《质谱分析》教学设计--质谱仪及其工作原理

《质谱分析》教学设计--质谱仪及其工作原理
《质谱分析》教学设计--质谱仪及其工作原理

第5章质谱分析

5.2 质谱仪及其工作原理

◆课程引入

问题:有质谱法的定义“将化合物形成离子和碎片离子,按其质荷比m/z的不同进行分离测定,来进行成分和结构分析的一种分析方法”能否想一下,一台质谱仪应该具有哪些基本功能?

◆学生讨论:

引导学生将问题集中于碎片离子如何形成,碎片离子如何分离以及如何检测不同的质荷比的离子。

◆最后得出此问题的核心部分——三大基本功能。

要点:分子离子化,根据其质荷比分离,检测器检测。

那么如何来实现这些功能呢?其实这就质谱法的发展史,质谱法的建立及发展就是建立在对实现这些功能的探索上来的。

教师开始本节课内容讲解

质谱仪的基本结构及工作流程

质量分析器:m/z = (H02 R2) / 2V

例题

◎总结本节课内容

思考:

◆通过学习本节内容可以得知分子经过离子化,然后不同质荷比的离子分离,在进行检测,最终输出质谱图。那么这样一张质谱图上的每条线代表的什么意思,在解谱之前,我们要来认识一下。引出下节课内容质谱图主要离子峰的类型。

四、教学方法和策略

讲解、讨论、总结、思考等直观教学法相结合

情境法——提出问题,请学生进行联想分析。

图片演示——通过多媒体展示图片,启发学生联系实际生活中的例子,来理解材料性能的重要性。

五、教学安排:

围绕上述的教学任务和内容,进行如下教学安排:

(1)能力目标:了解质谱仪的基本结构及工作流程。

(2)教学载体:以多媒体课件为载体完成本单元的知识讲授。

浅谈质谱技术及其应用word精品

浅谈质谱技术及其应用 摘要:质谱分析灵敏度高,分析速度快,被广泛应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。本文对质谱仪原理进行了介绍,并叙述了质谱仪的发展过程,对质谱仪技术在各个领域的应用进行了综述,并对其发展提出了展望。 关键词:质谱仪应用发展 1质谱技术 质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。 1.1质谱原理 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。 1.2质谱技术的发展 1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。第一台质谱仪是英国科学家弗朗西斯阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。在此期间创立的离子光学理论为仪器的研制提供了理论依据。双聚焦仪器大大提高了仪器的分辨率,为精确原子量测定奠定了基础 1.3质谱技术的分类

gc-ms的工作原理详解

GC-MS工作原理 GC气相色谱 MS 质谱 GC 把化合物分离开然后用质谱把分子打碎成碎片来测定该分子的分子量 一、气相色谱的简要介绍 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究等都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。例如活性炭、硅胶等。气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。 二、气相色谱法的特点 气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。 三、气相色谱法的应用 在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。 四、气相色谱专业知识 1 气相色谱 气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。 2 气相色谱原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸

仪器分析课程教学大纲

《仪器分析》课程教学大纲 课程编号:190142110 课程类型:必修课 英文名称:Instrumental Analysis 课程类型:基础方向课 学时:64学时讲课学时:60学时 学分:4学分 适用对象:环境科学专业、化学专业 先修课程:无机化学、分析化学、有机化学、高等数学、计算机 执笔人:刁春鹏审定人:张金萍 一、课程的性质、目的与任务以及对先开课要求 仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析及结构分析。它具有测定快速、灵敏、准确和自动化程度高等特点,它是分析化学的发展方向。 仪器分析是化学专业必修的基础课程之一。仪器分析的主要任务是介绍常用的主要仪器分析方法,介绍这些分析方法的基本原理、基本概念和典型仪器的结构与性质,利用这些仪器完成定性、定量、定结构的分析任务,为今后开展科学研究和更好的指导工农业生产打下牢固的基础。 仪器分析是建立在无机化学、分析化学、有机化学、高等数学、物理学及计算机基础上的后续课程,它为后续课和今后的科研工作打下扎实的理论基础和操作技能。它是许多学科进行科学研究不可缺少的重要测试手段,并在提高人才素质和实现现代化的进程中,发挥着越来越重要的作用。 二、教学重点与难点 本课程重点介绍光谱、电化学和色谱三大块和质谱法的内容。 掌握常用仪器分析方法的基本原理、基本知识和基本技能。如:紫外-可见吸收光谱法,红外吸收光谱法,分子发光分析法,原子发射光谱法原子吸收光谱法,电位分析法,极谱分析法,色谱分析法,核磁共振波谱法和质谱分析法等。 了解仪器的结构及常用仪器的主要组成部分,学会使用一些仪器。 要求学生初步具有根据分析的目的、要求和各种仪器分析方法的特点、应用范围,选择适宜的分析方法以解决分析化学问题的能力。了解一些仪器分析方法和技能在实际中的应用,为后续课的学习及今后科学研究打下一定的基础。 三、与其他课程关系 仪器分析是建立在无机化学、分析化学、有机化学、高等数学、物理学及计算机基础上的后续课程,用到先修课的一些基础知识。 四、教学内容、学时分配及基本要求 第1章绪论 学时:2

