗、程序存储器和数据存储器的容量、片内的资源,如定时器的数量、 I/O 口数量、中断数量、DMA 通道数等。DSP 的主要供应商有 TI,ADI,Motorola,Lucent 和 Zilog 等,其中 TI 占有最大的市场份额。

TI 公司现在主推四大系列 DSP

1)C5000 系列(定点、低功耗):C54X,C54XX,C55X 相比其它系列的主要特点是低功

耗,所以最适合个人与便携式上网以及无线通信应用,如手机、PDA、GPS 等应用。处理

速度在 80MIPS--400MIPS 之间。C54XX 和 C55XX 一般只具有 McBSP 同步串口、HPI 并行

接口、定时器、DMA 等外设。值得注意的是 C55XX 提供了 EMIF 外部存储器扩展接口,

可以直接使用 SDRAM,而 C54XX 则不能直接使用。两个系列的数字 IO 都只有两条。

2)C2000 系列(定点、控制器):C20X,F20X,F24X,F24XX ,C28x 该系芯片具有大量外设资源,如:A/D、定时器、各种串口(同步和异步),WATCHDOG、CAN 总线/PWM 发生器、数字 IO 脚等。是针对控制应用最佳化的 DSP,在 TI 所有的 DSP 中,只有 C2000 有 FLASH,也只有该系列有异步串口可以和 PC 的UART 相连。

3)C6000 系列:C62XX,C67XX,C64X 该系列以高性能著称,最适合宽带网络和数字影

像应用。32bit,其中:C62XX 和 C64X 是定点系列,C67XX 是浮点系列。该系列提供 EMIF

扩展存储器接口。该系列只提供 BGA 封装,只能制作多层 PCB。且功耗较大。同为浮点

系列的 C3X 中的 VC33 现在虽非主流产品,但也仍在广泛使用,但其速度较低,最高在

150MIPS。

4)OMAP 系列:OMAP 处理器集成 ARM 的命令及控制功能,另外还提供 DSP 的低功耗实时信号处理能力,最适合移动上网设备和多媒体家电。

其他系列的 DSP 曾经有过风光,但现在都非 TI 主推产品了,除了 C3X 系列外,其他基本处于淘汰阶段,如:C3X 的浮点系列:C30,C31,C32 C2X 和 C5X 系列:C20,C25,C50 每个系列的 DSP 都有其主要应用领域.

设计中如何得到技术参考资料以及如何得到相关源码

原则是碰到问题就去 https://www.360docs.net/doc/941462429.html,

1)在 TI 网站的搜索中用 keyword 搜索资料,主要要注意的就是 Application Notes,user guides 比如不知道怎样进行 VC5402 的 McBSP 编程,搜 McBSP 和 VC5402 如果不知道如何设计

VC5402 和 TLV320AIC23 的接口以及编程,搜 TLV320AIC23 和 VC5402; 这样可以搜到一

堆的资料,这些资料一般均有 PDF 文档说明和相应的源程序包提供,download 后做少许改

动即可

2)版上发问

3)google 搜

4)再不济,找技术支持,碰运气了

如何看待TI DSP 庞杂的技术文档

新手进行 DSP 开发学习之时,常常感觉技术文档太多,哪本都有用,哪本都想看,无从下

手。此时原则是只看入门必须的、只看和芯片相关的。根据经验,如下的资料必看不可:

1)讲述 DSP 的 CPU,memory,program memory addressing,data memory addressing 的资料都需要看、外设资源的资料可以只看自己用到的部分;

2)C 和汇编的编程指南需要看

3)汇编指令和 C 语言的运行时间支持库、DSPLIB 等资料需要看其他的如:Applications Guide,Optimizing CC++ Compiler User's Guide,Assembly Language Tools User's Guide 等资料留待入门之后再去看体会会更深一些。

如何高效开始TI DSP 的硬件开发

1)根据应用领域选择 TI 推荐的 DSP 类型

2)参考选定的 DSP 之 EVM 板,DSK 等原理图,完成 DSP 最小系统的搭建(包括外扩内存空间、电源复位系统、各控制信号管脚的连接、JTAG 口的连接等);

3)根据具体应用需要,选择外围电路的扩展,一般如语音、视频、控制等领域均有成熟的电路可以从 TI 网站得到。外围电路与 DSP 的接口可参看 EVM 或 DSK,以及所选外围电路芯片的典型接口设计原理图;最好外围电路芯片也选择 TI 的,这样的话不管硬件接口有现成原理图、很多连 DSP 与其接口的基本控制源码都有。

4)地址译码、IO 扩展等用 CPLD 或者 FPGA 来做,将 DSP 的地址线、数据线、控制信号线如 IS/PS/DS 等都引进去有利于调试

如何高效开始TI DSP 的软件开发

如果你不是纯做算法,而是在一个目标版上进行开发,需要使用 DSP 的片上外设,需要控制片外接口电路,那么建议在写程序前先好好将这个目标版的电路设计搞清楚。最重要的是程序、数据、I/O 空间的译码。不管是否纯做算法还是软硬结合,DSP 的 CPU,memory,program memory addressing, data mem.ory addressing 的资料都需要看.

1)看 CCS 的使用指南

2)明白 CMD 文件的编写

3)明白中断向量表文件的编写,并定位在正确的地方

4)运行一个纯 simulator 的程序,了解 CCS 的各个操作

5)到 TI 网站下相关的源码,参考源码的结构进行编程

6)不论是 C 编程还是 ASM 编程,模块化是必须的

选择 C 还是选择ASM 进行编程

记住一条原则,TI 的工程师在不断改进 CCS 的 C 程序优化编译器,现在 C 优化的效率可达到手工汇编的 90%甚至更高。当然有的时候如果计算能力和内存资源是瓶颈,ASM 还是有优势,比如 G.729 编解码。但是针对一般的应用开发,C 是最好的选择。

新手编程则选择 C 和汇编混合编程更有利一些

关于TI 54X 系列DSP 的bootloader 过程

请详细阅读 TI 文档 SPRA618A、SPRA571,这些文档对 boot 的机制进行了详细说明同时说明了利用hex500 将*.out 文件转化为*.hex 文件时,需要编写的 cmd 文件的写法。

如何选择外部时钟?

DSP 的内部指令周期较高,外部晶振的主频不够,因此 DSP 大多数片内均有 PLL。但每个系列不尽相同。

1)TMS320C2000 系列:

TMS320C20x:PLL 可以÷2,×1,×2 和×4,因此外部时钟可以为 5MHz-40MHz。

TMS320F240:PLL 可以÷2,×1,×1.5,×2,×2.5,×3,×4,×4.5,×5 和×9,因此外部时钟可以为 2.22MHz-40MHz。

TMS320F241/C242/F243:PLL 可以×4,因此外部时钟为 5MHz。 TMS320LF24xx:PLL 可以由 RC 调节,因此外部时钟为 4MHz-20MHz。

TMS320LF24xxA:PLL 可以由 RC 调节,因此外部时钟为 4MHz-20MHz。

2)TMS320C3x 系列:

TMS320C3x:没有 PLL,因此外部主频为工作频率的 2 倍。

TMS320VC33:PLL 可以÷2,×1,×5,因此外部主频可以为 12MHz-100MHz。

3)TMS320C5000 系列:

TMS320VC54xx:PLL 可以÷4,÷2,×1-32,因此外部主频可以为 0.625MHz-50MHz。

TMS320VC55xx:PLL 可以÷4,÷2,×1-32,因此外部主频可以为 6.25MHz-300MHz。

4)TMS320C6000 系列:

TMS320C62xx:PLL 可以×1,×4,×6,×7,×8,×9,×10 和×11,因此外部主频可以为 11.8MHz -300MHz。

TMS320C67xx:PLL 可以×1 和×4,因此外部主频可以为 12.5MHz-230MHz。 TMS320C64xx:PLL 可以×1,×6 和×12,因此外部主频可以为 30MHz-720MHz 软件等待的如何使用?

