胶黏剂与粘接技术原理资料

反应粘粘接原理

一、粘接原理;高分子自粘卷材上的防水胶膜-丙烯酸脂单体通过水泥浆与混凝土结实 地板部牢固粘接,使卷材本体长链分子含有丰富的亲水链锻,这些链锻形成的游离键相当于“爪子”一样能伸入基层表面的空隙中,牢牢的抓紧基面。水泥在水化过程中产生胶体反映,其表面的微观结构为多孔结构,蠕动分子的亲水链锻可以直接伸进水泥胶体的孔缝中,使之和混凝土融合在一起成为混凝土外表的皮肤。所以高分子反应型自粘方式卷材既适应于干燥机层面又可适应于潮湿基面,对水泥基面和混凝土有良好的粘接效果,能使卷材和基层有效地形成一个整体。 二、防水卷材的反应材料分子呈长链型线性结构,其物料形态介于固体和液体之间,分 子间健能较弱,在外力的作用下长链分子可以弯曲变形,分子间可以相互滑动,而其物理和化学性能均不发生变化,这使卷材具有良好的柔软和外力自流平性,能自我化解内应力。 三、自粘卷材的特点 1、不用粘接剂,也不须加热烤至融化,只需撕去隔离膜即可牢固地粘接在基层上,施工方便安全环保且施工速度快质量好。 2、具有橡胶弹性,延伸率极佳,很好地适应基层的变形和开裂。 3、极具特色的自愈功能,能自行愈合较小的穿刺破损,在遭遇穿刺或硬物嵌入时,会自动与这些物体合为一体,保持良好的防水性能。 4、具有优异的对基层的粘接力,粘接力往往大于粘合面外断裂,确保搭接严密可靠,天衣无缝。 5、施工安全,不污染环境,施工简便干净,容易做到现场文明施工。 6、除主体材料外,表面材料高分子膜也具有良好的防水性和很高的强度,防水具有双重保险。 7、该卷材具有很好的耐酸、耐碱、耐化学腐蚀,在各种环境中具有优良的耐老化性能。 四、应用范围 适用于工业与民用建筑的屋面、地下室、室内、市政工程和蓄水池、游泳次以及地铁隧道防水。还适用于木结构和金属结构屋面的防水工程。特别适用于需要冷施工的军事设施和不宜动火的石油库、化工厂、纺织厂、粮库等防水工程。 五、注意事项 1、不要把非暴露型的卷材用于用于暴露的使用环境。 2、不要在冻结的基层上铺贴自粘卷材。 3、不能在被污染和含水率较高的基层上施工。 4、自粘卷材的包装和隔离纸只能在铺贴前和铺贴时除去。 5、其他厂家的配套材料,未经验证,不要适用于本产品。

胶粘剂粘接原理(终审稿)

胶粘剂粘接原理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

粘接原理 1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。 2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张 力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γ SV =γ SL +γ LV cosθ。γ SV , γ SL ,γ LV 各代表了固气接触,固液接触和液气接触。θ为0o表示完全浸润)。如果 胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了 接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低 (即γ SV 要大),这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。 通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型: 1)离子键 2)共价键 3)金属键

