活性污泥法反应动力学

活性污泥法反应动力学
活性污泥法反应动力学

南京大学《物理化学》练习 第十章 化学动力学基础(一)

第十章化学动力学基础(一) 返回上一页 1. 298 K时N2O5(g)分解反应半衰期t1/2为5.7 h,此值与N2O5的起始浓度无关,试求: (1) 该反应的速率常数. (2) 作用完成90%时所须的时间. 2. 某人工放射性元素放出α粒子,半衰期为15 min ,试问该试样有80%分解,需时若干? 3. 把一定量的PH3(g)迅速引入温度为950 K的已抽空的容器中,待反应物达到该温度时开始计时(此时已有部分分解),测得实验数据如下: t/s 0 58 108 ∞ P/kPa 35.00 36.34 36.68 36.85 已知反应 4pH3(g) P4(g) + 6H2(g) 为一级反应,求该反应的速率常数k值(设在t=∞时反应基本完成) 4. 在某化学反应中随时检测物质A的含量,1小时后,发现A已作用了75%,试问2小时后A还剩余多少没有作用?若该反应对A 来说是: (1) 一级反应. (2) 二级反应(设A与另一反应物B起始浓度相同) (3) 零级反应(求A作用完所用时间) 5. 在298 K时, NaOH与CH3COOCH3皂化作用的速率常数k2与NaOH与CH3COOC2H5皂化作用的速率常数k2' 的关系为k2=2.8k2' .试问在相同的实验条件下,当有90% CH3COOCH3被分解时, CH3COOC2H5的分解百分数为若干?

6. 对反应2NO(g) +2H2(g)---> N2(g) +2H2O(l) 进行了研究,起始时NO与H2的物质的量相等.采用不同的起始压力相应的有不同的半衰期,实验数据为: p0 /kPa 47.20 45.40 38.40 33.46 26.93 t1/2/min 81 102 140 180 224 求该反应级数为若干? 7. 反应A+B P的动力学实验数据如下, [A]0/(mol·dm-3) 1.0 2.0 3.0 1.0 1.0 [B]0/(mol·dm-3) 1.0 1.0 1.0 2.0 3.0 r0/(mol·dm-3·s-1) 0.15 0.30 0.45 0.15 0.15 若该反应的速率方程为 ,求x和y的值. 8. 碳的放射性同位素在自然界树木中的分布基本保持为总碳量的 1.10×%.某考古队在一山洞中发现一些古代木头燃烧的灰烬,经分析的含 量为总碳量的9.87×%,已知的半衰期为5700年,试计算这灰距今约有多少年? 9. 某抗菌素在人体血液中呈现简单级数的反应,如果给病人在上午8点注射一针抗菌素,然后在不同时刻t测定抗菌素在血液中的浓度c(以mg/100 cm3表示),得到以下数据 t/h 4 8 12 16 c /(mg/100 cm3) 0.480 0.326 0.222 0.151 (1) 确定反应的级数. (2) 求反应的速率常数k和半衰期t1/2.

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

第二章 化学反应动力学基础(答案)

第二章 反应动力学基础 一、填空题 1. 生成主产物的反应称为 主反应 ,其它的均为 副反应 。 2. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用逸度表示的速率常数f K ,则C K =n f K 。 3. 化学反应的总级数为n ,如用浓度表示的速率常数为C K ,用气体摩尔分率表示的速率常数y K , 则C K = n p RT ???? ?? y K 。 4. 化学反应速率式为βαB A C A C C K r =-,用浓度表示的速率常数为C K ,假定符合理想气体状态方程,如用压力表示的速率常数P K ,则C K =____)()(βα+RT ___P K 。 5. 反应A + B → C ,已知115.0-=s k ,则反应级数n= 1 。 6. 反应3A → P ,已知s l mol k ?=/15.0,则反应级数n=___0____。 7. 活化能的大小直接反映了 反应速率 对温度的敏感程度。 8. 对于一非恒容均相化学反应B A B A αα?,反应组分A 的化学反应速率=-A r Vdt dn r A A -=- 。( V d t dn r A A -=-、 Vdt dn r B A -=-、dt dC r A A -=-、dt dC r B A -=-) 9. 气相反应A + B → 3P + S 进料时无惰性气体,A 与B 以1∶1摩尔比进料,则膨胀因子A δ=____2___。 10. 气相反应3A + B → P + S 进料时无惰性气体,A 与B 以2∶1摩尔比进料,则膨胀因子A δ=___-2/3____ 11. 在一间歇恒容反应器中进行如下平行反应12k k A P A S ??→??→,P 为目的产物,已知0A c 的单位为[]/mol L ,1k 的单位为1s -????,2k 的单位为[]/L mol s ?,活化能12E E >。则R A = )(221A A C k C k +- 。目的产物P 的瞬时选择性P S = 1212A A A k c k c k c + ,为了提高P S ,A c 要控制得较 低 ,T 要控制得较 高 。