DSP 的指令周期较快,访问慢速存储器或外设时需加入等待。等待分硬件等待和软件等待,每一个系列的等待不完全相同。

1)对于 C2000 系列:硬件等待信号为 READY,高电平时不等待。软件等待由 WSGR 寄

存器决定,可以加入最多 7 个等待。其中程序存储器和数据存储器及 I/O 可以分别设置。

2)对于 C3x 系列:硬件等待信号为/RDY,低电平是不等待。软件等待由总线控制寄存器中的 SWW 和WTCNY 决定,可以加入最多 7 个等待,但等待是不分段的,除了片内之外全空间有效。

3)对于 C5000 系列:硬件等待信号为 READY,高电平时不等待。软件等待由 SWWCR 和 SWWSR 寄存器决定,可以加入最多 14 个等待。其中程序存储器、控制程序存储器和数据存储器及 I/O 可以分别设置。

4)对于 C6000 系列(只限于非同步存储器或外设):硬件等待信号为 ARDY,高电平时不等待。软件等待由外部存储器接口控制寄存器决定,总线访问外部存储器或设备的时序可以设置,可以方便的同异步的存储器或外设接口。

仿真工作正常对于DSP 的基本要求

1)DSP 电源和地连接正确。

2)DSP 时钟正确。

3)DSP 的主要控制信号,如 RS 和 HOLD 信号接高电平。

4)C2000 的 watchdog 关掉。

5)不可屏蔽中断 NMI 上拉高电平。

CCS 或Emurst 运行时提示“Can t Initialize Target DSP”

1)仿真器连接是否正常?

2)仿真器的 I/O 设置是否正确?

3)XDSPP 仿真器的电源是否正确?

4)目标系统是否正确?

5)仿真器是否正常?

6)DSP 工作的基本条件是否具备。

建议使用目标板测试。

Link 的cmd 文件的作用是什么?

Link 的 cmd 文件用于 DSP 代码的定位。由于 DSP 的编译器的编译结果是未定位的,DSP 没有操作系统来定位执行代码,每个客户设计的 DSP 系统的配置也不尽相同,因此需要用户自己定义代码的安装位置。以 C5000 为例,基本格式为:

-o sample.out

-m sample.map

-stack 100

sample.obj meminit.obj

-l rts.lib

MEMORY {

PAGE 0: VECT: origin = 0xff80, length 0x80

PAGE 0: PROG: origin = 0x2000, length 0x400

PAGE 1: DATA: origin = 0x800, length 0x400

}

SECTIONS {

.vectors : {} >PROG PAGE 0

.text : {} >PROG PAGE 0

.data : {} >PROG PAGE 0

.cinit : {} >PROG PAGE 0

.bss : {} >DATA PAGE 1

}

如何将OUT 文件转换为16 进制的文件格式?

DSP 的开发软件集成了一个程序,可以从执行文件 OUT 转换到编程器可以接受的格式,使得编程器可以用次文件烧写 EPROM 或 FLASH。对于 C2000 的程序为 DSPHEX;对于 C3x 程序为 HEX30;对于 C54x 程序为 HEX500;对于 C55x 程序为 HEX55;对于 C6x 程序为 Hex6x。以 C32 为例,基本格式为:sample.out

-x

-memwidth 8

-bootorg 900000h

-iostrb 0h

-strb0 03f0000h

-strb1 01f0000h

-o sample.hex

ROMS {

EPROM: org = 0x900000,len=0x02000,romwidth=8

}

SECTIONS {

.text: paddr=boot

.data: paddr=boot

}

DSP 仿真器为什么必须连接目标系统(Target)?

DSP 的仿真器同单片机的不同,仿真器中没有 DSP,提供 IEEE 标准的 JTAG 口对 DSP 进行

仿真调试,所以仿真器必须有仿真对象,及目标系统。目标系统就是你的产品,上面必须有

DSP。仿真器提供 JTAG 同目标系统的 DSP 相接,通过 DSP 实现对整个目标系统的调试。

DSP 的C 语言同主机C 语言的主要区别?

1) DSP 的 C 语言是标准的 ANSI C,它不包括同外设联系的扩展部分,如屏幕绘图等。

但在 CCS 中,为了方便调试,可以将数据通过 prinf 命令虚拟输出到主机的屏幕上。

2)DSP 的 C 语言的编译过程为,C 编译为 ASM,再由 ASM 编译为 OBJ。因此 C 和 ASM 的对应关系非常明确,非常便于人工优化。

3)DSP 的代码需要绝对定位;主机的 C 的代码有操作系统定位。

4)DSP 的 C 的效率较高,非常适合于嵌入系统。

为什么在CCS 下编译工具工作不正常?

在 CCS 下有部分客户会碰到编译工具工作不正常,常见错误为:

1)autoexec.bat 的路径“out of memory”。修改 autoexec.bat,清除无用的 PATH 路径。

2)编译的输出文件(OUT 文件)写保护,无法覆盖。删除或修改输出文件的属性。

3)Windows 有问题。重新安装 windows。

4)Windows 下有程序对 CCS 有影响。建议用一“干净”的计算机。

在CCS 下,如何选择有效的存储器空间?

CCS 下的存储器空间最好设置同你的硬件,没有的存储器不要有效。这样便于调试,CCS 会发现你调入程序时或程序运行时,是否访问了无效地址。

1)在 GEL 文件中设置。参见 CCS 中的示例。

2)在 Option 菜单下,选择 Memory Map 选项,根据你的硬件设置。注意一定要将 Enable Memory Mapping 置为使能。

在CCS 下,OUT 文件加载时提示“Data verification failed...”的原因?

Link 的 CMD 文件分配的地址同 GEL 或设置的有效地址空间不符。中断向量定位处或其它代码、数据段定位处,没有 RAM,无法加载 OUT 文件。解决方法:

1)调整 Link 的 CMD 文件,使得定位段处有 RAM。

2)调整存储器设置,使得 RAM 区有效。

为什么要使用BIOS?

1)BIOS 是 Basic I/O System 的简称,是基本的输入、输出管理。

2)用于管理任务的调度,程序实时分析,中断管理,跟踪管理和实时数据交换。

3)BIOS 是基本的实时系统,使用 BIOS 可以方便地实现多任务、多进程的时间管理。

4)BIOS 是 eXpress DSP 的标准平台,要使用 eXpress DSP 技术,必须使用 BIOS。

5V/3.3V 如何混接?

