七年级数学竞赛讲座:第七讲 含绝对值的方程及不等式

七年级数学竞赛讲座:第七讲 含绝对值的方程及不等式
七年级数学竞赛讲座:第七讲 含绝对值的方程及不等式

第七讲含绝对值的方程及不等式

从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,任一个绝对值都是表示两个不同数的绝对值.即一个数与它相反数的绝对值是一样的.由于这个性质,所以含有绝对值的方程与不等式的求解过程又出现了一些新特点.本讲主要介绍方程与不等式中含有绝对值的处理方法.

一个实数a的绝对值记作|a|,指的是由a所唯一确定的非负实数:

含绝对值的不等式的性质:

(2)|a|-|b|≤|a+b|≤|a|+|b|;

(3)|a|-|b|≤|a-b|≤|a|+|b|.

由于绝对值的定义,所以含有绝对值的代数式无法进行统一的代数运算.通常的手法是分别按照绝对值符号内的代数式取值的正、负情况,脱去绝时值符号,转化为不含绝对值的代数式进行运算,即含有绝对值的方程与不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.

例1解方程|x-2|+|2x+1|=7.

分析解含有绝对值符号的方程的关键是去绝对值符号,这可用“零

掉绝对值符号再求解.

解(1)当x≥2时,原方程化为

(x-2)+(2x+1)=7,

-(x-2)+(2x+1)=7.

应舍去.

-(x-2)-(2x+1)=7.

说明若在x的某个范围内求解方程时,若求出的未知数的值不属于此范围内,则这样的解不是方程的解,应舍去.

例2求方程|x-|2x+1||=3的不同的解的个数.

为只含有一个绝对值符号的方程.然后再去掉外层的绝对值符号求解.

|x-(2x+1)|=3,

即|1+x|=3,

所以x=2或x=-4.

|x+(2x+1)|=3,

即|3x+1|=3,

的个数为2.

例3若关于x的方程||x-2|-1|=a有三个整数解.则a的值是多少?

解若a<0,原方程无解,所以a≥0.由绝对值的定义可知

|x-2|-1=±a,

所以|x-2|=1±a.

(1)若a>1,则|x-2|=1-a<0,无解.|x-2|=1+a,x只能有两个解x=3+a 和x=1-a.

(2)若0≤a≤1,则由|x-2|=1+a,求得

x=1-a或x=3+a;

由|x-2|=1-a,求得

x=1+a或x=3-a.

原方程的解为x=3+a,3-a,1+a,1-a,为使方程有三个整数解,a必为整数,所以a只能取0或1.当a=0时,原方程的解为x=3,1,只有两个解,与题设不符,所以a≠0.当a=1时,原方程的解为x=4,0,2,有三个解.

综上可知,a=1.

例4已知方程|x|=ax+1有一负根,且无正根,求a的取值范围.

解设x为方程的负根,则-x=ax+1,即

所以应有a>-1.反之,a>-1时,原方程有负根.

设方程有正根x,则x=ax+1,即

所以a<1.反之,a<1时,原方程有正根.

综上可知,若使原方程有一负根且无正根,必须a≥1.

例5设

求x+y.

分析从绝对值的意义知

两个非负实数和为零时,这两个实数必须都为零.解由题设有

把③代入①得

解之得y=-3,所以x=4.故有

x+y=4-3=1.例6解方程组

分析与解由①得x-y=1或x-y=-1,即

x=y+1或x=y-1.与②结合有下面两个方程组

解(Ⅰ):把x=y+1代入|x|+2|y|=3得

|y+1|+2|y|=3.

组(Ⅰ)的解为

同理,解(Ⅱ)有

故原方程组的解为

例7解方程组

解由①得

x+y=|x-y|+2.

因为|x-y|≥0,所以x+y>0,所以|x+y|=x+y.③

把③代入②有

x+y=x+2,

所以y=2.将之代入①有|x-2|=x,所以

x-2=x,④

或x-2=-x.⑤

④无解,所以只有解⑤得x=1.故

为原方程组的解.