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d) 可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法 数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。

第十一章 化学动力学基础(一)习题

化学动力学基础(一) 一、简答题 1.反应Pb(C 2H 5)4=Pb+4C 2H 5是否可能为基元反应?为什么? 2.某反应物消耗掉50%和75%时所需要的时间分别为t 1/2和 t 1/4,若反应对该反应物分别是一级、二级和三级,则t 1/2: t 1/4的比值分别是多少? 3.请总结零级反应、一级反应和二级反应各有哪些特征?平行反应、对峙反应和连续反应又有哪些特征? 4.从反应机理推导速率方程时通常有哪几种近似方法?各有什么适用条件? 5.某一反应进行完全所需时间时有限的,且等于k c 0(C 0为反应物起始浓度),则该反应是几级反应? 6. 质量作用定律对于总反应式为什么不一定正确? 7. 根据质量作用定律写出下列基元反应速率表达式: (1)A+B→2P (2)2A+B→2P (3)A+2B→P+2s (4)2Cl 2+M→Cl 2+M 8.典型复杂反应的动力学特征如何? 9.什么是链反应?有哪几种? 10.如何解释支链反应引起爆炸的高界限和低界限? 11.催化剂加速化学反应的原因是什么? 二、证明题 1、某环氧烷受热分解,反应机理如下: 稳定产物?→??+?+??→??++??→??? +??→?432134 33k k k k CH R CH R CH RH CO CH R H R RH

证明反应速率方程为()()RH kc dt CH dc =4 2、证明对理想气体系统的n 级简单反应,其速率常数()n c p RT k k -=1。 三、计算题 1、反应2222SO Cl SO +Cl →为一级气相反应,320℃时512.210s k --=?。问在320℃ 加热90min ,22SO Cl 的分解百分数为若干?[答案:11.20%] 2、某二级反应A+B C →初速度为133105---???s dm mol ,两反应物的初浓度皆为 32.0-?dm mol ,求k 。[答案:11325.1---??=s mol dm k ] 3、781K 时22H +I 2HI →,反应的速率常数3-1-1HI 80.2dm mol s k =??,求2H k 。[答 案:113min 1.41---??=mol dm k ] 4、双光气分解反应32ClCOOCCl (g)2COCl (g)→可以进行完全,将反应物置于密 闭恒容容器中,保持280℃,于不同时间测得总压p 如下: [答案: 1.1581a =≈;-14-12.112h 5.8710s k -==?] 5、有正逆反应均为一级反应的对峙反应: D-R 1R 2R 32L-R 1R 2R 3CBr 已知半衰期均为10min ,今从D-R 1R 2R 3CBr 的物质的量为1.0mol 开始,试计算10min 之后,可得L-R 1R 2R 3CBr 若干?[答案:0.375mol] 6、在某温度时,一级反应A →B ,反应速率为0.10mol ·dm -3·s -1时A 的转化率 为75%,已知A 的初始浓度为0.50mol ·dm -3,求(1)起始反应初速率;(2)速率常数。[答案:r 0=0.40s -1 ; k = 0.80 dm 3·mol -1·s -1 ] 7、在某温度时,对于反应A+B →P ,当反应物初始浓度为0.446和0.166mol ·dm -3 时,测 得反应的半衰期分别为4.80和12.90min ,求反应级数。[答案:2] 8、某二级反应,已知两种反应物初始浓度均为0.1mol ·dm -3,反应15min 后变