TI DSP 的发展同集成电路的发展一样,新的 DSP 都是 3.3V 的,但目前还有许多外围电路

是 5V 的,因此在 DSP 系统中,经常有 5V 和 3.3V 的 DSP 混接问题。在这些系统中,应注

意:

1)DSP 输出给 5V 的电路(如 D/A),无需加任何缓冲电路,可以直接连接。

2)DSP 输入 5V 的信号(如 A/D),由于输入信号的电压>4V,超过了 DSP 的电源电压,DSP

的外部信号没有保护电路,需要加缓冲,如 74LVC245 等,将 5V 信号变换成 3.3V 的信号。

3)仿真器的 JTAG 口的信号也必须为 3.3V,否则有可能损坏 DSP。

为什么要片内RAM 大的DSP 效率高?

目前 DSP 发展的片内存储器 RAM 越来越大,要设计高效的 DSP 系统,就应该选择片内 RAM 较大的 DSP。片内 RAM 同片外存储器相比,有以下优点:

1)片内 RAM 的速度较快,可以保证 DSP 无等待运行。

2)对于 C2000/C3x/C5000 系列,部分片内存储器可以在一个指令周期内访问两次,使得指令可以更加高效。

3)片内 RAM 运行稳定,不受外部的干扰影响,也不会干扰外部。

4)DSP 片内多总线,在访问片内 RAM 时,不会影响其它总线的访问,效率较高。

为什么DSP 从5V 发展成 3.3V?

超大规模集成电路的发展从 1um,发展到目前的 0.1um,芯片的电源电压也随之降低,功耗

也随之降低。DSP 也同样从 5V 发展到目前的 3.3V,核心电压发展到 1V。目前主流的 DSP

的外围均已发展为 3.3V,5V 的 DSP 的价格和功耗都价格,以逐渐被 3.3V 的 DSP 取代。

如何选择DSP 的电源芯片?

TMS320LF24xx:TPS7333QD,5V 变 3.3V,最大 500mA。

TMS320VC33: TPS73HD318PWP,5V 变 3.3V 和 1.8V,最大 750mA。

TMS320VC54xx:TPS73HD318PWP,5V 变 3.3V 和 1.8V,最大 750mA; TPS73HD301PWP, 5V 变 3.3V 和可调,最大 750mA。

TMS320VC55xx:TPS73HD301PWP,5V 变 3.3V 和可调,最大 750mA。 TMS320C6000: PT6931,TPS56000,最大 3A。

软件等待的如何使用?

DSP 的指令周期较快,访问慢速存储器或外设时需加入等待。等待分硬件等待和软件等待,

每一个系列的等待不完全相同。

1)对于 C2000 系列:硬件等待信号为 READY,高电平时不等待。软件等待由 WSGR 寄

存器决定,可以加入最多 7 个等待。其中程序存储器和数据存储器及 I/O 可以分别设置。

2)对于 C3x 系列:硬件等待信号为/RDY,低电平是不等待。软件等待由总线控制寄存器中的 SWW 和WTCNY 决定,可以加入最多 7 个等待,但等待是不分段的,除了片内之外全空间有效。

3)对于 C5000 系列:硬件等待信号为 READY,高电平时不等待。软件等待由 SWWCR 和 SWWSR 寄存器决定,可以加入最多 14 个等待。其中程序存储器、控制程序存储器和数据存储器及 I/O 可以分别设置。

4)对于 C6000 系列(只限于非同步存储器或外设):硬件等待信号为 ARDY,高电平时不等待。软件等待由外部存储器接口控制寄存器决定,总线访问外部存储器或设备的时序可以设置,可以方便的同异步的存储器或外设接口。

DSP 的最高主频能从芯片型号中获得吗?

TI 的 DSP 最高主频可以从芯片的型号中获得,但每一个系列不一定相同。

1)TMS320C2000 系列:

TMS320C203/C206-最高主频 40MHz。

TMS320F24x-最高主频 20MHz。

TMS320LF24xx-最高主频 30MHz。

TMS320LF24xxA-最高主频 40MHz。

TMS320LF28xx-最高主频 150MHz。

2)TMS320C3x 系列:

TMS320VC33PGE150:最高主频 75MHz。

3)TMS320C5000 系列:

TMS320VC54xx:最高主频 160MHz。

TMS320VC55xx:最高主频 300MHz。

4)TMS320C6000 系列:

TMS320C62xx:最高主频 300MHz。

TMS320C67xx:最高主频 230MHz。

TMS320C64xx:最高主频 720MHz。

如何选择外部时钟?

DSP 的内部指令周期较高,外部晶振的主频不够,因此 DSP 大多数片内均有 PLL。但每个系列不尽相同。

1)TMS320C2000 系列:

TMS320C20x:PLL 可以÷2,×1,×2 和×4,因此外部时钟可以为 5MHz-40MHz。

TMS320F240:PLL 可以÷2,×1,×1.5,×2,×2.5,×3,×4,×4.5,×5 和×9,因此外部时钟可以为 2.22MHz-40MHz。

TMS320F241/C242/F243:PLL 可以×4,因此外部时钟为 5MHz。 TMS320LF24xx:PLL 可以由 RC 调节,因此外部时钟为 4MHz-20MHz。

TMS320LF24xxA:PLL 可以由 RC 调节,因此外部时钟为 4MHz-20MHz。

2)TMS320C3x 系列:

TMS320C3x:没有 PLL,因此外部主频为工作频率的 2 倍。

TMS320VC33:PLL 可以÷2,×1,×5,因此外部主频可以为 12MHz-100MHz。

3)TMS320C5000 系列:

TMS320VC54xx:PLL 可以÷4,÷2,×1-32,因此外部主频可以为 0.625MHz-50MHz。

TMS320VC55xx:PLL 可以÷4,÷2,×1-32,因此外部主频可以为 6.25MHz-300MHz。

4)TMS320C6000 系列:

TMS320C62xx:PLL 可以×1,×4,×6,×7,×8,×9,×10 和×11,因此外部主频可以为 11.8MHz -

300MHz。

TMS320C67xx:PLL 可以×1 和×4,因此外部主频可以为 12.5MHz-230MHz。

TMS320C64xx:PLL 可以×1,×6 和×12,因此外部主频可以为 30MHz-720MHz

如何选择DSP 的外部存储器?