胶水的种类及性能

1.什么叫胶水: 胶水就是能够粘接二个物体的物质。胶水不是独立存在的,它必须涂在二个物体之间才能发挥粘接作用。 2.胶水的粘度(cps): 胶水的粘度用布氏粘度计测出,单位是"cps厘泊"。胶水的粘度的读数一般在300~30000cps之间。在水溶性的粘合剂中,固体含量并不决定胶的粘度,而在于胶水的配方内的增塑剂、增粘剂等等,影响胶水的粘度值。一般情况下周围的环境温度越高"粘度↓","温度↓粘度↑"。水在27℃时的粘度为"1"。 3.胶水的流动性(流变性): 利用低及高转动力以测其粘度值然后取其比率。一般胶水的流动性为1.5~3较好。胶水的粘度同它的流变性有很大的关系。对胶水"搅动↑稀度↓"。尤其是水溶性胶水,越搅越稀。胶水的涂布特性跟流变性的关系:小于1最难涂布;0~1.5浊流现象;1.5~3良好的涂布性(流变性也最好);大于3过稀; 4.最低成膜温度(MFT): 在某个温度下,粘合剂里的水份全部挥发后,由液态转变为固态的临界状态下它的成膜温度。这时,干涸的胶层很脆且不具有内聚力。 5.成膜速度: 从涂胶到在两个基材中形成胶膜的有效结合时间。它受以下因素影响; ☆粘合剂内的水份散发时间(时间短成膜快) ☆高基材孔积率(孔积率大有效结合时间快)。 ☆粘合剂的涂布量(量大,结合时间慢)。 ☆粘合剂的配方、固含、等等都会影响成膜速度。 6.胶的养生期: 胶水在两个基材中形成膜后,随着时间的延续而形成了结合力。在这段时间内,最低的结合力形成的时间是最重要的。在最低结合力形成后,我们就可以做其它的工作了,它不会影响胶水最终用品的表现。随着时间的增加,在一段时间后胶的结合力的形成是最完全的,结合力是平稳的,这就是最高结合力。由最低结合力到最高结合力的时间就是胶水的养生期。一般胶水的最低结合力是24小时。养生期1-7天。使用中的环境温度、不同的粘接材料都将影响胶水的养生期7.胶水的防水等级: 胶水的防水等级分为四级,地板用胶水的防水等级应在3级以上。 1级:一般的防水; 2级:室内弱防水; 3级:室内强防水; 4级:室外的防水。 FDA标准:指"国际亲近人体无公害"标准。 8.胶水的耐溶剂性: 用"丙酮"(油漆中的主要成分)测试胶水对丙酮的反映。涂油漆后,油漆中溶剂对胶膜的溶胀率。越大胶水的质量就越差。质量差的胶水在有"丙酮"存在的高温环境下,半个小时左右胶水的胶膜就会慢慢变黑,胶膜的内聚力下降。 9.胶膜的颜色对胶的粘结力有没有影响? 胶水的胶膜是透明的或是乳白的,这都是很正常的它不会影响胶水的粘结力(发黑、乳白发胀对胶水的粘结力有影响)。一般情况下,在加了阻水的填充剂后的胶水,其胶膜的透明度较差,但它不会影响胶水的效力。 10.水溶性胶水的粘接原理:

胶粘剂的基本理论01

胶粘剂的基本理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。 一、吸附理论 人们把固体对胶粘剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低,这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。 通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型:(1)离子键(2)共价键(3)金属键(4)范德华力胶粘剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 二、化学键形成理论 化学键理论认为胶粘剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶粘剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 三、弱界层理论 当液体胶粘剂不能很好浸润被粘体表面时,空气泡留在空隙中而形成弱区。又如,当中含杂质能溶于熔融态胶粘剂,而不溶于固化后的胶粘剂时,会在固体化后的胶粘形成另一相,在被粘体与胶粘剂整体间产生弱界面层(WBL)。产生WBL除工艺因素外,在聚合物成网或熔体相互作用的成型过程中,胶粘剂与表面吸附等热力学现象中产生界层结构的不均匀性。不均匀性界面层就会有WBL出现。这种WBL的应力松弛和裂纹的发展都会不同,因而极大地影响着材料和制品的整体性能。 四、扩散理论 两种聚合物在具有相容性的前提下,当它们相互紧密接触时,由于分子的布朗运动或链段的摆产生相互扩散现象。这种扩散作用是穿越胶粘剂、被粘物的界面交织进行的。扩散的结果导致界面的消失和过渡区的产生。粘接体系借助扩散理论不能解释聚合物材料与金属、玻璃或其他硬体胶粘,因为聚合物很难向这类材料扩散。 五、静电理论 当胶粘剂和被粘物体系是一种电子的接受体-供给体的组合形式时,电子会从供给体(如金属)转移到接受体(如聚合物),在界面区两侧形成了双电层,从而产生了静电引力。

聚氨酯黏合剂原理及其应用

过去的一节课,我们讲粘合剂,着重讲了粘合工艺和原理、代表性粘合剂,侯兴旺刘红良等同学也给出了对导电粘合剂的浅显理解。但是我没有讲应用的问题,请同学们逆向思考:粘合剂的使用是为了粘合两种材料,假设在使用一段时间后粘合剂松开了,或者你想重新加工粘合两种材料,这样就需要除去或者洗脱掉原有的粘合剂,请至少列举一种粘合剂的应用以及其对应的后处理方法、并指出原理是什么。