活性污泥法的反应动力学原理及其应用

活性污泥法的反应动力学原理及其应用 活性污泥法反应动力学可以定量或半定量地揭示系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 它主要包括:① 基质降解的动力学,涉及基质降解与基质浓度、生物量等因素的关系;② 微生物增长动力学,涉及微生物增长与基质浓度、生物量、增长常数等因素的关系;③ 还研究底物降解与生物量增长、底物降解与需氧、营养要求等的关系。 在建立活性污泥法反应动力学模型时,有以下假设:① 除特别说明外,都认为反应器内物料是完全混合的,对于推流式曝气池系统,则是在此基础上加以修正;② 活性污泥系统的运行条件绝对稳定;③ 二次沉淀池内无微生物活动,也无污泥累积并且水与固体分离良好;④ 进水基质均为溶解性的,并且浓度不变,也不含微生物;⑤ 系统中不含有毒物质和抑制物质。 一、活性污泥反应动力学的基础——米—门公式与莫诺德模式 1、米—门公式 Michaelis—Menton 提出酶的“中间产物”学说,通过理论推导和实验验证,提出了含单一基质单一反应的酶促反应动力学公式,即米—门公式: S K S v m += m ax ν 式中:v ——酶促反应中产物生成的反应速率; m ax v ——产物生成的最高速率; m K ——米氏常数(又称饱和常数,半速常数); S ——基质浓度。

中间产物学说:P E ES S E +??+ 米门公式的图示: 2、莫诺德模式 ① 莫诺德模式的基本形式: Monod 于1942年和1950年曾两次进行了单一基质的纯菌种培养实验,也发现了与上述酶促反应类似的规律,进而提出了与米门公式想类似的表达微生物比增殖速率与基质浓度之间的动力学公式,即莫诺德模式: S K S s +?= m ax μ μ 式中: ( )x dt dx /=μ——微生物的比增殖速率,d kgVSS kgVSS ?/; m ax μ——基质达到饱和浓度时,微生物的最大比增殖速率, S ——反应器内的基质浓度,mg/l ; s K ——饱和常数,也是半速常数。 随后发现,用由混合微生物群体组成的活性污泥对多种基质进行微生物增殖实验,也取得了符合这种关系的结果。 可以假定:在微生物比增殖速率与底物的比降解速率之间存在下列比例关系: v max v=v max O K m

活性污泥反应动力学

13.3 活性污泥反应动力学及应用 13.3.1 概述 活性污泥反应动力学能够通过数学式定量地或半定量地揭示活性污泥系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 在活性污泥法系统中主要考虑有机物降解速度、微生物增长速度和溶解氧利用速度。 目前,动力学研究主要内容包括: (1)有机底物降解速度与有机物浓度、活性污泥微生物量之间的关系。 (2)活性污泥微生物的增殖速度与有机底物浓度、微生物量之间的关系。 (3)微生物的耗氧速率与有机物降解、微生物量之间的关系。 13.3.2 反应动力学的理论基础 (1)有机物降解与活性污泥微生物增殖 曝气池是一个完整的反应体系,池内微生物增殖是微生物合成反应和内援代谢两项胜利活动的综合结果,即: 微生物增殖速率= 降解有机物合成的生物量速率—内源代谢速率 式中,Y——产率系数,即微生物降解1kgBOD所合成的MLSS量,kgMLSS/kgBOD; K d——自身氧化率,即微生物内源代谢的自身减少率; 对于完全混合式活性污泥系统,曝气池中的微生物量物料平衡关系式如下: 每日池内微生物污泥增殖量=每日生成的微生物量—每日自身氧化掉的量 ∴ 式中,S0——原水BOD浓度; S e——处理出水BOD浓度; Q——日处理水量,m3/d; V——曝气池容积,m3; X——曝气池中污泥平均浓度,mg/L。 两边除以VX ,式子变为 而 q称为BOD比降解速率,其量纲与污泥负荷相同,单位一般用kgBOD/(kgMLSS?d)表示。 即, θc为泥龄。可见高去除负荷下,污泥增长很快,导致排泥加快,污泥龄就短,生物向不够丰富,因此原 水的可生化性要好。