有机质谱仪及MS的发展与应用

有机质谱仪及MS的发展与应用 ……专业聂荣健学号:………指导老师:…… 摘要:质谱方法是一种有效的分离、分析方法。质谱仪器和光谱仪、色谱仪、核磁共振波谱仪等仪器,都是能用一台仪器分析多种物质的谱仪,都是不可缺少的近代分析仪器。有机质谱仪的应用是非常广泛的,特别是在化学及生物领域。本文介绍了质谱仪的主要组成离子进样系统及质量分析器,以及MS的发展与应用。 关键词:有机质谱离子进样系统质量分析器应用

Development and application of organic mass spectrometry and MS Name Nie Rongjian Abstract: Mass spectrometry method is an effective separation of analysis method. Mass spectrometer、 Optical measuring equipment、Chromatographic instrument、Nuclear magnetic resonance spectral instrument and so on are all the equipments that indispensability. Organic mass spectrometry has a very wide range of applications, especially in chemical and biological field. This article introduced the major composition of Mass spectrometry about Ion Injection system and Mass Analyzer and the development of MS. Key words:Organic Mass SpectrometryIon Injection System Mass Analyzer Application

(仅供参考)液相质谱联用仪 岛津LCMSMS-8040 简单操作流程 、

LCMS-8040 简单操作流程 版本:Version-LCMS001 1. 启动液质联用装置 接通电源: 确保质谱主机、液相色谱各单元和电脑已经接通电源(请务必确定电源的稳定和不会出现突然断电的情况!!),依次打开质谱主机、液相色谱各单元和电脑的电源开关(质谱主机电源键位于仪器背后的红色按钮,液相色谱各单元的电源开关位于各单元正面的左下方),此时,可观察到各单元的绿色指示灯依次亮起。 【注:若有某个单元的红色指示灯亮起,请及时联系岛津工程师进行处理】 质谱主机的开启: 1.1启动真空系统: 1.1.1 电脑开机完毕后,请确认电脑右下方的相关图标为绿色。 【注:如果该图标为黄色,说明系统正在启动,请稍等片刻。如果该图标为红色,表示有错误产生,请重启电脑。】 1.1. 2. 双击电脑桌面上的图标,等待,直到出现下面的界面: 1.1.3. 点击“OK”,启动分析程序。在新出现的窗口中点击左侧的“Instrument”,再双击右侧的对应的仪器型号图标。 1.1.4. 然后点击新窗口的左侧按钮“Data Acquisition”,再点击“main”按钮,然后再点击窗口 左侧最下方的按钮,此时,会出现“System Control”窗口:点击“Auto Startup”按钮,抽真空约10 分钟后可以开始进行分析实验。此时,质谱主机上的“STATUS”指示灯亮起,为绿色。如果需要得稳定测试结果,至少需要抽真空半天以上(最好抽真空过夜,16h以上)再进行测试。 1.1.5. 点击“Advanced”按钮,将CID GAS 右侧的“Open”按钮按下,以便打开碰撞气。

1.2日常开机: 【该操作是针对日常使用中,已经启动了真空系统的状态下启动仪器进行分析实验的操作】 1.2.1. 先接通液相色谱各单元的电源,开启液氮罐上的阀门和氩气钢瓶的总阀。检查液氮罐和氩气钢瓶的气体输出压力【氮气减压阀表头压力读数在690-800kPa,氩气减压阀表头压力读数在500kPa,即如钢瓶的表头黑色记号笔标记所示】,确认无误后。 1.2.2 将液相部分的A泵和B泵的旋转阀向左逆时针方向旋转90度,阀门于地面平行。点击A 泵、B泵及自动进样器上的purge键(A流动相为超纯水,B流动相为色谱级甲醇)。3 min后,A泵和B泵purge结束,将液相A泵和B泵的旋转阀向右顺时针方向旋转90度。 1.2.3. 等待自动进样器purge结束。 2.平衡色谱柱,准备分析实验 10%甲醇冲系统: 2.1. 更换A泵瓶中的10%的异丙醇。 2.2. 打开电脑电源,启动windows 系统,双击电脑桌面上的图标,等待,直到出现下面的界面: 2.3. 点击“OK”,启动分析程序。在新出现的窗口中点击左侧的“Instrument”,再双击左侧的控制液相部分的图标,如下图。 2. 4. 设置B相(甲醇)浓度为10%,流速设为0.1 mL/min。 2.5. 启动液相色谱各单元,并如下图所示点击LabSolutions 的各按钮,让仪器各部件开始工作。