说明本题若按通常的解法,区分x+y≥0和x+y<0两种情形,把方程②分成两个不同的方程x+y=x+2和-(x+y)=x+2,对方程①也做类似处理的话,将很麻烦.上面的解法充分利用了绝对值的定义和性质,从方程①中发现必有x+y>0,因而可以立刻消去方程②中的绝对值符号,从而简化了解题过程.

例8解不等式|x-5|-|2x+3|<1.

<x≤5,x>5.

-(x-5)-[-(2x+3)]<1,

-(x-5)-(2x+3)<1,

(3)当x>5时,原不等式化为

x-5-(2x+3)<1,

解之得x>-9,结合x>5,故x>5是原不等式的解.

的解.例9解不等式1≤|3x-5|≤2.

谈谈如何解含绝对值的方程

谈谈如何解含绝对值的方程 施静忠 绝对值概念在初中代数,乃至初等数学中,均占有相当重要的地位。解含绝对值的方程在初中数学竞赛中经常出现,同学们往往感到困惑,难于解答。下面举例说明解这类方程的几种常用方法。 一. 运用基本公式:若,则解方程 例1. 解方程 解:去掉第一重绝对值符号,得 移项,得或 所以 所以原方程的解为: 例2. 解方程 解:因为 所以 即 或 解方程(1),得 解方程(2),得 又因为,所以 所以原方程的解为

二. 运用绝对值的代数意义解方程例3. 方程的解的个数是() A. 1 B. 2 C. 3 D. 4或4以上 解:方程可化为 所以 所以方程的解有无数个,故选(D)。 三. 运用绝对值的非负性解方程 例4. 方程的图像是() A. 三条直线: B. 两条直线: C. 一点和一条直线:(0,0), D. 两个点:(0,1),(-1,0) 解:因为 而 所以 所以原方程的图象为两个点(0,1),(-1,0) 故选(D)。

四. 运用绝对值的几何意义解方程 例5. 解方程 解:设,由绝对值的几何意义知 所以 又因为 所以 从数轴上看,点落在点与点的内部(包括点与点在内),即原方程的解为。 五. 运用方程的图象研究方程的解 例6. 若关于x的方程有三个整数解,则a的值是() A. 0 B. 1 C. 2 D. 3 解:作的图象,如图1所示,由于方程解的个数就是直 线与的图象的交点个数,把直线平行于x轴上、下移动,通过观察得仅当时方程有三个整数解。故选(B)。 图1 同时,我们还可以得到以下几个结论: (1)当时,方程没有解; (2)当或时,方程有两个解; (3)当时,方程有4个解。

含参数的一元一次方程.含绝对值的一元一次方程

含参数的一元一次方程、含绝对值的一元一次方程 一. 含有参数的一元一次方程 1. 整数解问题 2. 两个一元一次方程同解问题 3. 已知方程解的情况求参数 4. 一元一次方程解的情况(分类讨论) 二: 解含有绝对值的一元一次方程 一. 含有参数的一元一次方程 1. 整数解问题(常数分离法) 例题1:⑴ 【中】 已知关于x 的方程9314x kx +=+有整数解,求整数_____k = 答案:(9)11k x -= 119x k =- ∵,x k 均为整数 ∴91,11k -=±± ∴2,8,10,20k =- ⑵ 【中】 关于x 的方程()2 (1)130n x m x -+--=是一元一次方程 (1)则,m n 应满足的条件为:___m ,____n ; (2)若此方程的根为整数,求整数=____m 答案:(1)1,1≠=; (2)由(1)可知方程为(1)3m x -=, 则31 x m = - ∵此方程的根为整数.

∴31 m -为整数 又∵m 为整数,则13,1,1,3m -=-- ∴2,0,2,4m =- 测一测1: 【中】 关于x 的方程143+=+x ax 的解为正整数,则整数a 的值为( ) A.2 B.3 C.1或2 D.2或3 答案:D 方程143+=+x ax 可化简为:()24-=-x a 解得4 2--=a x 解为正整数,()214--=-或a 32或=a 测一测2: 【中】 关于x 的方程917x kx -=的解为正整数,则k 的值为___________ 答案:917x kx -=可以转化为(9)17k x -= 即:179x k = -,x 为正整数,则88k =或- 测一测3: 【中】m 为整数,关于x 的方程 6x mx =- 的解为正整数,求_____m = 答案: 由原方程得:61 x m =+ ,x 是正整数,所以1m + 只能为6的正约数, 11,2,3,6m += 所以0,1,2,5m = 2. 两个一元一次方程同解问题 例题2:⑴ 【易】若方程29ax x -=与方程215x -=的解相同,则a 的值为_________ 【答案】第二个方程的解为3x =,将3x =代入到第一个方程中,得到369a -= 解得 5a =

