电磁场与电磁波 总结

电磁场与电磁波总结

引言

电磁场与电磁波是物理学中非常重要的概念,也是理解现代电子技术和通信技术的基础。本文将对电磁场和电磁波进行总结和概述,对其基本原理、性质和应用进行简要介绍。

电磁场

电磁场是由电荷产生的力场和磁场相互作用而形成的。根据麦克斯韦方程组,电磁场的传播速度是光速,因此电磁场具有波动性质。电磁场可以分为静电场和静磁场、变化着的电场和磁场等不同情况。

在电磁场中,电荷的运动会产生电场和磁场,而这些电场和磁场又会作用于其他电荷,从而产生相互作用力。电场的强度由电场强度和电势来描述,而磁场的强度则由磁感应强度和磁通量密度来描述。

电磁场的性质可通过麦克斯韦方程组来描述,其中包括了电场和磁场的运动学和动力学规律。通过对麦克斯韦方程组的求解,可以得到电磁场在空间中的分布和演化。

电磁波

当电磁场发生变化时,它所激发的能量以波的形式传播,这就是电磁波。电磁波由电场和磁场的振荡相互配合形成,它们垂直于传播方向并按照特定的频率和波长振荡。

根据不同频率的电磁波,可以分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等不同区域。电磁波在空间中的传播速度为光速,根据频率和波长的关系,可以通过光速来计算电磁波的频率和波长。

电磁波的性质包括频率、波长、传播速度、偏振、衍射、干涉和折射等。这些性质决定了电磁波在不同介质中的传播方式和应用。电磁波在无线通信、天文学、医学诊断、照明等领域具有广泛的应用。

应用

电磁场和电磁波在现代科学和技术中具有重要的应用。以下是一些典型的应用领域:

通信

电磁波作为信息传输的一种手段,被广泛应用于无线通信和卫星通信系统中。无线电、手机、电视、卫星通信等都是利用电磁波传输信号的技术。

医学

医学领域中的核磁共振成像(MRI)、X射线拍片和放射疗法等都是利用电磁波的特性来实现的。这些技术对于医学诊断和治疗起着重要的作用。

天文学

通过观测电磁波,天文学家可以探索宇宙中的黑洞、星系和恒星等。不同波长的电磁波帮助科学家深入了解宇宙的起源和演化。

物理学研究

在物理学研究中,电磁场和电磁波是基本的研究对象。科学家通过研究电磁波的性质和行为,深入理解宇宙的本质和物质的微观结构。

结论

电磁场和电磁波是现代物理学的基础概念,对于理解电子技术、通信技术和现代科学不可或缺。它们的性质和应用使我们能够在无线通信、医学诊断、天文学和物理学研究等方面取得了重大进展。通过深入研究电磁场和电磁波,我们可以更好地理解自然界的规律并将其应用于技术创新和科学发展中。

以上就是对电磁场与电磁波的概述和总结,希望能够为读者对这一重要概念的理解提供一定的帮助。

参考文献:

1.Griffiths, David J. Introduction to Electrodynamics: Pearson New

International Edition. Pearson Higher Ed, 2013.

2.Hecht, Eugene. Optics. Pearson Education India, 2006.

3.蔡勇, 李世涛, & 申明. (2009). 射电天文学概论. 上海科学技术出版社.

电磁场和电磁波

电磁场和电磁波 电磁场,有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 电磁波是电磁场的一种运动形态。在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 电磁场和电磁波是物理中的两个基础概念,电磁场和电磁波有什么区别了? 电磁场 一般来说电磁场就是指彼此相联系的交变电场和磁场。电磁场是由带电粒子的运动而产生出的一种物理场,在电磁场里,磁场的任何变化都会产生电场,电场的任何变化也会产生磁场。这种交变电磁场不仅可以存在于电荷、电流或导体的周围,而且能够在空间传播。

电磁场可以被视为一种电场和磁场的连结。电场是由电荷产生的,而移动的电荷又会产生出磁场。 电磁波是什么了 电磁场的传播就构成了电磁波。又被称为电磁辐射,比如我们常见的电磁波有无线电波、微波、红外线、可见光、紫外线、X 射线、r射线,这些全都是电磁波,只是这些电磁波的波长不同而已。其中无线电波的波长是电磁波中最长的,r射线的电磁波的波长最短。 直得一提的是,人眼可以接收到的电磁波的波长一般是在380至780nm之间,也就是我们常说的可见光。一般来说,只要物体本身的温度大于绝对零度(也就是零下273.15摄氏度),除了暗物质外,都会向外发射电磁波,而世界上并没有温度低于零下273.15摄氏度的物体,所以我们身边的物体可以说者会放出电磁波。电磁波的传播速度是以光速传播。 电磁波是谁最先发现了了,历史上电磁波首先是由詹姆斯·麦克斯韦于1865年预测出来的,后来又由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实了电磁波的存在。