DSP 的速度较快,为了保证 DSP 的运行速度,外部存储器需要具有一定的速度,否则 DSP 访问外部存储

器时需要加入等待周期。

1)对于 C2000 系列: C2000 系列只能同异步的存储器直接相接。 C2000 系列的 DSP 目前的最高速度为150MHz。建议可以用的存储器有:

2)对于 C3x 系列: C3x 系列只能同异步的存储器直接相接。 C3x 系列的 DSP 的最高速度, 5V 的为

40MHz,3.3V 的为 75MHz,为保证 DSP 无等待运行,分别需要外部存储器的速度 <25ns 和<12ns。建议可以用的存储器有:

ROM: AM29F400-70:256K×16,70ns,5V,加入一个等待;

AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入两个等待(目前没有更快的 Flash)。 SRAM:

CY7C1021-15:64K×16,15ns,5V;

CY7C1009-15:128K×8,15ns,5V;

CY7C1049-15:512K×8,15ns,5V;

CY7C1021V33-15:64K×16,15ns,3.3V;

CY7C1009V33-15:128K×8,15ns,3.3V;

CY7C1041V33-15:256K×16,15ns,3.3V。

3)对于 C54x 系列: C54x 系列只能同异步的存储器直接相接。 C54x 系列的 DSP 的速度为 100MHz 或160MHz,为保证 DSP 无等待运行,需要外部存储器的速度<10ns 或<6ns。建议可以用的存储器有:ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入 5 或 9 个等待(目前没有更快的 Flash)。SRAM: CY7C1021V33-12:64K×16,12ns,3.3V,加入一个等待; CY7C1009V33-12:128K×8,12ns,3.3V,加入一个等待。

4)对于 C55x 和 C6000 系列: TI 的 DSP 中只有 C55x 和 C6000 可以同同步的存储器相连,同步存储

器可以保证系统的数据交换效率更高。

ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V。 SDRAM: HY57V651620BTC-10S:64M,10ns。SBSRAM: CY7C1329-133AC,64k×32;

CY7C1339-133AC,128k×32。

FIFO:CY7C42x5V-10ASC,32k/64k×18。

调试TMS320C2000 系列的常见问题?

1)单步可以运行,连续运行时总回 0 地址: Watchdog 没有关,连续运行复位 DSP 回到 0 地址。

写入。CCS 和 C Source Debugger 中的 load 命令,不能对 FLASH 写入。 OUT 文件只能 load 到片内 RAM,或片外 RAM 中。

断点,软件断点是不能加在 ROM 中的。硬件断点,设置存储器的地址,当访问该地址时产生中断。

4)中断向量: C2000 的中断向量不可重定位,因此中断向量必须放在 0 地址开始的 FLASH 内。在调试

系统时,代码放在 RAM 中,中断向量也必须放在 FLASH 内。

调试TMS320C3x 系列的常见问题?

1) TMS320C32 的存储器配置: TMS320C32 的程序存储器可以配置为 16 位或 32 位;数

据存储器可以配置为 8 位、16 位或 32 位。

2)TMS320VC33 的 PLL 控制: TMS320VC33 的 PLL 控制端只能接 1.8V,不能接 3.3V 或5V。

气压罐的选型参数

气压罐的选型参数 气压罐调节水量不是气压罐的容积,而是气压罐在此压力范围内的调节容积,在变频系统上,为最大限度的利用气压罐的体积,可把气压罐预充气体的压力和水泵的启动压力下限设为一致,这样当气压罐内的水全部补充到系统后水泵恰好启动。 如:生活管网变频供水恒压值为P1=0.5MPa,压力下限(水泵再启动压力)P2=0.15MPa,在正常情况下,假设管网夜间用水量为15L/h,在夜间水泵停止工作按7h(22:00-5:00)计算,用水量为105L,那么,如果气压罐在P1与P2压力范围内的调节水量大于105L,即可保证水泵睡眠7小时,因此,选用调节水量在略大于105L的气压罐是比较合适的,如选用调节水量大大超出105L (上述压力范围内)的气压罐,虽然水泵的间歇时间更长,但超过7小时已经开始进入用水阶段,延长睡眠时间已无意义,因此,不是气压罐体积越大效果越好。 假设需要选用的气压罐容积为V,气压罐预充压力为P2,则由波义耳(RobertBoyle)气体定律,在一定温度下气体压力(P)与容积(V)乘积等于常数的原理, 即PV =定值,P1×V1=P2×V2=P×V 其中:P=气压罐预充气体压力 V=气压罐体积(也为初始状态预充气体的体积) V1=系统压力为P1时气压罐气体的体积 V2=系统压力为P2时气压罐气体的体积 由以上可知:0.5V1=0.15V2=0.15V V1=0.3V2 V2=V 气压罐的调节容积△V=V-V1=0.7V=105L V=150L

即应该选用体积为150L的气压罐,因为气压罐型号的限制,所以按选大不选小和就近原则,来选择相应的气压罐。 热力系统中(锅炉、空调、热泵、热水器等)膨胀罐的选型 V = C =系统中水总容量(包括锅炉、管道、散热器等) e =水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差),标准设备中e=0.0359(90℃) P1=膨胀罐的预充压力 P2=系统运行的最高压力(即系统中安全阀的起跳压力)V =膨胀罐的体积 不同温度下水的膨胀率 温度(℃) 4 10 20 30e 0.00013 0.00027 0.00177 0.00435温度(℃) 40

阀门基础知识测试题-及答案(工艺)

阀门基础知识测试题 姓名:分数: 一、填空题(每空1分,共50分) 1、阀门按管道连接方式分为:(法兰连接),(螺纹连接),(焊接连接)、夹箍连接、(卡套连接)。4 2、“DN100”表示的含义是(阀门通径为100mm)。1 3、写出下面编号的阀门类型:H(止回阀)、D(蝶阀)、J(截止阀)、A(安全阀)Z(闸阀)、Q(球阀)6 4、阀门的试验压力方法有(强度试验压力)和(密封试验压力)。2 5、阀门按照压力分类为:(真空阀)、(低压阀)、(中压阀)、(高压阀)、(超高压阀)。5 6、阀门填料函由(填料压盖)、(填料)和填料垫组成。填料函结构分为(压紧螺母式)、(压盖式)和波纹管式。4 7、球阀主要由(球体)、(阀体)、(密封结构)、(执行机构)等几大件组成。4 8、止回阀的作用是(防止介质倒流)。1 9、阀门的开关方法是顺时针方向为(关),逆时针方向为(开)。2 10、阀门按用途和作用可分为(闸阀),(截止阀),(止回阀)等。3 11、低压阀门:PN≤(1.6)MPa;中压阀门:PN(2.5~6.4)MPa;高压阀门:PN(10~80)MPa;超高压阀:PN(≥100)MPa。4 12、阀门是(管道)输送系统中的(控制)装置,具有导流、(截流)、(调节)、节流、防止倒流、分流或溢流卸载等功能。5 13、阀门适用的介质有:(气体介质);(液体介质);(含固体介质);腐蚀介质和剧毒介质。3 14、阀门密封副有:(平面)密封、(锥面)密封、(球面)密封。3 15、阀门的驱动形式有:手动,(蜗轮蜗杆传动),正齿轮传动,(气动传动),(液动传动),(电动传动)。3 16、阀门的密封试验通常为公称压力PN的)(1.1)倍。1 17、旋塞阀的结构中阀体形式有(直通式),(三通式),(四通式)。3

意大利阿库斯坦产品(气压罐)的选型

意大利阿库斯坦产品选型 热力系统中(锅炉、空调、热泵、热水器等)AQUASYSTEM膨胀罐(气压罐)的选型 V= C=系统中水总容量(包括锅炉、管道、散热器等) e=水的热膨胀系数(系统冷却时水温和锅炉运行时的最高水温的水膨胀率之差,见下表),标准设备中e=0.0359(90℃) P1=膨胀罐(气压罐)的预充压力 P2=系统运行的最高压力(即系统中安全阀的起跳压力) V=膨胀罐(气压罐)的体积 例如: 系统水总溶剂为400L的锅炉,安全阀起跳压力为3bar.应该选用多大体积的膨胀罐(气压罐)呢? V = == 38.3L 按选大不选小原则,最接近的是50L的膨胀罐(气压罐),即该系统需选用VAV50