一、聚氨酯黏合剂的应用 1、汽车用聚氨酯胶粘剂新型汽车结构中引入大量的轻质金属、复合材料和塑料,造成汽车用胶粘剂和密封胶持续增长。在汽车上应用最为广泛的聚氨酯胶粘剂主要有装配挡风玻璃用单组分程固化聚氨酯密封胶、粘接玻璃约维增强塑料和片状模塑复合村料的结构胶粘剂、内装件用双组分聚氨酯胶粘剂及水性聚氯酯胶等。此外,茎车内饰件也是胶粘剂用量增长的一个领域。汽车上应用广泛的水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂。大多数水性聚氨酯是线性热塑性聚氨酯,由于其涂膜没有交联,分子质量较低,因而耐水性、耐溶剂性、胶膜强度等性能还较差,必须对其进行改性,以提高其性能。聚酯和丙烯酸的杂和分散体与脲二酮和异氰脱脲酸酯配合制备的汽车修补清漆,不需要高速搅拌设备,容易混合在一起且具有良好的粘附性能。 2、木材用聚氨酯胶粘剂随着世界性森林资源急剧减少和我国天然林资源保护工程的实施,小木材拼大板就要求胶粘剂粘接强度和耐久耐候等性能优于木材本身。胶粘剂用量的多少,已成为衡量木材工业技术发展水平的标志。过去人们用的木村胶粘剂多为以甲醛为主要原料的脖醛树脂,酚醛树脂和三聚氰氨甲醛树脂,但由于游离的甲醛存在,产品使用期间会逐淋向周围散发甲醛气体,造成环境污染。木村加工行业已开始将目光投向新型的环保胶粘剂聚氯酯胶,以期减少对环境的行染。木工行业使用的单组分湿气固化聚氨酯胶粘剂是液态的,在室温下使用。通常其粘接强度高、柔韧性和耐水性好,并能和许多非木基材(如纺织纤维、金属、塑料、橡胶筑)粘接。单组分聚氨酯胶粘剂在测试中所表现出的干、返强度均要好于酚醛胶粘剂。粘接前,在粘接基材表面涂布羟甲基间苯二酚(HMR)偶合剂可以提高粘接强度。HMR可以加强所有热固型木村胶粘剂的粘接强度,当木村表面预涂HMR偶合剂时,单组分聚氨酯胶粘剂的强度和耐久性可以满足大部分严格的测试要求。 3、鞋用聚氨酯胶粘剂我国是一个制鞋大国,鞋用胶粘剂的发展经历三代后,随着全球性环保意识的提高,以及石油危机的加剧,促使第四代环保无溶剂型和水基型载用粘胶剂的出现。近年来,水性聚氨酯的制备工艺己日趋成熟。对于一些低极性鞋材如SBS等材质的粘接, 聚氨酯胶粘剂的剥高强度达不到要求。通过添加增粘树脂等进行改性,可开发出具有结晶度高、结晶速度快、内聚强度大和剥离强度较理想的聚氨酯鞋用胶粘剂。 4包装用聚氨酯胶粘剂软包装又称软罐头,以其轻质方便、保鲜期长、卫生、易贮存运输、易拆开、垃圾量少及货架效应良好等独特的综合性能,现己超过硬包装如塑料、玻璃瓶和罐等。聚氨酯胶粘剂由于其优异的性能,可将不同性质的薄膜材料粘接在一起得到耐寒、耐泊、耐药品、透明、耐磨等各种性能的软包装用复合薄膜。目前在国内外市场中, 聚氨酯胶粘剂已经成为软包装用复合薄膜加工的主要胶粘剂。在国内胶粘剂市场中,包装用复合薄膜制造业中, 聚氨酯胶粘剂用量仅次于制鞋业而居第二位。用于包装的聚氨酯胶粘剂品种繁多,如水基聚氨酯胶粘剂、热熔型聚氨酯胶粘剂、溶剂型聚氨酯胶粘剂以及无溶剂型聚氨酯胶粘剂等。其中常用的聚氨酯热熔胶又可分为热塑性聚氨酯弹性体热熔胶与反应型热熔胶两类。热塑性热熔胶的主要缺点是粘度较高,故对涂布表观质量的影响较大。反应型聚氨酯热熔胶粘剂是在传统热熔胶基础上发展起来的一类新型胶粘剂,它不仅有传统热熔胶初粘性好和后固化性能优的特点,又具有聚氮酯的组成结构多变和性能调节范围大的优点,对多种基材具有优良的粘接性能。另外,在包装用水