液相色谱-质谱联用技术的发展与应用

液相色谱-质谱联用技术的发展与应用 摘要:本文主要介绍了液相色谱-质谱联用技术在药物分析、食品安全检测以及临床疾病诊断等方面的研究进展。 关键词:液相色谱—质谱联用;分析 液相色谱-质谱联用技术(LC-MS)是以质谱仪为检测手段,集HPLC高分离能力与MS高灵敏度和高选择性于一体的强有力分离分析方法[1]。特别是近年来,随着电喷雾、大气压化学电离等软电离技术的成熟,使得其定性定量分析结果更加可靠,同时,由于液相色谱-质谱联用技术对高沸点、难挥发和热不稳定化合物的分离和鉴定具有独特的优势,因此,它已成为中药制剂分析、药代动力学、食品安全检测和临床医药学研究等不可缺少的手段。 1 液相色谱-质谱联用技术的发展 1977年,LC-MS开始投放市场;1978年,LC-MS首次用于生物样品中的药物分析;1989年,LC-MS-MS取得成功;1991年,API LC-Ms用于药物开发;1997年,LC-MS用于药物动力学筛选;1999年,API Q-TOFLC-MS-MS投放市场,大气压离子化接口的应用,彻底改变了面貌,使其迅速成为制药工业中应用最广的分析仪器[2]。 2 液相色谱-质谱联用技术的应用 2.1在食品安全检测中的应用 随着人们的生活水平日益提高,对食品的营养性、保健性和安全性的关注均趋于理性化、科学化。国家对食品的监管也愈加重视起来,因此食品监督部门在食品检测中应用了一种准确的分析手段—高效液相色谱法(HPLC)。近几年发展起来的高效液相色谱-质谱联用技术(HPLC-MS),集液相色谱对复杂基体化合物的高分离能力和质谱独特的选择性、灵敏度、相对分子质量及结构信息于一体而广泛应用于食品检测方面,为食品工业中原材料筛选、生产过程中质量控制、成品质量检测等提供了有效的分析检测手段[3]。目前,LC-MS主要检测食品中农兽药的残留、食品中违禁物质和有害添加剂的检测、保健品中功效成分的检测等。该技术在食品分析检验方面具有十分广阔的前景。 2.1.1食品中农兽药残留的检测 食品及农产品的残留分析对灵敏度、重现性与选择性的要求非常高,常常需

质谱发展前景分析

质谱仪的应用范围非常广,涉及食品、环境、人类健康、药物、国家安全、和其他与分析测试相关的领域。现已成为最具发展前景的分析仪器之一,近几年全球市场需求增长率超过10%,中国市场的需求增长远甚至还要大于这个比例,质谱仪其在分析检测过程中准确的定性和定量能力而受到格外青睐。随着社会的发展,质谱仪已经成为了我们生活中常用的一种仪器产品了,我们的生活中却时常出现全质谱仪的身影。比如我们日常生活当中用过的很多东西都是经过质谱仪才能完成的,可以说质谱仪的出现改变了我们生活当中很多的东西,在无形当中给我们带来了生活当中的保护,也就是因为这个因素才促使了质谱仪在市场当中有着更稳定的客户。 有了这个因素之后那么就一定会出现各式各样的问题,其中最大也是最明显都就要数竞争了,竞争在每个行业当中都会出现,同样在质谱仪当中也会出现的,如果将它处理好的话,产品在未来的发展将会是一帆风顺,如果相反的话那么结果一定是被淘汰掉的,所以质谱仪想要有好的发展就一定要将这个问题处理好才能有更为好的发展,也会使质谱仪企业获胜的得到更好的发展。质谱仪则是在市场当中最为优秀的企业当中成长起来的,这也为其的发展奠定了良好的基础,质谱仪的质量更是企业发展的保证,只要我们将质谱仪的提升上去,相信其一定可以在众多的品牌当中脱引而出,最终成为最大的赢家。 以质量求生存以质量谋发展,一直以来都是质谱仪坚持的底线,我们一定要将此项做好,勇于创新制作出更多精良的产品,让市场接受我们,当然还是要得到消费者的喜爱才是最为重要的,质谱仪也会朝着这个目标不断的前进,让自己成为市场当中最为出色的产品。