定压系统中(变频供水、恒压供水等)AQUASYSTEM膨胀罐(气压罐)的选型 为避免水泵频繁启动,膨胀罐(气压罐)的调节容积应满足一定时间的水泵流量(L/min),计算公式如下: V = K×Amax× K = 水泵的工作系数,随水泵功率不同而变化,具体见下表: Amax = 水泵的最大流量(L/min) Pmax = 水泵的最高工作压力(水泵停机时系统的压力) Pmin = 水泵的最低工作压力(水泵启动时系统的压力) Ppre =膨胀罐(气压罐)的预充压力 V =膨胀罐(气压罐)的体积 其中1HP(马力)= 0.735KW 例如: 一恒压供水设备水泵功率为4HP,水泵最大流量为120L/min,系统压力低于2.2bar时水泵自动启动,系统压力达到7bar时,水泵自动停机,膨胀罐(气压罐)预充压力为2bar,该系统要选用多大的膨胀罐? 由上表可知:水泵功率为4HP时,K=0.375 V = K×Amax× =0.375×120×= 80L 正好膨胀罐(气压罐)型号里面有80L的,所以直接选用VAV80即可。

DSP公司各主流芯片比较(精)

DSP芯片介绍及其选型 引言 DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器具,其主机应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法; (2)程序和数据空间分开,可以同时访问指令和数据; (3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问; (4)具有低开销或无开销循环及跳转的硬件支持; (5)快速的中断处理和硬件I/O支持; (6)具有在单周期内操作的多个硬件地址产生器; (7)可以并行执行多个操作; (8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。 在我们设计DSP应用系统时, DSP芯片选型是非常重要的一个环节。在DSP系统硬件设计中只有选定了DSP芯片,才能进一步设计其外围电路及系统的其他电路。因此说,DSP芯片的选择应根据应用系统的实际需要而确定,做到既能满足使用要求,又不浪费资源,从而也达到成本最小化的目的。

DSP实时系统设计和开发流程如图1所示。 主要DSP芯片厂商及其产品 德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的TMS320系列DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用、功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、 TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等。

电磁阀基本知识及选型

电磁阀 一、电磁阀定义 制流体的自动化基础元件,属于执行器,并不限于液压、气动。用在工业 不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、安全阀、方向控制阀、速度调节阀等。 二、电磁阀工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔 哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开 断就控制了机械运动。 三、电磁阀分类 1、电磁阀从原理上分为三大类: 1.1直动式电磁阀 工作原理: 电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。

工作特点: 在真空、负压、零压时能正常工作,但通径一般不超过25mm。 1.2分布直动式电磁阀 工作原理: 它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 工作特点: 在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。 1.3先导式电磁阀 工作原理: 通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。 工作特点: 流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。 2、电磁阀从阀结构和材料上的不同与原理上的区别,分为六个分 支小类: 2.1直动膜片结构。

气压罐定压计算

附录C 设置隔膜式气压罐定压的采暖空调系统设备选择和补水泵工作压力计算例题 C. 1 例题一 某两管制空调系统冬季采用60/50℃热水,系统水容量约75m3;定压补水点设在循环水入口,根据空调设备和管网允许工作压力,确定循环水泵入口最高允许工作压力为 1.OMPa(1000kPa);采用不容纳膨胀水量的隔膜式气压罐定压;补水箱与系统最高点高差为45m;试进行定压补水设备的选择计算。 C. 1. 1 根据本措施6. 9节的有关规定和公式进行计算,各公式和图示中容积和压力名称如下: V P——系统的最大膨胀水量(L); V t——气压罐计算调节容积(L); V min—气压罐最小总容积(L); V Z——气压罐实际总容积(L); P1——补水泵启动压力(表压kPa); P2——补水泵停泵压力(电磁阀的关闭压力)(表压kPa); P3——膨胀水量开始流回补水箱时电磁阀的开启压力(表压kPa) P4--安全阀开启压力(表压kPa); ——补水泵启动压力P1和停泵压力P2的设计压力比; ——容积附加系数,隔膜式气压罐取1.05。 C.1. 2 补水泵选择计算 1 系统定压点最低压力为P1=45+0.5+1=46.5(m)=465(kPa)。 2 考虑到补水泵的停泵压力P2,确定补水泵扬程为(P1十P2)/2=(465十810)/ 2=638(kPa)(P2数值见C. 1.3条3款),高于P1压力173kPa,满足6. 9.3条1款要求。 3 补水泵设计总流量应不小于75×5%=3.75(m3/h)。 4 选用2台流量为2.Om3/h,扬程为640kPa(扬程变化范围为465~810kPa)的水泵,平时使用1台,初期上水或事故补水时2台水泵同时运行。 C. 1.3 气压罐选择计算 1 调节容积不宜小于3min补水泵设计流量。 1)当采用定速泵时V t≥2.0(m3/h)×3/60(h)=0.1(m.3)=100(L)。 2)当采用变频泵时V t≥2.0(m3/h)×1/3×3/60(h)=0.033(m3)=33(L)。 2 系统最大膨胀量为:V P=14.51(L/m3)×75(m3)=1088(L)(单位容积膨胀量见6.9.6条注释),此水量回收至补水箱。 3 气压罐最低和最高压力确定: 1)安全阀开启压力取P4=1000(kPa)(补水点处允许工作压力); 2)膨胀水量开始流回补水箱时电磁阀的开启压力P3=0.9Pa=0.9×1000=900(kPa); 3)补水泵启动压力P1=465(kPa); 4)补水泵停泵压力(电磁阀的关闭压力)P2=0.9P3=0.9×900=810(kPa);

DSP厂商及选型参考(精)

DSP厂商 1.德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的丁MS320系列 DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP 应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括 TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx 等。 (2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括 TMS320C54x, TMS320C54xx,TMS320C55x等。 (3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括 TMS320C62xx、TMS320C64xx、TMS320C67xx等。 2.美国模拟器件公司 ADI公司在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片,其定点DSP芯片有ADSP2101/2103/2105、ADSP2111/2115、 ADSP2126/2162/2164、ADSP2127/2181、ADSP-BF532以及Blackfin系列,浮点DSP 芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101、TS201S。 Motorola公司 Motorola公司推出的DSP芯片比较晚。1986年该公司推出了定点DSP处理器 MC56001;1990年,又推出了与IEEE浮点格式兼容的的浮点DSP芯片MC96002。 还有DSP53611、16位DSP56800、24位的DSP563XX和MSC8101等产品。