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法探讨 摘要对活性污泥工艺的三种设计计算方法:污泥负荷法、泥龄法、数学模型法的优缺点进行了评述,建议现阶段推广采用泥龄法进行设计计算,并对泥龄法基本参数的选用提出了意见。 关键词活性污泥工艺泥龄法污泥负荷法数学模型法设计计算 活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d)

可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。 污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法

数学模型在污水处理厂中的应用

数学模型在污水处理厂中的应用 发帖人: bluesnail 点击率: 487 郝二成,常江,周军,甘一萍 (北京城市排水集团有限责任公司,北京 100063) 摘要:综述了数学模型的发展历史,以及它在国内外污水处理厂中的应用情况,并对模型应用的问题和前景进行了分析。 关键词:数学模型;模拟;污水处理厂 模拟是污水处理设计和运行控制的本质部分,数学模型的核心是从反应机理出发,在一定条件下,在时间和空间范围内模拟、预测污水处理的实际过程。数学模型的应用可以大大减少我们的实验工作量,不仅提高了工作效率,而且节省了大量人 力、物力和财力。 在发达国家,应用数学模型从事污水处理工艺开发、设计及实现污水处理厂运行管理的精确控制,已相当普遍,而我国 在这一方面尚处于起步阶段,扩展的空间很大。 1 数学模型的发展 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已 成为国际废水生物处理领域的研究热点。 传统静态模型以20世纪50 ~ 70年代推出的Eckenfelder、Mckinney、Lawrence-McCarty模型为代表,这些模型所采用的是生长-衰减机理。传统静态模型因为具有形式简单、变量可直接测定、动力学参数测定和方程求解较方便,得出的稳态结果基本满足工艺设计要求等优点,曾得到广泛应用。然而,长期实际应用也表明,这种基于平衡态的模型丢失了大量不同平衡生长状态间的瞬变过程信息,忽视了一些重要的动态现象,应用到具有典型时变特性的活性污泥工艺系统时,存在许多问题:无法解释有机物的“快速去除”现象;不能很好的预测基质浓度增大时微生物增长速度变化的滞后,要突破这些局限,必须建 立动态模型。 污水生物处理的动态模型主要包括Andrews模型、WRC模型、BioWin模型、UCT(University of Cape Town)模型、活性污泥数学模型、生物膜模型和厌氧消化模型等,其中以活性污泥数学模型研究进展最快,应用也最广。1983年,IAWQ(国际水质协会)成立了一个任务小组,以加快污水生物处理系统的设计和管理实用模型的发展和应用。首要任务是测评现有的模型,

活性污泥法动力学模型的研究进展

活性污泥法动力学模型的研究进展 [摘要]从模型的机理、功能等方面对活性污泥法动力学的微生物模型、传统静态模型和动态模型进行简要的介绍,并分析比较了各自的优缺点。 [关键词]活性污泥法模型ASM 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对于活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder 等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已成为国际废水生物处理领域的研究热点。但我国在该领域的研究尚处于起步阶段,与国际先进水平还存在很大差距。 1微生物模型 1942年,Monod发现均衡生长的细菌的生长曲线与活性酶催化的生化反应曲线类似,1949年发表了在静态反应器中经过系统研究得出的Monod模型[1]:Monod模型实质上是一个经验式,是在单一微生物对单一基质、微生物处 于平衡生长状态且无毒性存在的条件下得出的结论。Monod模型的提出使废水生物处理的设计和运行更加理论化和系统化,提高了人们对废水生物处理机理的认识,进一步促进了生物处理设计理论的发展。由于微生物模型描述的是微生物生长和限制微生物生长的基质浓度之间的关系,它是活性污泥法数学模型的理论基础。微生物模型的不断发展和计算机技术的普及同时也推动了活性污泥数学模型研究的日趋深入。 2传统静态模型 传统静态模型主要有20世纪50-70年代推出的Eckenfelder、Mckinney和Lawrence-McCarty模型,这些模型所采用的是生长-衰减机理[2]。 2.1Eckenfelder模型 该模型提出当微生物处于生长率上升阶段时,基质浓度高,微生物生长速度与基质浓度无关,呈零级反应;当微生物处于生长率下降阶段时,微生物生长主要受食料不足的限制,微生物的增长与基质的降解遵循一级反应关系;当微生物处于内源代谢阶段时,微生物进行自身氧化。 2.2McKinney模型 该模型忽略了微生物浓度对基质去除速度的影响,认为在活性污泥反应器内,微生物浓度与底物浓度相比,属低基质浓度,微生物处于生长率下降阶段,代谢过程为基质浓度所控制,遵循一级反应动力学。并首次提出活性物质的概念,