基于质谱仪发展的质谱分析技术 席琳蒂娜(WSL) (天津师范大学物电学院,天津西青30038) 摘要:质谱分析法(Mass Spectroscopy)是利用电磁学原理,将化合物电离成具有不同质量的离子,然后按照其质荷比(m/z)的大小为序,依次排列成谱收集记录下来,然后利用收集的质谱进行定性定量分析及研究分子结构的方法。随着科学技术的发展质谱分析技术也在不断的发展 关键词:发展史质谱仪原理特点应用前景 引言:人类从很早以前就对物质的结构感兴趣,我们很想知道物质结构的特点它的成分, 因此一直在不断努力发明创造能够检测和观察物质结构分析物质结构的仪器。质谱分析技术是一种很重要的分析技术,它可以对样品中的有机化合物和无机化合物进行定性定量分析,同时它也是唯一能直接获得分子量及分子式的谱学方法。基于质朴分技术的特性它在化学生物学的很多领域都这广泛的应用。随着近代物理学、真空技术、材料科学、计算机及精密械等方面的进展,使质谱分析技术的应用领域不断地扩展。 正文: 一、发展史 质谱分析技术的发展里程要从质谱仪的发展开始。质谱仪器是一类将物质粒子(原子、分子)电离成离子,通过适当的稳定或变化的电磁场将他们按空间位置、时间先后等方式实现荷质比分离,并检测其强度来作定性定量分析的分析仪器。 1885年W.Wien在电场和磁场中实现了正粒子束的偏转。1912年J.J.Thompson使用磁偏仪证明氖有相对质量20和22的两种同位素。世界上第一台质谱仪是由J.Dempster和F.W.Aston于1919年制作的,用于测量某些同位素的相对丰度。 20世纪30年代,离子光学理论的发展,使得仪器性能在很大程度上得到改善,为精确测定相对原子质量奠定了基础。其中,Mattauch和R.Herzog在1935年首先阐述了双聚焦理论,然后根据这一理论制成了双聚焦质谱仪。在30年代末,由于石油工业的发展,需要测定油的成份。 40年代初开始将MS用于石油工业中烃的分析,并大缩短了分析时间。50年代初,质谱仪器开始商品化,并被广泛用于各类有机物的结构分析。同时质谱方法与NMR、IR等方法结合成为分子结构分析的最有效的手段。1960年对离子在磁场和电场中的运动轨迹,已发展到二级近似计算方法。1972年,T.Mastuo和H.Wollnik等合作完成了考虑边缘场的三级轨迹计算法。这些为质谱仪器的设计提供了强有力的计算手段。80年代新的质谱技术出现:快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源;LC-MS联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。非挥发性或热不稳定分子的分析进一步促进了MS的发展;90年代,由于生物分析的需要,一些新的离子化方法得到快速发展;目前一些仪器联用技术如GC-MS,HPLC-MS,GC-MS-MS,ICP-MS等正大行其道。 我国解放前质谱技术处于空白。1969年,中国科学院上海冶金所、上海电子光学技术研究所、中国科学院科学仪器厂、北京分析仪器厂先后研制成功了双聚焦火花离子质谱仪。1975年,上海新跃仪表厂制成采用二次离子质谱技术的ZLF-300型直接成象离子分析

质谱仪原理

王俊朋6 我的主页帐号设置退出儒生一级|消息私信通知|我的百科我的贡献草稿箱我的任务为我推荐|百度首页新闻网页贴吧知道音乐图片视频地图百科文库 帮助首页自然文化地理历史生活社会艺术人物经济科技体育图片数字博物馆核心用户百科商城秦始皇兵马俑博物馆 质谱仪 求助编辑百科名片 CHY-2质谱仪质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 目录 质谱仪原理 质谱仪简介 用法 有机质谱仪 无机质谱仪 同位素质谱仪 离子探针 编辑本段质谱仪原理质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。 原理公式:q/m=2v/B2r2 编辑本段质谱仪简介 质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。 编辑本段用法分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105 ~106 量级,可测量原子质量精确到小数点后7位数字。 质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由

第五章质谱分析法(教案)

第五章质谱分析法 质谱法是通过将样品转化为运动的气态离子并按质荷比(M/Z)大小进行分离并记录其信息的分析方法。所得结果以图谱表达,即所谓的质谱图(亦称质谱,Mass Spectrum)。根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。 从20世纪60年代开始,质谱法更加普遍地应用到有机化学和生物化学领域。化学家们认识到由于质谱法的独特的电离过程及分离方式,从中获得的信息是具有化学本性,直接与其结构相关的,可以用它来阐明各种物质的分子结构。正是由于这些因素,质谱仪成为多数研究室及分析实验室的标准仪器之一。 质谱仪 (一)质谱仪的工作原理 质谱仪是利用电磁学原理,使带电的样品离子按质荷比进行分离的装置。离子电离后经加速进入磁场中,其动能与加速电压及电荷Z有关,即 (二)质谱仪的主要性能指标

1.质量测定范围 质谱仪的质量测定范围表示质谱仪所能够进行分析的样品的相对原子质量(或相对分子质量)范围,通常采用原子质量单位(unified atomic mass unit,符号u)进行度量。原子质量单位是由12C来定义的,即一个处于基态的12C中性原子的质量的1/2。 而在非精确测量物质的场合,常采用原子核中所含质子和中子的总数即“质量数”来表示质量的大小,其数值等于其相对质量数的整数。 测定气体用的质谱仪,一般质量测定范围在2~100,而有机质谱仪一般可达几千。现代质谱仪甚至可以研究相对分子质量达几十万的生化样品。 2.分辨本领 所谓分辨本领,是指质谱仪分开相邻质量数离子的能力,一般定义是:对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高10%时,则认为两峰已经分开,其分辨率