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

含绝对值的一元一次方程解 法

含绝对值的一元一次方程解法 一、绝对值的代数和几何意义。 值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。 用字母表示为 绝对值的几何意义:表示这个数的点离开原点的距离。因此任何数 的绝对值是非负 数。 1、求下列方程的解: (1)| x | = 7;(2)5 | x | = 10;(3)| x | = 0;(4)| x | = – 3; (5)| 3x | = 9. 解: 二、根据绝对值的意义,我们可以得到: 当 > 0时 x =± | x | =当 = 0时 x = 0 当 < 0时方程无解. (三) 例1:解方程: (1) 19 – | x | = 100 – 10 | x | (2) 解:(1) 例2、思考:如何解 | x – 1 | = 2 分析:用换元(整体思想)法去解决,把 x – 1 看成一个字母y,则原方 程变为: | y | = 2,这个方程的解为 y = ±2,即 x – 1 = ±2,解得 x = 3或x = –

1. 解: 例3:解方程:| 2x – 1 | – 3 = 0 解方程: 解: 三:形如的绝对值的一元一次方程可变形为:且才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1:解方程: 练习:(1)解方程: (2)解方程:

四:“零点分段法”解含多个绝对值的代数问题 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:化简下列各式 1、 2、 练习:化简: 例2:解下列方程 1、 2、 练习: 1、 2、

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

第10课--绝对值不等式(经典例题练习、附答案)word版本

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+ ②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; ◇知识梳理 1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >??= =?? 时, |()|f x a >?____________; |()|f x a -

例2. 解不等式125x x -++> 变式1:12x x a -++<有解,求a 的取值范围 变式2:212x x a -++<有解,求a 的取值范围 变式3:12x x a -++>恒成立,求a 的取值范围 ◇能力提升 1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。 5.(2008佛山二模)关于x 的不等式2121x x a a -+-≤++的解集为空集,则实数a 的取值范围是 ____. 6. 若关于x 的不等式a x x ≥-++12的解集为R ,则实数a 的取值范围是_____________.

含绝对值的一元一次方程解法

含绝对值的一元一次方程解法 形如| x | = a(a≥0)方程的解法(2课时) 一、教学目的: 1、掌握形如| x | = a(a≥0)方程的解法; 2、掌握形如| x – a | = b(b≥0)方程的解法。 二、教学重点与难点: 教学重点:解形如| x | = a(a≥0)和| x – a | = b(b≥0)的方程。 教学难点:解含绝对值方程时如何去掉绝对值。 (一) 1、绝对值的代数和几何意义。 绝对值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值 是零。 a (a > 0) 用字母表示为| a | = 0 (a = 0) – a (a < 0) 绝对值的几何意义:表示这个数的点离开原点的距离。因此任何数的绝对值是非负 数。 2、求下列方程的解: (1)| x | = 7;(2)5 | x | = 10;(3)| x | = 0;(4)| x | = – 3;(5)| 3x | = 9. 解:(1)x =±7; (2)x = ±2; (3)x = 0; (4)方程无解; (5)x = ±3. (二)根据绝对值的意义,我们可以得到: 当a > 0时x =± a | x | = a当a = 0时x = 0 当a < 0时方程无解. (三) 例1:解方程: (1)19 – | x | = 100 – 10 | x | (2)2||3 3|| 4 x x + =- 解:(1)– | x | + 10 | x | = 100 – 19 (2) 2 | x | + 3 = 12 – 4 | x | 9 | x | = 81 2 | x | + 4 | x | = 12 – 3 | x | = 9 6 | x | = 9 x = ±9 | x | = 1.5 x = ±1.5 例2、思考:如何解| x – 1 | = 2 分析:用换元(整体思想)法去解决,把x – 1 看成一个字母y,则原方程变为:| y | = 2,这个方程的解为y = ±2,即x – 1 = ±2,解得x = 3或x = – 1. 解:x – 1 = 2 或x – 1 = – 2 x = 3 x = – 1 例题小结:

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

绝对值不等式讲义

解绝对值不等式 1、解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值 3、解不等式(1)|x-x 2-2|>x 2-3x-4;(2) 234 x x -≤1 变形二 含两个绝对值的不等式 4、解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5. [思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|?f 2(x)〈g 2(x)两边平方去掉绝对值符号。(2)题可采用零点分段法去绝对值求解。 5、 解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1) 6.不等式|x+3|-|2x-1|<2 x +1的解集为 。 7.求不等式13 31log log 13x x +≥-的解集.

变形三 解含参绝对值不等式 8、解关于x 的不等式 34422+>+-m m mx x [思路]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大。若化简成3|2|+>-m m x ,则解题过程更简单。在解题过程中需根据绝对值定义对3m +的正负进行讨论。 2)形如|()f x |a (a R ∈)型不等式 此类不等式的简捷解法是等价命题法,即: ① 当a >0时,|()f x |a ?()f x >a 或()f x <-a ; ② 当a =0时,|()f x |a ?()f x ≠0 ③ 当a <0时,|()f x |a ?()f x 有意义。 9.解关于x 的不等式:()0922>≤-a a a x x 10.关于x 的不等式|kx -1|≤5的解集为{x |-3≤x ≤2},求k 的值。 变形4 含参绝对值不等式有解、解集为空与恒成立问题 11、若不等式|x -4|+|3-x |;()f x a <解集为空集()m i n a f x ?≤;这两者互补。()f x a <恒成立 ()m a x a f x ?>。 ()f x a ≥有解()m a x a f x ?≤;()f x a ≥解集为空集()max a f x ?>;这两者互补。()f x a ≥恒成立 ()min a f x ?≤。

解绝对值不等式的解法

解绝对值不等式题型探讨 题型一 解不等式2|55|1x x -+<. [题型1]解不等式2|55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2226360(3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x [请你试试4—1] ???

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

带绝对值的方程练习题

含绝对值的一元一次方程 我们把绝对值内含有未知数的方程,叫做含有绝对值的方程, 1.解方程:||1|1|3x x +-=. 2.解方程:|1||3|5x x -+-=. 解:方程可化为: ①1,135,x x x ??-+-=?由①得1,1,x x x+1 构造函数图形如下:从而求解

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

解绝对值不等式的方法总结

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

绝对值方程

第八章一元一次方程 一一元一次方程的解法 8.3 形如| x | = a(a≥0)方程的解法(2课时) 一、教学目的: 1、掌握形如| x | = a(a≥0)方程的解法; 2、掌握形如| x – a | = b(b≥0)方程的解法。 二、教学重点与难点: 教学重点:解形如| x | = a(a≥0)和| x – a | = b(b≥0)的方程。 教学难点:解含绝对值方程时如何去掉绝对值。 三、教学过程: (一)复习提问: 1、绝对值的代数和几何意义。 绝对值的代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值 是零。 a (a > 0) 用字母表示为| a | = 0 (a = 0) – a (a < 0) 绝对值的几何意义:表示这个数的点离开原点的距离。因此任何数的绝对值是非负 数。 2、求下列方程的解: (1)| x | = 7;(2)5 | x | = 10;(3)| x | = 0;(4)| x | = – 3;(5)| 3x | = 9. 解:(1)x =±7; (2)x = ±2; (3)x = 0; (4)方程无解; (5)x = ±3. (二)导入新课: 根据绝对值的意义,我们可以得到: 当a > 0时x =± a | x | = a当a = 0时x = 0 当a < 0时方程无解. (三)新课讲解: 例1:解方程: (1)19 – | x | = 100 – 10 | x | (2)2||3 3|| 4 x x + =- 解:(1)– | x | + 10 | x | = 100 – 19 (2) 2 | x | + 3 = 12 – 4 | x | 9 | x | = 81 2 | x | + 4 | x | = 12 – 3 | x | = 9 6 | x | = 9 x = ±9 | x | = 1.5 x = ±1.5 练习:书P11/1,2 例2、思考:如何解| x – 1 | = 2