废水处理生物模型概述

安徽建筑大学 废水处理生物模型论文 专业:xx级市政工程 学生姓名:xxxx 学号:xxxxx 课题:废水处理生物模型概述 指导教师:xxx xx年xx月xx日

废水处理生物模型概述 xx (安徽建筑大学环境与能源工程学院,合肥,230022) 摘要:废水处理生物模型在污水处理厂的设计、运行控制和工艺优化等方面发挥着日益重要的作用,目前已成为了污水处理领域的研究焦点。本文综述了废水处理生物模型的研究和发展过程,并重点介绍IWA模型和神经网络法的特点及其在国内外的研究现状,阐述了国际水协会(IWA)推出的活性污泥1号、2号、2D 号、3号模型(ASM1、ASM2、ASM2D、ASM3)各自的特点和使用限制条件;介绍了几种基于ASM系列的新模型。最后对模型的研究和应用进行了展望,有待从完善模型机理,模型模块化,混合模型等方面进一步的研究生物模型。 关键字:生物模型;ASM;神经网络;活性污泥 1 引言 如何提高污水处理效率和过程优化控制策略是国内外污水处理研究领域普遍关注的问题。污水处理过程具有时变性、非线性和复杂性等鲜明特征,这使得污水处理系统的运行和控制极为复杂。此类困扰可以通过数学模型方法进行解决,特别是在当今计算技术发展迅猛的前提下,通过模拟计算以实现不同工况条件下、不同设计方案的对照比较,或模拟预测未来短时内的运行状况以便及时调整运行策略。在我国当前水环境形势下,开展污水处理过程数学模型方法研究,即具有重要的理论价值,也有紧迫的现实需要。 2 数学模型概述 2.1废水处理生物模型的发展 20世纪50年代以来,国外一些学者把反映生化过程机理的微生物生长动力学引入污水处理领域[1]。20世纪80年代末,国际水协会(IWA)提出的活性污泥1号模型(ASM1),取得了很大的成功,是早期较为,完善的污水处理数学模型研究之一。通过模拟计算,使污水处理的设计和运行更加理论化和系统化,提高了人们对污水生物处理过程的认识,不仅节省了大量的经济成本,而且提高了污水处理相关工作的质量和效率。随着时间推移,各式各样的污水处理数学模型不断出现,并且被应用于满足不同的研究和工程目的。与国外发达国家相比,我国的污水处理数学模型研究和应用稍显落后,但近年来发展十分迅速。我国较早的污水处理模型研究可以追溯到20世纪50年代采用美国大学Clemson开发的简化ASM1模拟软件SSSP对北京北小河污水处理厂运行进行了稳态模拟[2]。进入世纪以来,随着我国经济的迅速发展,水环境问题日显突出,环境法规对污水排放标准也逐渐严格,如何最低成本地提高污水处理效率、实现达标排放成为亟待解决的问题。 2.2 ASM系列的三套模型 国际水质协会(IWA)总结了以前的研究成果,对组分的划分和测定、过程的定义以及模型的表达方式等方面作了进一步的改进,于1987、1995、1999年先后推出了ASM系列的三套模型[3]。 1)ASM 1活性污泥1号模型 (ASM 1)采用了死亡-再生机理,体现了对代谢残余物的再利用。模型综合了活性污泥系统中碳氧化、硝化、反硝化的三个过程,全面体现了活性污泥系统的主要功能,成为活性污泥过程模型研究和相关模拟软件开发的基础。模型对反应组分和过程进行了细致的划分,包括13种组分, 8个反应过程, 14个动力学参数和5个化学计量系数,在表述上采用矩阵的形式[4],可以表达更多的信息,使模型更加直观,易于理解,便于计算机模拟计算。