安全阀知识概述及选型

安全阀知识概述及选型 一、安全阀知识概述 安全阀是锅炉、压力容器和其他受压力设备上重要的安全附件。其动作可靠性和性能好坏直接关系到设备和人身的安全,并与节能和环境保护紧密相关。 二、安全阀的定义所谓安全阀广义上讲包括泄放阀,从管理规则上看,直接安装在蒸汽锅炉或一类压力容器上,其必要条件是必须得到技术监督部门认可的阀门,狭义上称之为安全阀,其他一般称之为泄放阀。安全阀与泄放阀在结构和性能上很相似,二者都是在超过开启压力时自动排放内部的介质,以保证生产装置的安全。由干存在这种本质上类似性,人们在使用时,往往将二者混同,另外,有些生产装置在规则上也规定选用哪种均可。因此,二者的不同之处往往被忽视。从而也就出现了许多间题。如果要将二者作出比较明确的定义,则可按照《ASME锅炉及压力容器规范》第一篇中所阐述的定义来理解: 1、安全阀(Safety Valve)一种由阀前介质静压力驱动的自动泄压装置。其特征为具有突开的全开启动作。用于气体或蒸汽的场合。 2、泄放阀(Relief Valve),又称溢流阀一种由阀前介质静压力驱动的自动泄压装置。它随压力超过开启力的增长而按

比例开启。主要用于流体的场合。 3、安全泄放阀(Safet Relief Valve),又称安全溢流阀一种由介质压力驱动的自动泄压装置。根据使用场合不同既适用作安全阀也适用作泄放阀。以日本为例,给安全阀和泄放阀作出明确定义的比较少,一般用作锅炉这类大型贮能压力容器的安全装置称之为安全阀,安装在管道上或其他设设施上的称之为泄放阀。不过,若按日本通产省的《火力发电技术标准》的规定看,设备上安全保障的重要部分,指定使用安全阀,如锅炉、过热器、再热器等。而在减压阀的下侧需要与锅炉和涡轮机相接的场合,都需要安装泄放阀或安全阀。如此看,安全阀要求比泄放阀更具可靠性。另外,从日本劳动省的高压气体管理规则、运输省及各级船舶协会的规则中,对安全排放量的认定和规定来看,我们把保证了排放量的称之为安全阀,而不保证排放量的阀门称作泄放阀。在国内不论全启式或微启式统称为安全阀。 三、安全阀的选型 1、安全阀的分类 目前大量生产的安全阀有弹簧式和杆式两大类。另外还有冲量式安全阀、先导式安全阀、安全切换阀、安全解压阀、静重式安全阀等。弹簧式安全阀主要依靠弹簧的作用力而工作,弹簧式安全阀中又有封闭和不封闭的,一般易燃、易爆或有毒的介质应选用封闭式,蒸汽或惰性气体等可以选用不

隔膜式气压罐容积计算及压力等级选择

水是非压缩性流体,少量水流出泵内或进入管网都会引起压力急剧变化,若供水设备无气压罐稳压,设备运行在高峰期供水时,用水量频繁变化导致水泵和管网的压力不断频繁上升或减小,水泵会因此而频繁启停或频繁加减速运行(变频恒压的才会加减速运行),特别当设备功率较大时,会给压力控制器、继电器及电机造成很大冲击,从而影响设备的整体性能及寿命。因此,无论是气压式供水设备还是变频恒压供水设备,选择正确容积的气压罐都是很有必要的。 如图,无气压罐会对水压波动和水泵启动次数造成严重影响。 一、容积计算。 一般地,水泵每小时启动次数和功率的关系表如下:

1、有效容积Vesp计算 Vesp=16.5×Q/n,其中,Q为水泵流量,n为每小时启动次数 2、根据水泵启停特性计算出有效容量系数 Z=(Pi+1.033)/(Pf+1.033) 其中,Z为有效流量系数,即已知水泵启停压力条件下,压力罐有效容量使用率比值。 Pi为水泵启动压力=实际扬程+管路损失+系统所需压力 Pf为水泵停止压力=一般为Pi+(1-2)kg/cm2 3、根据Vesp和Z计算出压力罐实际容量 Vt=Vesp/Z 二、压力等级选择。 一般生活供水所用压力罐压力等级分为1.0Mpa,1.6Mpa和2.5Mpa,根据实际所选泵的压力范围值正确匹配压力罐,压力罐压力等级必须大于水泵压力值。 三、关于压力罐的一些小常识 附1:压力罐的作用 1、水泵刚开始运行时,给压力罐补满水,随着压力增大达到设定上限压力值后,水 泵停止运行,压力罐开始起稳压的作用。

2、用水时,用水量较少时,由压力罐供水,供水持续进行时,罐内压力持续降低达到下限值时,水泵启动开始变频运行增压。 3、供水量小或者用水停止时,水泵继续向压力罐补水,当压力上升到上限时,水泵停止。往复循环达到减少水泵启动的次数。 附2:无压力罐是什么现象? 水是非压缩性流体,少量水流出泵内或进入管网都会引起压力急剧变化,当一台机组无压力罐时,特别是高峰期供水时,用水量频繁导致水泵和管网的压力持续上升或减小,水泵会因此而频繁启停,特别当设备功率较大时,会给压力控制器、继电器及电机造成很大冲击,从而影响设备的整体性能及寿命。

德州仪器公司(TI)最新DSP选型指南

DSP Selection Guide

Worldwide Contact Information

Table of Contents Introduction to TI DSPs Introduction to TI DSP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 DSP Developer’s Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 TMS320? DSPs TMS320C6000? DSP Platform – High Performance DSPs TMS320C64x?, TMS320C62x?, TMS320C67x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Complementary Analog Products for the TMS320C6000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .10 TMS320C5000? DSP Platform – Industry’s Best Power Efficiency TMS320C55x?, TMS320C54x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Complementary Analog Products for the TMS320C5000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .17 TMS320C2000? DSP Platform – Most Control-Optimized DSPs TMS320C28x?, TMS320C24x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Complementary Analog Products for the TMS320C2000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .24 TMS320C3x? DSP Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Complementary Analog Products for the TMS320C3x DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 eXpressDSP? Real-Time Software Technology eXpressDSP Real-Time Software Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Code Composer Studio? Integrated Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 DSP/BIOS? Scalable Real-Time Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 TMS320? DSP Algorithm Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 TI DSP Third-Party Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 eXpressDSP-Compliant Algorithms and Plug-Ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Support Resources DSP Development Tools Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 DSP Development Tools Feature Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Online Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Training Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

阀门的基础知识及选择

筑龙网 W W W .Z H U L O N G .C O M 阀门 蝶阀 蝶阀的蝶板安装于管道的直径方向。在蝶阀阀体圆柱形通道内,圆盘形蝶板绕着轴线旋转,旋转角度为0°~90°之间,旋转到90°时,阀门则牌全开状态。 蝶阀结构简单、体积小、重量轻,只由少数几个零件组成。而且只需旋转90°即可快速启闭,操作简单,同时该阀门具有良好的流体控制特性。蝶阀处于完全开启位置时,蝶板厚度是介质流经阀体时唯一的阻力,因此通过该阀门所产生的压力降很小,故具有较好的流量控制特性。蝶阀有弹密封和金属的密封两种密封型式。弹性密封阀门,密封圈可以镶嵌在阀体上或附在蝶板周边。 采用金属密封的阀门一般比弹性密封的阀门寿命长,但很难做到完全密封。金属密封能适应较高的工作温度,弹性密封则具有受温度限制的缺陷。 如果要求蝶阀作为流量控制使用,主要的是正确选择阀门的尺寸和类型。蝶阀的结构原理尤其适合制作大口径阀门。蝶阀不仅在石油、煤气、化工、水处理等一般工业上得到广泛应用,而且还应用于热电站的冷却水系统。 常用的蝶阀有对夹式蝶阀和法兰式蝶阀两种。对夹式蝶阀是用双头螺栓将阀门连接在两管道法兰之间,法兰式蝶阀是阀门上带有法兰,用螺栓将阀门上两端法兰连接在管道法兰上。 阀门的强度性能是指阀门承受介质压力的能力。阀门是承受内压的机械产品,因而必须具有足够的强度和刚度,以保证长期使用而不发生破裂或产生变形。 球阀 球阀是由旋塞阀演变而来。它具有相同的旋转90度提动作,不同的是旋塞体是球体,有圆形通孔或通道通过其轴线。球面和通道口的比例应该是这样的,即当球旋转90度时,在进、出口处应全部呈现球面,从而截断流动。 球阀只需要用旋转90度的操作和很小的转动力矩就能关闭严密。完全平等