常见的胶黏剂及其粘结机理

一、胶黏剂的定义: 通过界面的黏附和内聚等作用, 能使两种或两种以上的制件或材料连接在一起的天然的 或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。 二、胶黏剂的分类: 胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、 溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。 三、六大胶粘理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1、吸附理论: 人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程: 第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利 于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。胶黏剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 2、化学键形成理论: 化学键理论认为胶黏剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶黏剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 3、弱界层理论:

常见胶粘剂及其作用原理

胶粘剂 胶接(粘合、粘接、胶结、胶粘)是指同质或异质物体表面用胶粘剂连接在一起的技术,具有应力分布连续,重量轻,或密封,多数工艺温度低等特点。胶接特别适用于不同材质、不同厚度、超薄规格和复杂构件的连接。胶接近代发展最快,应用行业极广,并对高新科学技术进步和人民日常生活改善有重大影响。因此,研究、开发和生产各类胶粘剂十分重要。 胶粘剂的分类 胶粘剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;接形态可分为水溶型、水乳型、溶剂型以及各种固态型等。合成化学工作者常喜欢将胶粘剂按粘料的化学成分来分类 热塑性纤维素酯、烯类聚合物(聚乙酸乙烯酯、聚乙烯醇、过氯乙烯、聚异丁烯等)、聚酯、聚醚、聚酰胺、聚丙烯酸酯、a-氰基丙烯酸酯、聚乙烯醇缩醛、乙烯-乙酸乙烯酯共聚物等类 热固性环氧树脂、酚醛树脂、脲醛树脂、三聚氰-甲醛树脂、有机硅树脂、呋喃树脂、不饱和聚酯、丙烯酸树脂、聚酰亚胺、聚苯并咪唑、酚醛-聚乙烯醇缩醛、酚醛-聚酰胺、酚醛-环氧树脂、环氧-聚酰胺等类 合成橡胶型氯丁橡胶、丁苯橡胶、丁基橡胶、丁钠橡胶、异戊橡胶、聚硫橡胶、聚氨酯橡胶、氯磺化聚乙烯弹性体、硅橡胶等类 橡胶树脂剂酚醛-丁腈胶、酚醛-氯丁胶、酚醛-聚氨酯胶、环氧-丁腈胶、环氧-聚硫胶等类 胶粘理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。

因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。 吸附理论 人们把固体对胶粘剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为: 粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶粘剂分子与被粘物表面分子的作用过程有两个过程: 第一阶段是液体胶粘剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶粘剂粘度等都有利于布朗运动的加强。第二阶段是吸附力的产生。当胶粘剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。 根据计算,由于范德华力的作用,当两个理想的平面相距为10Å时,它们之间的引力强度可达10-1000MPa;当距离为3-4Å时,可达100-1000MPa。这个数值远远超过现代最好的结构胶粘剂所能达到的强度。因此,有人认为只要当两个物体接触很好时,即胶粘剂对粘接界面充分润湿,达到理想状态的情况下,仅色散力的作用,就足以产生很高的胶接强度。可是实际胶接强度与理论计算相差很大,这是因为固体的力学强度是一种力学性质,而不是分子性质,其大小取决于材料的每一个局部性质,而不等于分子作用力的总和。计算值是假定两个理想平面紧密接触,并保证界面层上各对分子间的作用同时遭到破坏时,也就不可能有保证各对分子之间的作用力同时发生。 胶粘剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 化学键形成理论

粘胶剂的基本理论

东莞星宇材料粘胶剂的基本理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。 一、吸附理论 人们把固体对胶粘剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶粘剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶粘剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶粘剂粘度等都有利于布朗运动的加强。第二阶段是吸附力的产生。当胶粘剂与被粘物分子间的距离达到10-5?时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。 根据计算,由于范德华力的作用,当两个理想的平面相距为10?时,它们之间的引力强度可达10-1000MPa;当距离为3-4?时,可达100-1000MPa。这个数值远远超过现代最好的结构胶粘剂所能达到的强度。因此,有人认为只要当两个物体接触很好时,即胶粘剂对粘接界面充分润湿,达到理想状态的情况下,仅色散力的作用,就足以产生很高的胶接强度。可是实际胶接强度与理论计算相差很大,这是因为固体的力学强度是一种力学性质,而不是分子性质,其大小取决于材料的每一个局部性质,而不等于分子作用力的总和。计算值是假定两个理想平面紧密接触,并保证界面层上各对分子间的作用同时遭到破坏时,也就不可能有保证各对分子之间的作用力同时发生。 胶粘剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 二、化学键形成理论 化学键理论认为胶粘剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶粘剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 三、弱界层理论