化学反应动力学基础-学生整理版

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如 其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5 之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50× 10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。 r A =13r B =12 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

第六章生化反应动力学剖析

第六章 生物反应动力学基础(张婷婷) 请对发现的文字错误及格式等进行修订,同时对我蓝色标出的要求进行补充完善。。注意此章节中公式编辑器所编辑的公式均可正常显示并编辑,所以不用更改为word 格式。辛苦了,谢谢!孔秀琴 一、底物降解速率 底物降解速率即每天每公斤活性污泥能降解多少公斤的BOD 5,其单位为: d kgVSS kgBOD ?/5,是反映生物反应器处理能力的重要参数。生物反应系统中,反应器 容积等重要参数是根据系统的底物降解速率(污泥负荷)来确定的。底物降解速率的函数关系式如下: S k S v Xdt dS s +=max (6-1) 式中: Xdt dS —比降解速率,单位 d -1 m a x v —最大比底物降解速率,即单位微生物量利用底物的最大速率 K S —饱和常数 X —微生物浓度 S —底物浓度 环境工程中,一般S 较小,当S K S ≤≤时,分母略去S ,并令 2max k k s =υ,,即可得下式: S k Xdt dS 2= (6-2) 上式积分可得:错误!未找到引用源。 t X t S S ??-=2k 0e (6-3) 那么已降解的底物含量为: )(t X k t S S S S ??-?=-=2e -100 (6-4) 式中:?S —降解的有机底物浓度

0S —初始的有机底物浓度 t S —t 时刻剩余的有机底物浓度 上式中,因一般生物系统活性污泥浓度x 为定值,所以可令12k X k =,同时把已降解的底物浓度用BOD t 浓度代替,初始底物浓度用BOD U 代替,,即得下式: )1(1t k u t e BOD BOD ?-= (6-5) 即得5日生化需氧量和总需氧量之间的换算关系式: (6-6) 因C o 20时,23.01 =k ,则可得到: u BOD BOD 68.05= 环境工程中,用污泥负荷来表示有机物(底物)的降解速率,是特定工艺处理能力的度量参数。在工程设计中,在确定生物反应器的容积及排泥量等关键数据时,污泥负荷是重要的设计参数,其值的选取直接关系到整个工程的造价。根据工程参数所确定的污泥负荷定义式如下: Xt S S XV S S Q N e e ) ()(00-=-= (6-7) 式中:N —污泥负荷,单位kg/kgVSS ﹒d V —反应器的有效容积,单位m 3 污泥负荷即底物比降解速率,其函数关系式也可写作 S k S k S N s 2max =+=υ (6-8) 二、微生物增殖 有机底物经过微生物降解作用后,其中一部分经氧化产能代谢为H 20和CO 2、小分子的有机物等,一部分则通过微生物合成作用转变为新的细胞物质,表现为微生物的增殖,同时微生物还通过内源呼吸作用而不断衰亡,表现为污泥的衰减。所以底物降解和微生物增殖之间存在着必然联系。生物反应系统需要根据微生物的增殖速率来确定泥龄、进而确定剩余污泥排放量等重要数据,所以其相互之间的关系可用下式表示: d K Xdt dS Y Xdt dX -= (6-9)