二次离子质谱仪讲课讲稿

二次离子质谱仪原理简介 二次离子质谱仪(Secondary Ion Mass Spectrometry, SIMS)又称离子探针(Ion Microprobe),是一种利用高能离子束轰击样品产生二次离子并进行质谱测定的仪器,可以对固体或薄膜样品进行高精度的微区原位元素和同位素分析。由于地学样品的复杂性和对精度的苛刻要求,在本领域内一般使用定量精度最高的大型磁式离子探针。该类型的商业化仪器目前主要有法国Cameca公司生产的IMS1270-1300系列和澳大利亚ASI公司的SHRIMP系列。最近十年来,两家公司相继升级各自产品,在灵敏度、分辨率及分析精度等方面指标取得了较大的提升,元素检出限达到ppm-ppb级,空间分辨率最高可达亚微米级,深度分辨率可达纳米级。目前,大型离子探针可分析元素周期表中除稀有气体外的几乎全部元素及其同位素,涉及的研究领域包括地球早期历史与古老地壳演化、造山带构造演化、岩石圈演化与地球深部动力学、天体化学与比较行星学、全球变化与环境、超大型矿床形成机制等。因而国内各大研究机构纷纷引进大型离子探针(北京离子探针中心的SHRIMP II 和SHRIMP IIe-MC、中科院地质与地球物理研究所的Cameca IMS-1280、Cameca IMS-1280HR和NanoSIMS 50L、中科院广州地球化学研究所的Cameca IMS-1280HR、中核集团核工业北京地质研究院的IMS-1280HR),大大提高了国内微区分析的能力。 本实验室配备了Cameca公司生产的IMS1280离子探针和其升级型号IMS1280HR。两台仪器的基本原理及设计相同,升级型号IMS1280HR主要在磁场设计上有所改进,具

gc-ms的工作原理详解

GC-MS工作原理 GC气相色谱MS 质谱 GC 把化合物分离开然后用质谱把分子打碎成碎片来测定该分子的分子量 一、气相色谱的简要介绍 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究等都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。例如活性炭、硅胶等。气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。 二、气相色谱法的特点 气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。 三、气相色谱法的应用 在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。 四、气相色谱专业知识 1 气相色谱 气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。 2 气相色谱原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸

仪器分析教学大纲

《仪器分析》教学大纲 学校 中药教研室 2010. 3

《仪器分析》课程教学大纲 课程名称(英文):仪器分析(Instrumental Analysis) 课程类型:专业基础课 学时:72 适用对象:中药专业,中药制药技术专业 一、课程的性质、目的和任务 《仪器分析》是中药专业、中药制药技术专业的主干专业课程之一。 本课程的任务是主要讲授仪器分析光学分析法、色谱法、质谱法等方法的基本理论、仪器原理、使用技术。目的是使学生通过该课程的学习,能运用所学理论和技术制定实验研究方案,解决中药生产质量检测、监控、中药新药研发等领域的问题。 该课程应在完成学习无机与分析化学、有机化学等课程基础上开设,为以后的中药化学,制剂分析等课程的学习奠定基础。 二、教学基本要求 通过本课程的学习学生应掌握以下几个方面的知识、技能: 1、了解仪器分析方法的分类,发展趋势; 2、基本掌握主要仪器分析法的基本理论、仪器原理、实验技术 3、掌握仪器结构、原理和应用 4、基本掌握各种仪器分析法的样品处理技术 5、能把仪器分析技术运用到科学研究,中成药生产检测、监控,及新药开 发中去。 三、学时分配(参考)

四、课程内容 第一章绪论 [教学要求] 1.了解现代仪器分析发展的现状。 2.熟悉现代仪器分析的特点。 [教学内容] 1、仪器分析法的分类。 2、仪器分析法的特点及发展趋势 3、仪器分析法的应用 [重点与难点] 重点:仪器分析法的分类

难点:仪器分析与化学分析法的比较 [教学方法] 多媒体或理论讲授。 第二章光学分析法导论 [教学要求] 1.了解光学导论的分类及特点 2.掌握电磁辐射的概念和各种光谱的区别 [教学内容] 1、电磁辐射与电磁波。 2、光学分析法分类(光谱法与非光谱法,原子光谱与分子光谱,发射光谱与吸收光谱) [重点与难点] 重点:原子光谱与分子光谱、吸收光谱与发射光谱的区别和联系 难点:原子光谱与分子光谱、吸收光谱与发射光谱的区别和联系 [教学方法] 多媒体或理论讲授。 第三章紫外可见分光光度法 [教学要求] 1.熟悉紫外分光光度法的基本原理 2.掌握Lamber-Beer 定律及影响因素。 3.熟悉紫外分光光度计各部件的流程和作用 4.掌握利用紫外分光光度法进行定性分析和定量分析的方法 [教学内容] 1、紫外可见分光光度法的基本原理。 2、Lamber-Beer 定律 3、显色反应与显色条件的选择 4、紫外可见分光光度计 5、紫外可见分光光度法的定性与定量方法及其应用实例 [重点与难点]