胶粘剂粘接原理

粘接原理 1、机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为 (1)机械镶嵌; (2)形成清洁表面; (3)生成反应性表面; (4)表面积增加。由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。 2、吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γ SV=γ SL+γ LVcosθ。γ SV,γ SL,γ LV各代表了固气接触,固液接触和液气接触。θ为0o表示完全浸润)。如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低(即γ氟塑料很难粘接。

通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型: 1)离子键 2)共价键 3)金属键 4)xx力 3、扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。 4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。 5、弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶粘剂和被粘物内部都可出现弱边界层。 当发生破坏时,尽管多数发生在胶粘剂和被粘物界面,但实际上是弱边界层的破坏。,这就SV要大)是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和聚乙烯与金属氧化物的粘接便是弱边界层效应的实例,聚乙烯含有强度低的含氧杂质或低分子物,使其界面存在弱边界层所承受的破坏应力很少。如果采用表面处理方法除去低分子物或含氧杂质,则粘接强度获得很大的提高,事实业已证明,界面上确存在弱边界层,,致使粘接强度降低。 粘接原理 目前已提出的粘接理论主要有:

胶粘剂与粘接技术

1 胶粘剂与粘接技术 胶粘剂 通过界面的粘附和物质的内聚力作用,能使两种或两种以上的相同或不相同材料连接在一起的天然的或合成的、有机的或无机的一类物质,统称为胶粘剂,习惯简称为胶。所谓“粘附”是指两个表面通过界面化学力、物理力或两者兼有的力使之结合在一起的状态。 粘接技术 利用胶粘剂将各种材质、形状、大小、软硬相同或不相同制件材料连接成为一个连续、牢固、稳定整体的过程叫做粘接;所谓粘接技术就是选择适宜的胶粘剂,制备适当的接头形式,采用合理的粘接工艺使被粘物体连接在一起的方法。 2 胶粘剂选用的常见问题 选择合适的胶粘剂 在确定采用粘接修理方案之后,究竟使用何种胶粘剂确实是个关键问题。目前胶粘剂品种繁杂,牌号甚多,每一种胶粘剂不可能都是万用的,不同的胶粘剂具有不同的性能特征、工艺条件和使用范围。就实用性而言,各种胶粘剂的差别是很大的,俗称为“万能胶”的环氧树脂胶粘剂用途非常广泛,但并非适宜任何目的。例如,用其粘接软质材料,一剥就开;用于振动场合,一冲就裂;而用于刚性材料的结构粘接,却十分牢固。可以肯定的说,世界上现在没有,将来也不会有,根本不存在所谓的“万能”胶粘剂。粘接技术涉及到被粘物、胶粘剂工艺方法、受力状态、环境因素等。实际上粘物有不同的表面性质,胶粘剂有不同的粘接性能,工艺上有不同的具体要求,粘接件有不同的受力类型,使用时有不同的环境条件。这些复杂的情况,绝不可能随意拿来一种胶粘剂就盲目粘接,必须进行适当的选择,恰其所用。克服盲目性、提高主动性 胶粘剂品种众多,用途各异,面对几百种胶粘剂,几千种牌号都拿来实际试一试,当然是不可能的。就算手头有几种胶粘剂,仅拿来粘一粘看,也不一定可靠,即便当时粘上了,日后使用如何也是心中无数,带来很大的盲目性。有时贪图方便省事,不加分析,不分场合与对象,动不动就用“502”、“哥俩好”,对于用在直升机上的粘接,其结果当时粘上了,时间一长就会开胶、撕裂。如果我们有科学根据,按照胶粘剂本身的性能和粘接对象与使用条件进行一下筛选,就会更有把握、更可靠、更主动。 既要满足要求,又要经济合理 任何胶粘剂都有其长处,也有之短处。所谓胶粘剂的选用也就是用其之长,扬长避短。充分发挥粘接技术的优越性。否则不是收效甚微,就是徒劳无功,甚至造成不良影响和经济损失。在一些日常粘接件上发生类似情况比比皆是,粘接本身都是要满足一定的使用要求,往往同时会有几种胶粘剂都能达到同样的要求。这就需要我们进行一下比较,综合分析,保证性能可靠,还要经济实惠。可见花些功夫,动些脑筋,认真选择合适的胶粘剂是很有重要意义的。避免浪费,提高效率 如果不对胶粘剂进行合理的选用,随便拿来就用,往往容易造成被粘物和胶粘剂的报废,甚至会出现严重的质量问题。尤其是从事机务维修人员,面临是一架飞机,国家的巨额财产,因胶粘剂用之不当也会引起很大的后患,有可能会发生事故,后果不堪设想。其次,对于返工的粘接件会造成二次损伤,延长工期耽误任务飞行。 3 胶粘剂选用的基本原则 必须熟悉胶粘剂的种类和性能 目前对于如何选用胶粘剂还缺乏系统的理论方法和完整的数据资料,主要还是依靠际积累的知识和经验。进行粘接实践,胶粘剂是基础,正确选用其性能是重要依据。不同类型的胶具有不同的性能,决定着它们的各种用途,如哈飞制造厂按照原苏联有孔蜂窝结构技术,用三元共聚的54号尼龙,经甲醛羟甲基化生产了改性聚酰胺,制造直-五机金属旋翼。由于酚醛