活性污泥系统模拟软件

第九章污水处理好氧系统模拟软件 第一节污水处理系统模拟软件研究的必要性当前,活性污泥法在污水处理领域得到了广泛应用,形成了多种多样的的污水处理工艺,针对这样一个多变量、强耦合、高度非线性、时变时滞系统,国内外提出了多种数学模型,并以此加快工艺改进、优化决策、提高污水处理设计水平。其中,模拟有机物、氮和磷去除的活性污泥系统模型(activated sludge models,简称ASMs)系列模型是当今活性污泥系统模拟的主流模型。 随着有机物降解和微生物增值的数学模型的发展,采用计算机仿真技术模拟污水处理过程得到了广泛的应用,出现了越来越多的污水处理系统专业模拟仿真软件。国外污水处理专业仿真软件的发展相对成熟,包含的模型库比较丰富,可模拟的工艺过程覆盖面广,常用的包括ASIM、SSSP、EFOR、GPS-x、SIMBA、STOAT、WEST、BioWin等。这些仿真模拟软件可以通过连接单元模块模拟污水处理工艺过程,在实际污水处理的系统评估、运行管理及工艺优化中均发挥了作用。国内相关仿真软件的应用和开发都相对较少,一般采用通用型仿真软件如Matlab/Simulink、Mathematica等研究相关模型,相比专业仿真软件效率较低。 针对新业薄片公司和烟草薄片行业工业生产废水处理过程,国外污水处理专业模拟软件和通用型仿真软件都存在一些问题。对于国外污水处理专业软件:1.没有中文界面与语言支持:2.价格昂贵,一般包括单独使用费用和培训费用,如果进行二次开发和研究,需要另外购买版权或研究人员版本;3.新业薄片公司工业废水处理设施施工完成后,在较长时间内基本处理工艺流程不会改变,这意味着商业软件中全品类的处理模块、工艺单元、模型结构等只能选择其中某几项使用,其它功能或模块都得不到应用,软件无法获得理想性价比。对于通用型仿真软件来讲:1.仿真模型移植性差,与仿真软件本身绑定,难以封装到污水处理的监测、控制系统中;2.缺少可视化界面或人机交互功能,相较商业软件良好的人机接口而言,通用型仿真软件多采用命令行实现,参数修改比较繁琐。此外,由于废水种类、地域差异、暴雨径流和处理地地质条件等均会影响废水的水质组分,不同的废水及其特定的处理工艺,有其特有的化学计量系数和动力学参数,因此模型进水水质组分及部分模型参数的确定直接关系到模拟预测的准确程度,国外

活性污泥的增长规律研究讲解

三.活性污泥的增长规律 1、活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 2、一般可用活性污泥的增长曲线来描述:(见附图1) 注意:1)间歇静态培养; 2)底物是一次投加; 3)图中同时还表示了有机底物降解和氧的消耗曲线。 ● F/M 值: 在温度适宜、DO 充足、且不存在抑制物质的条件下,活性污泥微生物的增殖速率主要取决于微生物与有机基质的相对数量,即有机基质(Food )与微生物(Microorganism )的比值,即F/M 值。 F/M 值也是影响有机物去除速率、氧利用速率的重要因素。 实际上,F/M 值就是以BOD 5表示的进水污泥负荷(5sBOD L ),即: )(55d kgVSS kgBOD X V B Q L M F v i sBOD ???== 3、一般来说,可将增长曲线分为以下四个时期: (1) 适应期;(2)对数增长期;(3)减速增长期;(4)内源呼吸期。 ● 适应期: (1)是活性污泥微生物对于新的环境条件、污水中有机物污染物的种类等的一个短暂的适应过程; (2)经过适应期后,微生物从数量上可能没有增殖,但发生了一些质的变化:a.菌体体积有所增大;b.酶系统也已 做了相应调整;c.产生了一些适应新环境的变异;等等。 (3) BOD 5、COD 等各项污染指标可能并无较大变化。 ● 对数增长期: (1) F/M 值高(>2.2d kgVSS kgBOD ?/5),所以有机底物异常丰富,营养物质不是微生物增殖的控制因素; (2) 微生物的增长速率与基质浓度无关,呈零级反应,它仅由微生物本身所特有的最小世代时间所控制,即只受微 生物自身的生理机能的限制; (3) 微生物以最高速率对有机物进行摄取,也以最高速率增殖,而合成新细胞; (4) 此时的活性污泥具有很高的能量水平,其中的微生物活动能力很强,导致污泥质地松散,不能形成较好的絮凝

相关文档
最新文档