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法 一、选择题 1.已知a <-6,化简26a -得() +6 2.不等式|8-3x |≤0的解集是() A. C.{(1,-1)} D.? ?????38 3.绝对值大于2且不大于5的最小整数是() 4.设A ={x ||x -2|<3},B ={x ||x -1|≥1},则A ∩B 等于() A.{x |-1<x <5} B.{x |x ≤0或x ≥2} C.{x |-1<x ≤0} D.{x |-1<x ≤0或2≤x <5} 5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是() 6.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N () A.{4-≥y y }B.{51≤≤-y y }C.{14-≤≤-y y }D. 7.语句3≤x 或5>x 的否定是() 53<≥x x 或53≤>x x 或53<≥x x 且53≤>x x 且二、填空题 1.不等式|x +2|<3的解集是,不等式|2x -1|≥3的解集是. 2.不等式12 11<- x 的解集是_________________. 三、解答题 1.解不等式1.02122<--x x 2.解不等式x 2-2|x |-3>0 3.已知全集U =R ,A ={x |x 2-2x -8>0},B ={x ||x +3|<2},求: (1)A ∪B ,C u (A ∪B )(2)C u A ,C u B ,(C u A )∩(C u B ) 4.解不等式3≤|x -2|<97.解不等式|3x -4|>1+2x . 5.画出函数|21|x-||x y ++=的图象,并解不等式|x +1|+|x -2|<4.

解绝对值不等式,涵盖高中所有绝对值不等式解法。

绝对值不等式|||||| a b a b +≤+,|||||| a b a b -≤+ 基本的绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b| ======================= y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 所以函数的最小值是5,没有最大值 ======================= |y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 由|y|≤5得-5≤y≤5 即函数的最小值是-5,最大值是5 ======================= 也可以从几何意义上理解,|x-3|+|x+2|表示x到3,-2这两点的距离之和,显然当-2≤x≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x到3,-2这两点的距离之差,当x≤-2时,取最小值-5,当x≥3时,取最大值5 解绝对值不等式题根探讨 题根四解不等式2|55|1 x x -+<. [题根4]解不等式2|55|1 x x -+<. [思路]利用|f(x)|0) -a- ?? 求解。 [解题]原不等式等价于2 1551 x x -<-+<, 即 2 2 551(1) 551(2) x x x x ?-+< ? ? -+>- ?? 由(1)得:14 x <<;由(2)得:2 x<或3 x>, 所以,原不等式的解集为{|12 x x <<或34} x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551 y x x y =-+= 与的的图象,解方程2551 x x -+=,再对照图形写出此不等式的解集。 第1变右边的常数变代数式 [变题1]解下列不等式:(1)|x+1|>2-x;(2)|2x-2x-6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x+1>2-x或x+1<-(2-x) 解得x>1 2 或无解,所以原不等式的解集是{x|x> 1 2 } ? ??

高中绝对值不等式-(精华版)-适合高三复习用--可直接打印

高中绝对值不等式-(精华版)-适合高三复 习用--可直接打印 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

绝对值不等式 绝对值不等式||||||a b a b +≤+,||||||a b a b -≤+ 基本的绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b| ======================= y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 所以函数的最小值是5,没有最大值 ======================= |y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 由|y|≤5得-5≤y ≤5 即函数的最小值是-5,最大值是5 ======================= 也可以从几何意义上理解,|x-3|+|x+2|表示x 到3,-2这两点的距离之和,显然当-2≤x ≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x 到3,-2这两点的距离之差,当x ≤-2时,取最小值-5,当x ≥3时,取最大值5 [变题1]解下列不等式:(1)|x +1|>2- x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于 x +1>2-x 或x +1<-(2-x ) 解得x > 12 或无解,所以原不等式的解集是{ x |x >12 } (2)原不等式等价于-3 x <2x -2x -6<3x 即 222 226360 (3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--

相关文档
最新文档