粘接的基本原理

概述 1. 胶粘剂的发展 2. 胶粘剂的优缺点 3. 粘接力的产生范德华力 A. 物质分子间作用力表面张力和表面自由能 B. 化学键力浸润和扩展 C. 界面静电引力吸附作用与吸附理论 D. 粘接的三大理论静电作用和静力理论 扩散作用和扩散理论 4. 影响粘接强度的因素 A. 物理因素 B. 化学因素 5. 表面处理对铝合金粘接性的影响

概述 一、概述 1. 古时代,人类就知道利用粘液为自己造福,如糯米糊加上填料造建宝塔和密封棺椁。到秦朝修建万里长城就是以糯米糊为基料的胶粘剂将砖叠而成,再如骨胶就动物骨经石灰处理和水浸后得到了骨胶,用作填缝隙及木器,弓箭和铠甲的胶粘剂,还在骨胶里加木烟灰制成墨。中国人很早就用血朊、松香、树汁制成各种胶粘剂。 善于航海的腓尼基人得力于胶粘剂才造出经受风暴的航海船只,古埃及的金字塔,法老墓和木乃伊,如果没胶粘剂是不可能将这些文物保存不到今天的。 到17世纪,人们才开始建立工厂,专门生产胶粘剂,这些胶粘剂主要是采用骨胶,酪元,血朊,淀粉糊和大豆蛋白来制造,这些胶粘剂主要用于木制品,印刷,裱糊装潢。而且也用于早期的航空工业,布和胶制机翼这些胶粘剂都是亲水的,就出现了耐水性,耐霉菌性差,不宜在湿热条件下使用。 随着工业的发展,人类开始寻找耐水,耐霉菌的胶粘剂,化学合成的酚酪树脂成功地替代酪朊,成为航空工业的主要胶粘剂。18世纪至20世纪的100年间又相继出现了天然乳胶胶粘剂,烟片配制的胶粘剂,20世纪30年代又出现了现代橡胶,纤维素类和醇酸树脂类胶粘剂。 受二次世界大战的刺激,酚醛树脂胶粘剂很快就发展了许多改性品种,如缩醛-酚醛、氯丁-酚醛、丁腈-酚醛、间苯二酚中醛树脂,糠醇树脂。其中缩醛-酚醛树脂的牌号Redux 粘剂用于占斗机主翼,在飞行中被粘金属因疲劳易断裂时粘接部位仍完好。1944年英国大黄锋型歼击机使用合成胶粘剂。60年代中期包括鬼怪式、三叉、海盗B58。这说明粘接结构件能具有优异的力学性能,这个时期内出现许多新胶粘剂,如环氧树脂、多异氰酸酯、聚醋酸乙烯、三聚氰胺、甲醛和氯化橡胶等为基料的胶粘剂,特别是性能优异的环氧树脂类胶粘剂,在二次世界大战后,胶粘剂有更大的发展,战后40年间,聚氨酯,丙烯酸酯类,聚烯烃弹性体,含硅、氟、钛其他元素的胶粘剂,聚苯醚、聚苯硫醚都有很大的发展。现代生活中,胶粘剂广泛应用于人类生活的各个领域,如医学上,人体骨骼,牙齿修补;以如在服装行业中衣服和粘接和衣服防护;还在食品,建筑行业,地铁的防震和防水,地面各车轫的密封等。我们可设想世上如果没有胶粘剂,现代的飞机,飞船和人造卫星不知要推迟多久才能升空。 所以人类的现代文明是离不开胶粘剂和粘接。