质谱仪的历史与发展

质谱仪的历史与发展 质谱的发展与核物理的早期发展紧密相连,而核物理的早期发展又是建立在真空管气体放电的技术上。克鲁克斯管是从早期用的盖斯勒管改良而来的,它是一个内部抽成较低气压的玻璃管,两端装有电极,阴极和阳极之间可以产生10 -100千伏的高压。克鲁克斯管运行时的真空比0.1帕斯卡要低得多,这是射线管实验——特别是阳极射线研究的必备条件。许多基于克鲁克斯管的实验带来了原子和核物理方面开创性的研究成果。最著名的是在1895年由威廉·康拉德·伦琴发现x射线。不到年之后J.J.汤姆森通过对阴极射线在电场中的偏转分析和测量了电子的质荷比m / e。他发现了一种质量只有氢原子(当时已知的最轻的原子)的1/1800却带有一个单位负电荷的粒子,这是电子的发现。维恩在1898年通过对阳极射线的分析测量了氢原子核的质量,这是首次对质子的测量。 维恩和汤姆森正是质谱法的开创者 如图是1898年由维恩制造的第一台质谱实验装置。在一个气压很低的玻璃管中设置了阴极A和阳极 a用来产生阳极射线,然后射线会经过平行的电极缝, 同时b区域的真空管外也覆盖了电极用来屏蔽磁场。 在真空管c区域内,除了磁极间的平行磁场外在垂直 射线和磁场方向设置了平行电场来分析离子束。在电 场和磁场的作用下,只有特定速度(v=E/B)的离子 可以到达真空管末端,这就是我们现在所说的速度选

择器。这个装置的长度只有5厘米。维恩利用它从阳极射线中选出特定速度的离子进行研究,测量了氢原子核(当时维恩并不知道这是氢原子核)的荷质比,并研究了其他一些更重的离子。但直到1919年卢瑟福的系列工作之后才正式宣判了质子的发现。 尽管如此,正如J.J.汤姆森所说,维恩是第一个是用磁场偏转来分析离子束性质的科学家。不过真正意义上的质谱法的诞生还要归功于1907年汤姆森本人的实验。 上图是汤姆森在剑桥搭建的第一台质谱仪的实物和原理。他同样采用阳极C把放电区和测量区分开,放电区冲入少量的某种气体,阳极和阴极之间加有30-50千伏的电压。同样为了屏蔽磁场的干扰,在放电区的外面放置了金属的隔离罩W。放电区电极C中间是一个6cm 长,内径从0.5mm到0.1mm的准直孔,用一个非常精巧的毛细玻璃管F和测量区相连。气体在放电区电离出离子,并且在高电场下获得很快的速度,最后沿着毛细玻璃管以很窄的一束射入抽真空的测量区。测量区内安装了两块平行的电极A,并且外部有一组磁极P提供磁场。与维恩的实验不同,这里磁场和电场的方向是平行的。经过偏转的离

《现代仪器分析》教学大纲

《现代仪器分析》教学大纲 课程编号: 课程名称:现代分析/ Modern Instrumental Analysis 学时/学分:40 /2.5 先修课程:无机及分析化学、有机化学 适用专业:化学工程与工艺 开课学院(部)、系(教研室):化学工程学院制药工程系 一、课程的性质与任务 仪器分析与光谱解析是制药工程专业的学科基础必修课。 本课程要求学生掌握各种仪器分析方法的基本原理、基本方法和基本操作。熟悉各种典型光谱的解析及色谱法的分离条件的选择。了解各种仪器的工作原理,以及各种仪器分析方法在药学中的应用。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1.电位法及永停滴定法 电化学分析法的基本原理(分类、基本原理);直接电位法、电位滴定法和永停滴定法的测定方法、应用及示例。 2.气相色谱法 气相色谱法的基本原理(基本概念、塔板理论、Van Deemter方程式简介),色谱柱(固定液、载体、气-液色谱填充柱的制备),气-固色谱填充柱、毛细管色谱柱简介,检测器(热导、氢焰)分离条件的选择,定性、定量分析方法,应用与示例等。 3.高效液相色谱法 高效液相色谱法的基本原理(Van Deemter); 方程式在HPLC与GC中表现形式、Giddings方程式简介),各类高效液相色谱法:液-固吸附色谱法、液-液分配色谱法、化学键合相色谱法(反相键合相色谱法、正相键合相色谱法、离子抑制色谱法、离子对色谱法),离子交换色谱法与离子色谱法、空间排斥色谱法,其他色谱法简介(胶束色谱法、手性色谱法、亲合色谱法),高效液相色谱固定相,流动相、仪器装置、定性与定量分析方法及毛细电泳法简介。 4.紫外—可见光度法 紫外—可见光谱的跃迁机理;Lambert-beer定律;精细结构;溶剂效应;wood-word吸收定则及应用。 5.红外光谱法 红外光谱的跃迁机理;判别定则;拉曼光谱;Fourier变换红外光谱;试样的制备和仪器等。 6.核磁共振 核自旋能级跃迁的基本原理;Zeeman能级;Boltzman分布;核的进动与弛豫;化学位移及其影响因素;13C—1H自旋—自旋偶合;偶合常数及其影响因素;NMR光谱的改进;奥氏核效应;二维谱。 7.质谱