DSP芯片的选用

1 数字控制的优缺点 在IGBT模块使用中,除注意最高耐压、最大电流、最高开关频率、尖峰吸收外,还要特别注意最小关断时间、开通时间、半桥电路的死区时间,因为IGBT 可靠开通或关断都需要一定的时间,若IGBT开通短于最小开通时间又关断或关断短于最小关断时间又开通,由于尚未完成开关状态转换,IGBT工作于放大区城,长时间工作在这种状态将使IGBT的开关损耗急剧增大,易导致过热失效;对于半桥电路,若上管(或下管)尚未可靠关断就开通下管(上管),将导致半桥电路直通,过电流失效。数字控制器与模拟控制器相比较,具有可靠性高、参数调整方便、更改控制策略灵活、控制精度高、对环境因素不敏感等一系列优点,在用于IGBT模块控制时,具有下列独特优点: 1. 可严格控制最小开通、最小关断时间。 2. 可严格控制死区时间。 3. 对于码盘、位置传感器、同步信号一类数字轴 人、反馈信号,可直接使用无须变换。 4. 可以非常简单地实现SPWM控制。 5. 可将整个控制系统划分为若于个不同的工作 状态,针对不同的状态施加不同的控制策略。 6. 借助于电流传感器、比较器,可实现限流保 护,限流关断达到恒转矩控制。 7. 可进行时序滤波,进一步提高抗干扰能力。 8. 多个数字芯片可相互监视、互为看门狗。 9 强干扰环境、远距离控制可方便地采用奇偶。 校验、光电隔离、电流环等数字通信技术。 10. 可进行故障自诊断、显示。 当然,目前高档数字控制器与模拟控制器相比成本略高,这一方面由于数字控制芯片FPGA,DSP价格较高,另一方面研究阶段难以确定控制策略及所需资源,一般选择芯片及资派均留有较大余f有关。随若技术的发展,FPGA,DSP等数字控制芯片价格必将下降,对数字控制技术研究的深人也将使芯片选择更准确。数字控制器的另一个缺点是存在上电程序加载时间,必须解决强电与控制电的上

电磁阀原理及选型

电磁阀 一、电磁阀定义 是用来控制流体的自动化基础元件,属于执行器,并不限于液 和其他的参数。电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的 电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、 安全阀、方向控制阀、速度调节阀等。 二、电磁阀工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同 闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的 就控制了机械运动。 三、电磁阀分类 1、电磁阀从原理上分为三大类: 1.1直动式电磁阀 工作原理:

开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。 工作特点: 在真空、负压、零压时能正常工作,但通径一般不超过25mm。 1.2分布直动式电磁阀 工作原理: 它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 工作特点: 在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。 1.3先导式电磁阀 工作原理: 通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。

工作特点: 流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。 2、电磁阀从阀结构和材料上的不同与原理上的区别,分为六个分 支小类: 2.1直动膜片结构。 2.2分步直动膜片结构。 2.3先导膜片结构。 2.4直动活塞结构。 2.5分步直动活塞结构。 2.6先导活塞结构。 3、电磁阀按照功能分类: 水用电磁阀、蒸汽电磁阀、制冷电磁阀、低温电磁阀、燃气电磁阀、消防电磁阀、氨用电磁阀、气体电磁阀、液体电磁阀、微型电磁阀、脉冲电磁阀、液压电磁阀常开电磁阀、油用电磁阀、直流电磁阀、高压电磁阀、防爆电磁阀等。 四、电磁阀选型 电磁阀选型时首先依次遵循安全性,适用性,可靠性,经济性四大原则,其次根据六个方面的现场工况(即管道参数、流体参数、压力参数、电气参数、动作方式、特殊要求进行选择)。 4.1四大原则 安全性:

DSP芯片介绍及其选型

引言 DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器具,其主机应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点:(1)在一个指令周期内可完成一次乘法和一次加法; (2)程序和数据空间分开,可以同时访问指令和数据; (3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问; (4)具有低开销或无开销循环及跳转的硬件支持; (5)快速的中断处理和硬件I/O支持; (6)具有在单周期内操作的多个硬件地址产生器; (7)可以并行执行多个操作; (8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。 在我们设计DSP应用系统时,DSP芯片选型是非常重要的一个环节。在DSP系统硬件设计中只有选定了DSP芯片,才能进一步设计其外围电路及系统的其他电路。因此说,DSP芯片的选择应根据应用系统的实际需要而确定,做到既能满足使用要求,又不浪费资源,从而也达到成本最小化的目的。 DSP实时系统设计和开发流程如图1所示。 主要DSP芯片厂商及其产品 德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也

最广泛,TI公司生产的TMS320系列DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用、功能强大等特点,所以逐渐成为目前最有影响、最 为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等。 (2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括TMS320C54x、TMS320C54xx、TMS320C55x等。 (3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括TMS320C62xx、TMS320C64xx、TMS320C67xx等。 美国模拟器件公司 ADI公司在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片,其定点DSP 芯片有ADSP2101/2103/2105、ADSP2111/2115、ADSP2126/2162/2164、ADSP2127/2181、ADSP-BF532以及Blackfin系列,浮点DSP芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101,TS201S。Motorola公司 Motorola 公司推出的DSP芯片比较晚。1986年该公司推出了定点DSP 处理器MC56001;1990年,又推出了与IEEE浮点格式兼容的的浮点DSP芯片MC96002。 还有DSP53611、16位DSP56800、24位的DSP563XX和MSC8101等产品。 杰尔公司 杰尔公司的SC1000和SC2000两大系列的嵌入式DSP内核,主要面向电信基础设施、移动通信、多媒体服务器及其它新兴应用。 DSP芯片的选型参数 根据应用场合和设计目标的不同,选择DSP芯片的侧重点也各不相同,其主要参数包括以下几个方面: (1)运算速度:首先我们要确定数字信号处理的算法,算法确定以后其运算量和完成时间也就大体确定了, 根据运算量及其时间要求就可以估算DSP芯片运算速度的下限。在选择DSP芯片时,各个芯片运算速度的衡量标准主要有: MIPS(Millions of Instructions Per Second),百万条指令/秒,一般DSP为20~100MIPS,使用超长指令字的TMS320B2XX为2400MIPS。必须指出的是这是定点DSP芯片运算速度的衡量指标,应注意的是,厂家提供的该指标一般是指峰值指标,因此,系统设计时应留有一定的裕量。 MOPS(Millions of Operations Per Second),每秒执行百万操作。这个指标的问题是什么是一次操作,通常操作包括CPU操作外,还包括地址计算、DMA访问数据传输、I/O操作等。一般说MOPS越高意味着乘积-累加和运算速度越快。MOPS可以对DSP芯片的性能进行综合描述。