粘合剂概述

在橡胶工业中橡胶与骨架材料之间的粘结十分重要,它们之间的黏合水平决定了产品的性能和使用寿命,因此黏合体系也是十分重要特种配合体系。 一、黏合体系的分类及几个术语的含义 黏合又称粘结、胶接、黏着等,是指将两个材料或物件(可同种,也可不同种)粘在一起的过程。关于黏合物质的名称有多种,如增黏剂、胶黏剂、黏合剂、粘结剂等。①增黏剂是指添加橡胶、塑料或胶黏剂中的配合剂,主要用于制品成型操作,提高未硫化胶之间的粘合性。 ②胶粘剂是指使将两种或两种以上的制件(或材料)链接在一起的一类物质,多是胶液或胶膜形式。③直接黏合剂是指直接配入胶料中的配合剂,在硫化时使被粘表面之间产生化学键合或强烈的物理吸附,形成牢固的界面层,主要用于含骨架材料的复合制品如轮胎等。下面仅就橡胶工业领域中应用的黏合剂进行分类。 松香树脂:脱氢松香酸、脱羟松香、氢化松香甘油酯等 天然树脂萜烯树脂:多萜树脂、萜烯-酚醛树脂 妥尔油:100%妥尔油、聚合妥尔油、氢化妥尔油增黏剂 烷基酚醛树脂:如对-叔丁基酚-甲醛树脂、对-叔辛基苯 酚甲醛树脂、对-叔辛基苯酚乙炔树脂、 合成树脂改性烷基酚醛树脂 石油树脂:C5树脂、C9树脂、苯乙烯-茚树脂、苯乙烯-丁二烯树脂、古马隆-茚树脂等 黏合剂其他:如聚异丁烯树脂、Rx-80树脂 间甲白体系:如黏合剂HTM、HMMM、RA;间苯二酚、RS、RE、R-80、RF;RH、RL等直接黏合剂钴盐体系:如环烷酸钴、硬脂酸钴、乙酸钴、硼酰化钴等 其他体系:三臻体 树脂型:环氧树脂、酚醛树脂、聚酯树脂、脲醛树脂、丙烯酸酯等胶黏剂 胶黏剂橡胶型:氯丁橡胶胶黏剂、丁腈橡胶胶黏剂、改性天然橡胶胶黏剂、氯磺化聚乙烯胶黏剂、聚硫橡胶胶黏剂、羧基橡胶胶黏剂、丁基橡胶胶黏剂、硅橡胶胶黏剂、聚氨酯橡胶胶黏剂等 混合型:橡胶-橡胶、橡胶-树脂、树脂-树脂 其他类:偶联剂体系,如硅烷类Chemlock黏合剂;多异氰酸酯 二、黏合的基本原理 粘合剂粘结两种材料时,首先黏合剂要与被粘物表面充分接触,其次黏合剂与被粘物之间要形成足够的黏附力才能形成牢固度符合要求的黏合界面。 1、固体的表面特征 由于固体表面分子力场不平衡,所以有表面能。不同类型固体表面能不同。 常用的烷基酚醛树脂之所以能增加未硫化胶的粘性 三、粘合机理 由胶黏剂与被粘物形成的粘合存在着吸附作用与吸附理论、静电作用与静电理论和扩散作用与扩散理论这三种理论解释。 1、吸附作用与吸附理论