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介 氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。 氦质谱检漏仪是磁偏转型的质谱分析计。单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。 (1)工作原理与结构 氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。 ①单级磁偏转型氦质谱检漏仪 现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪。 在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。。 在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。 可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。仪器的B和R是固定的,调节加速电压U使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。(me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。 ②双级串联磁偏转型氦质谱检漏仪 由于两次分析,减少了非氦离子到达收集器的机率。并且,如在两个分析器的中间,即图中的中间缝隙S2与邻近的挡板间设置加速电场,使离子在进入第二个分析器前再次被加速。那些与氦离子动量相同的非氦离子,虽然可以通过第一个分析器,但是,经第二次加速进入第二个分析器后,由于其动量与氦离子的不同而被分离出来。由于二次分离,仪器本底及本底噪声显著地减小,提高了仪器灵敏度。 ③逆流氦质谱检漏仪 逆流氦质谱检漏仪是根据油扩散泵或分子泵的压缩比与气体种类有关的原理制成的。例如,多级油扩散泵对氦气的压缩比为102;对空气中其它成分的压缩比为lO4~106。检漏时,通过被检件上漏孔进入主抽泵前级部位的氦气,仍有部分返流到质谱室中去,并由仪器的输出指示示出漏气讯号。这就是逆流氦顷质谱检漏仪的工作原理。 (2)性能试验方法 灵敏度、反应时间、清除时间、工作真空度、极限真空度及仪器入口处抽速是评价氦质谱检漏仪的主要性能指标。 ①灵敏度及其校准 氦质谱检漏仪灵敏度,通常指仪器的最小可检漏率。记为q L.min,即在仪器处于最佳工作条件下,以一个大气压的纯氦气为示漏气体,进行动态检漏时所能检测出的最小漏孔漏率。所谓“最佳工作条件”是指仪器参数调整到最佳值,被检件出气少且没有大漏孔等条件。所谓“动态检漏”是指检漏仪器本身的抽气系统仍在正常抽气。仪器的反应时间不大于3s。所谓“最小可检”

带电粒子在磁场中的运动、质谱仪3

第五节带电粒子在磁场中的运动质谱仪 教学目标: 1.理解洛伦兹力对粒子不做功. 2.理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动. 3.会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题. 4.知道质谱仪的工作原理. 教学重点:掌握带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能用来分析有关问题. 教学难点: 1.粒子在洛伦兹力作用下做匀速圆周运动. 2.综合运用力学知识、电磁学知识解决带电粒子在复合场中的问题. 教学方法:分析推导法、阅读法. 教学用具:电子射线管、环形线圈、电源、投影仪、投影片、滑动变阻器. 教学过程: 一、复习提问,引入新课 [问题]什么是洛伦兹力? [学生答]磁场对运动电荷的作用力. [问题]带电粒子在磁场中是否一定受洛伦兹力? [学生答]不一定,洛伦兹力的计算公式为f=qvB sinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,f=qvB;当θ=0°时,f=0. [问题]带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习——带电粒子在磁场中的运动、质谱仪. 二、新课教学 [演示实验]介绍电子射线管的工作原理,进行实验. 教师讲述电子射线管的工作原理:由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹. 教师进行演示实验. [实验现象]在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形. [教师引导学生分析得出结论] 当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动. 带电粒子垂直进入匀强磁场中的受力及运动情况分析. [出示投影片] 1.电子受到怎样的力的作用?这个力和电子的速度的关系是怎样的? 2.洛伦兹力对电子的运动有什么作用? 3.有没有其他力作用使电子离开与磁场方向垂直的平面? 4.洛伦兹力做功吗? [学生答] 1.电子受到垂直于速度方向的洛伦兹力的作用. 2.洛伦兹力只改变速度的方向,不改变速度的大小. 3.没有力作用使电子离开与磁场方向垂直的平面.