阀门的基本常识ft Word 文档

阀门基础知识
2010-6-3 11:29:00 来源:深圳市德隆泰科技有限公司
一、阀门的概况 阀门在国民经济中无所不有,它与生产、建设、国防和人民生活都有着密切关系。比 如在石油、天然气、煤炭、矿山的开采、提炼和输送;化工、医药、轻工、造纸、食 品的加工;水电、火电、核电的电力系统;农业灌溉;冶金系统;城市和工业企业的 给排水,供热、供气、排污系统;船舶、车辆、航天、国防系统;各种运动机械的流 体系统等等均离不开阀门产品。 阀门安装在各种管路系统中,作为一种管路附件,主要用来控制流体的压力、流量和 流向,比如截断、调节、止回、分流、安全、减压等。实际上由于流体的压力、温度、 流量及化学物理性质不同,对流体系统控制要求和使用要求也不同。正是由于阀门的 特殊性,也决定了阀门的复杂性,所以阀门的种类和数量之大是任何一种机械产品无 法比拟的。 为了对阀门有一个系统、概况的了解,下面对几个基本知识阐述如下: 一)、阀门的分类 阀门的种类繁多,国内外对阀门的分类方法也很多,为了掌握阀门的类别,目前国内 外最常用的分类方法是按工作原理、 作用、 按结构不同来划分。 即将阀门分为: 闸阀、 截止阀、止回阀、球阀、蝶阀、旋塞阀、隔膜阀、安全阀、疏水阀、节流阀、减压阀 和调节阀。 在此基础上,每种阀门又因连接方式、压力、温度、口径、介质、驱动方式等参数的 不同而派生出不同的结构。 二)、阀门具备的基本性能 阀门具备的最基本性能是强度,其次是针对不同的阀类应具备密封功能、调节功能、 动作性能(如安全阀、疏水阀的起跳性能,减压阀的动作灵敏性等)和流通性能(如

气压罐选择计算

气压罐选型,怎样选择气压罐 点击次数:326 发布时间:2011-8-18 气压罐选型,怎样选择气压罐 气压罐在第二次生活供水中是应用最广泛的产品,气压罐工作原理是当外界有压力的水进入气压罐气囊内时,密封在罐内的气气被压缩,根据波义耳气体定律,气体受到压缩后体积变小压力升高,直到气压罐内气体压力与水的压力达到一致时停止进水。当水流失压力减低时气压罐内气体压力大于水的压力,此时气体膨胀将气囊内的水挤出补到系统,直到气体压力与水的压力再次达到一致时停止排水。 气压罐选型 气压罐增压系统的设计计算内容主要有两个部分,即气压罐总容积的计算和每个压力控制点压力值的计算。总容积的计算确定所选压力罐的大小,压力的计算确定稳压泵的启、停范围以及开启消防泵的压力值。 2.2.1气压罐的总容积V 气压罐的总容积一般按公式V= βV X÷(1- αb)计算。 式中:V为气压罐的总容积m3;V X为消防水总容积等于消防贮水容积、缓冲水容积和稳压水容积之和;β为气压罐的容积系数,卧式、立式、隔膜式气压罐的容积系数分别为1.25,1.10和1.05;αb 为气压罐最低工作压力和最高工作压力之比(以绝对压力计),一般宜

采用0.65~0.85。 消防贮水总容积(V X):设置气压罐的目的是为了保证火灾发生初期消防泵没有启动之前消火栓和喷头所需的水压,这段时间约为30s。对于消火栓给水系统,按同时使用2支水枪(每支水枪流量5 L/s)计,消防贮水容积为2*5*30=300L;对于自动喷水灭火系统,按5个喷头同时开启,每个喷头以1 L/s计,消防贮水容积为5*1*30=150L。当2个系统共用气压罐时,消防贮水总容积为300+150=450L。 缓冲水容积V1一般不小于20L,稳压水容积V2一般不小于50L。 2.2.2压力控制点压力值的计算 气压罐设4个压力控制点,如图2所示。其中:P1为气压罐最低工作压力点或气压罐充气压力,即消防贮水容积的下限水位压力,等于最不利点消火栓所需的水压H min,其计算方法同增压泵;P2为最高工作压力,即启动消防泵的压力值。按下式计算: P2 =(P1+ 0.098)÷ αb - 0.098 P01为稳压水容积下限水位压力,此时启动稳压泵;P02为稳压水容积上限水位压力,即气压罐最高工作压力,此时停止稳压泵。 由于压力传感器有精度、稳定性的要求,一般使缓冲水容积的上、下限水位压差不小于0.02~0.03 Mpa;稳压水容积的上、下限水位压差不小于0.05 ~0.06Mpa。则: P01 = P2 + 0.02~0.03Mpa P02 = P01 + 0.05~0.06Mpa = P2 + 0.07~0.09MPa 2.2.3计算举例

阀门锁选型汇总

阀门锁选型汇总 阀门锁具是主要用来锁定阀门,保护阀门使用安全。 阀门锁的作用: 阀门锁具属于工业安全锁具的一个类别,目的是是为了确保用阀门的设备被绝对关闭,设备保持在安全状态。用锁具能预防设备不慎开动,造成伤害或死亡,还有另一种目的是起警示作用。 阀门锁具的分类: 常用的阀门锁具分为球阀锁、蝶阀锁、闸阀锁、旋转阀锁、万用阀门锁具等。 球阀锁主要用来锁定球阀,保护球阀安全。 闸阀锁适用于闸阀的的上锁工作,能更好的保护闸阀安全。 蝶阀锁适用于常见规格的所有蝶阀上锁,更好的保护蝶阀开关,防止误碰事故发生。 阀门锁具的选购: 阀门锁具进入国内市场时间还很短,市场上阀门锁具的产品也是参差不齐,良莠不齐,很多企业的采购人员在挑选阀门锁具的时候有些无所适从,所以用户在挑选锁具的时候,就应该了解一些小常识,这样才可能选到合适的阀门锁具。 1、应该挑选知名度高,历史悠久的大品牌或者品牌代理商,因为他们有足够的经济实力和稳定的网络体系去保障服务和售后,避免因产品质量问题导致的纠纷。 2、阀门分为球阀、蝶阀、闸阀、旋转阀等等类型,所以在挑选阀门锁具的时候也应该搞清楚所需的阀门类型。 3、阀门锁具由多种材质可以选择,根据锁具使用的环境、如空气干湿度,是否高温,是否需要耐酸碱,来选择合适的锁具。 4、看安全标准,国内外对于五金锁具都有非常严格的标准,小厂家会为了节省成本不按标准执行,而大品牌一般都会遵守标准。 5、阀门尺寸,不同的阀门考虑的尺寸方面不一样,选择相配套的阀门锁具。 6、检查阀门锁具包装的标识、标志是否齐全(包括产品的执行标准、等级、生产企业名称、地址、生产日期)包装物是否牢固,说明书内容与产品是否相符,慎防有夸大而与事实不符现象。

相关文档
最新文档