粘合剂粘合原理

粘合剂粘合原理 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。 吸附理论 人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。 根据计算,由于范德华力的作用,当两个理想的平面相距为10Å时,它们之间的引力强度可达10-1000MPa;当距离为3-4Å时,可达100-1000MPa。这个数值远远超过现代最好的结构胶黏剂所能达到的强度。因此,有人认为只要当两个物体接触很好时,即胶黏剂对粘接界面充分润湿,达到理想状态的情况下,仅色散力的作用,就足以产生很高的胶接强度。可是实际胶接强度与理论计算相差很大,这是因为固体的力学强度是一种力学性质,而不是分子性质,其大小取决于材料的每一个局部性质,而不等于分子作用力的总和。计算值是假定两个理想平面紧密接触,并保证界面层上各对分子间的作用同时遭到破坏时,也就不可能有保证各对分子之间的作用力同时发生。

胶粘剂粘接理论

粘接理论 1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。 2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。 许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低,这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型(1)离子键

(2)共价键 (3)金属键 (4)范德华力 3、扩散理论扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。 4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。 5、弱边界层理论弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶粘剂和被粘物内部都可出现弱边界层。当发生破坏时,尽管多数发生在胶粘剂和被粘物界面,但实际上是弱边界层的破坏。 聚乙烯与金属氧化物的粘接便是弱边界层效应的实例,聚乙烯含有强度低的含氧杂质或低分子物,使其界面存在弱边界层所承受的破坏应力很少。如果采用表面处理方法除去低分子物或含氧杂质,则粘接强度获得很大的提高,事实业已证明,界面上确存在弱边界层,,致使粘接强度降低。

2020年常见的胶黏剂及其粘结机理

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 一、胶黏剂的定义: 通过界面的黏附和内聚等作用, 能使两种或两种以上的制件或材料连接在一起的天然的 或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。 二、胶黏剂的分类: 胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、 溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。 三、六大胶粘理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互

作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。 1、吸附理论: 人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程: 第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利 于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。胶黏剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 2、化学键形成理论: 化学键理论认为胶黏剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;

粘接理论

粘接理论 一、机械理论 机械理论是最早提出的粘接理论,这种理论认为胶黏剂渗入被粘物凸凹不平的多孔表面内,丙排除其界面上吸附的空气,固化产生锚合、钩合、锲合等作用,使胶黏剂与被粘物结合在一起。胶黏剂粘接经机械粗糙化处理材料的效果比表面光滑的材料效果好,因此,它无法解释致密被粘物如玻璃、金属等粘接的缘由。 二、吸附理论 吸附理论曾是较为流行的理论,它认为粘接是与吸附现象类似的表面过程。胶黏剂的大分子通过链段分子与分子链的运动,逐渐向被粘物表面迁移,极性基团靠近,当距离笑语0.5nm时,原子、分子或原子团之间必然发生相互作用,产生分子间力,这种力称做范德华力。固体表面由于范德华力的作用能吸附液体和气体,这种作用称为物理吸附。范德华力包括偶极力,诱导力和色散力,有时由于电负性的作用还会产生氢键力,从而形成粘接。吸附理论将粘接看作是一种表面过程,是以分子间力为基础的。 三、扩散理论 扩散理论又称为分子渗透理论,它认为聚合物的粘接是由扩散作用形成的。由于聚合物的链状结构和柔性,使胶黏剂大分子的链段通过热运动引起相互扩散,大分子缠结交织,类似表层的相互溶解过程,固化后则粘接在一起。如果胶黏剂能以溶液形式涂于被粘物表面,而被粘物又能在此溶剂中溶胀或溶解,彼此间的扩散作用更易进行,粘接强度则会更高。因此,溶剂或热的作用能促进相溶聚合物之间的扩散作用,加速粘接的完成和强度的提高。扩散理论主要用来解释聚合物之间的粘接,无法加上聚合物与金属粘接的过程。 四、静电理论 静电理论又叫双电层理论,它认为在胶黏剂与被粘物接触的界面上形成双电层,由于静电的相互吸引而产生粘接。但双电层的静电吸引力并不会产生足够的粘接力,甚至对粘接力的贡献是微不足道的。静电理论无法解释性能相同或相近的聚合物之间的粘接。 五、弱边界层理论 妨碍粘接作用形成并使粘接强度降低的表面层称为弱边界层,不仅聚合物表面存在,纤维、金属等表面也都存在着弱边界层。弱边界层来自胶黏剂、被粘物环境或三者的任意组合。如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶黏剂和被粘物中都可能出现弱边界层。当发生破坏时,看起来是发生在胶黏剂和被粘物界面,但实际上是弱边界层的破坏。

相关文档
最新文档