稳定同位素比例质谱仪(IRMS)的原理和应用

稳定同位素比例质谱仪(IRMS)的原理和应用 祁彪,崔杰华 同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。有些问题还只能通过利用稳定同位素技术来解决。现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。 一、有关同位素的基本概念 1、同位素(Isotope) 由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。 2、稳定同位素(Stable isotope) 同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。 凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。 无可测放射性的同位素是稳定同位素。其中一部分是放射性同位素衰变的最终稳定产物。例如206Pb 和87Sr等。另一大部分是天然的稳定同位素,即自核合成以来就保持稳定的同位素,例如12C和13C、18O 和16O等。与质子相比,含有太多或太少中子均会导致同位素的不稳定性,如14C。这些不稳定的“放射性同位素”将会衰变成稳定同位素。 3、同位素丰度(Isotope abundance) ①绝对丰度:指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H =1012)或28Si(28Si=106)的比值表示。这种丰度一般是由太阳光谱和陨石的实测结果给出元素组成,结合各元素的同位素组成计算的。 ②相对丰度:指同一元素各同位素的相对含量。例如12C=98.892%,13C=1.108%。大多数元素由两种或两种以上同位素组成,少数元素为单同位素元素,例如19F=100%。 4、R值和δ值 ①一般定义同位素比值R为某一元素的重同位素原子丰度与轻同位素原子丰度之比. 例如D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且冗长繁琐不便于比较,故在实际工作中通常采用样品的δ值来表示样品的同位素成分。 ②样品(sq)的同位素比值Rsq与一标准物质(st)的同位素比值(Rst)比较,比较结果称为样品的δ值。其定义为: δ(‰)=(Rsq/Rst -1)×1000 即样品的同位素比值相对于标准物质同位素比值的千分差。 5、同位素标准(Isotope standard) δ值的大小显然与所采用的标准有关,所以在作同位素分析时首先要选择合适的标准,不同的样品间的比较也必须采用同一标准才有意义。对同位素标准物质的一般要求是:

质谱技术在中国的发展状况与市场格局分析

质谱技术在中国的发展状况与市场格局分析 顶(0) 2012-07-25 14:16:59 文章来源:仪器信息我来说两句(0) ? ?导读: 十年前,质谱供应商的数量还屈指可数,而今天,随着分析物质的日益复杂,质谱的需求也日益增长,庞大的市场吸引着越来越多的厂商加入到质谱供应商行列,可以预见未来质谱市场的格局将是“群雄激战”。 o关键字 o质谱质谱仪质谱仪市场 ?质谱仪在中国 据不完全统计,2011年中国进口的各类质谱仪的数量达6000余台。然而如此庞大的市场上却鲜有中国厂家的身影,技术上的差距是主要原因。据北京东西分析仪器有限公司总工程师李选培先生介绍,“我国质谱仪的发展始于1959年,当时苏联援助筹建北京分析仪器厂(简称北分厂),而其主导产品就是质谱计,当时北分厂总共生产了数十

台磁式质谱。1965年以后的十来年,由于文化大革命,与质谱相关的生产科研全部陷于停顿状态,而此时,世界上质谱技术的发展异常活跃,特别是色质联用技术进入到了一个崭新的时代。改革开放以后,我国开始从国外引进相关技术,但通过引进发现,当时我们的差距实在是太大了。从此以后,大量的国外质谱产品开始涌入中国。” 2006年,中国仪器界值得铭记的一年,这一年,东西分析推出国产首台商用四极杆气质联用仪GC-MS3100,打破了中国在实验室质谱仪市场上近三十年的沉寂,由此吹响了中国质谱再出发的号角。随后,普析通用、舜宇恒平、聚光科技、禾信、毅新兴业、天瑞仪器等一批国内厂商也先后加入到中国质谱队伍中,产品种类也从单四极杆拓展到离子阱、飞行时间质谱,从实验室台式质谱拓展到在线、车载、便携式质谱。(详细情况见表一) 表一:国内质谱制造商及其产品 在表一所列的国产质谱产品中,东西分析的GC-MS3100、聚光科技的Mars-400、禾信的SPAMS 05等产品具有里程碑的意义。GC-MS3100标志着中国质谱的再次出发,并且由于她的推出,国外仪器公司的相关产品不得不降低价格;据东西分析项目经理苏岩松先生介绍,目前该产品已经销售了30-40台。Mars-400是我国首台便携式离子阱气质联用仪,她的出现打破了国外公司在该市场长期垄断的局面,并且在BCEIA 2011上Mars-400获得了BCEIA金奖。SPAMS 05是周振博士历经六年研发推出的质谱产品,独特的应用市场使其成为世界上该类质谱产品唯一两家供应商之一,并且该产品已为禾信带来了千万元的销售额。 中国质谱发展的机遇 当然在中国庞大的质谱市场中,目前中国厂商的声音还很弱小,在对中国大陆、美国、中国台湾、中国香港四地华人质谱学会理事长的访谈中,四位均表示,中国质谱还有很长的路要走,要做好打“持久战”的准备,“突出重围”还需时日。不过我们欣喜地看到越来越多的国产厂商将目光投向了质谱,计划加入中国质谱大军;并且国家也对质谱有了更多关注,在2011年启动的《国家重大科学仪器设备开发专项》中,涉及质谱的项

相关文档
最新文档