电磁场与电磁波

電磁場與電磁波 电磁场与电磁波 电磁场是指由电荷的运动而形成的一种物质周围的力场。电磁场的 概念由麦克斯韦方程组给出,它包括电场和磁场两部分。 电场是由电荷产生的力场,它描述了电荷对周围其他电荷产生的作 用力。磁场是由电流或者变化的电场产生的,它描述了电流对周围产 生的作用力。 1. 电场 在所有电荷周围都存在电场,电场的描述通过电场强度来实现。电 场强度是一个矢量量,大小表示电场的强弱,方向表示电场的作用方向。在一个点处,电场强度的方向与正电荷相同,与负电荷相反。 电场强度的数学表达式为E = F / q,其中E表示电场强度,F表示 电场力,q表示电荷的大小。 2. 磁场 磁场是由电流或者变化的电场产生的,磁场的描述通过磁感应强度 来实现。磁感应强度是一个矢量量,大小表示磁场的强弱,方向垂直 于电流的方向。 磁感应强度的数学表达式为B = μ0I / (2πr),其中B表示磁感应强度,μ0表示真空中的磁导率,I表示电流的大小,r表示电流到观察点的距离。

3. 麦克斯韦方程组 麦克斯韦方程组是描述电磁场的基本方程组,它由麦克斯韦提出。麦克斯韦方程组包括四个方程式,分别描述了电场和磁场的生成和传播规律。 其中最重要的两个方程是电场和磁场的高斯定律和法拉第定律。电场和磁场的高斯定律描述了电场和磁场的生成规律,法拉第定律描述了电磁场的传播规律。 4. 电磁波 当电磁场中发生变化时,就会产生电磁波。电磁波是指电场和磁场同时变化并传播的波动现象。电磁波的产生和传播遵循麦克斯韦方程组。 电磁波分为不同的频率和波长,其中频率和波长之间有一个固定的关系,即c = λf,其中c表示光速,λ表示波长,f表示频率。 根据频率的不同,电磁波可以分为不同的类型,包括射线、微波、红外线、可见光、紫外线、X射线和γ射线。 总结: 电磁场是由电荷和电流产生的力场,包括电场和磁场两部分。电场描述了电荷对周围电荷的作用力,磁场描述了电流对周围物体的作用力。麦克斯韦方程组是描述电磁场的基本方程组,用于描述电磁场的生成和传播规律。电磁波是在电磁场中发生变化时产生的波动现象,

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结 电磁场知识点总结篇一 电磁场知识点总结 电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。 电磁场知识点总结 一、电磁场 麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。 理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场 * 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场 * 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立 的部分,有机的统一为一个整体,并成功预言了电磁波的存在) 二、电磁波 1、概念:电磁场由近及远的传播就形成了电磁波。(赫兹用实验证实了电磁波的存在,并测出电磁波的波速) 2、性质:* 电磁波的传播不需要介质,在真空中也可以传播 * 电磁波是横波 * 电磁波在真空中的传播速度为光速 * 电磁波的波长=波速*周期 3、电磁振荡 LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化 振荡周期:T = 2πsqrt[LC]4、电磁波的发射 * 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间 * 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。调制分两类:调幅与调频 # 调幅:使高频电磁波的振幅随低频信号的改变而改变 # 调频:使高频电磁波的频率随低频信号的改变而改变 (电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”) 5、电磁波的接收 * 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。 * 调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程 * 解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波 (收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音) 5、电磁波的应用

电磁场与电磁波总结

电磁场与电磁波总结 1本章小结 一、矢量代数 A ∙ B =AB c os θ A B ⨯=A B e AB sin θ A ∙( B ⨯ C ) = B ∙(C ⨯A ) = C ∙(A ⨯B ) A ⨯ (B ⨯C ) = B (A ∙C ) – C ∙(A ∙B ) 二、三种正交坐标系 1. 直角坐标系 矢量线元 x y z =++l e e e d x y z 矢量面元 =+ +S e e e x y z d d x d y d z d x d x d y 体积元 d V = dx dy dz 单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系 矢量线元 =++l e e e z d d d d z ρϕ ρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e z z z ρϕϕ ρρ ϕ 3. 球坐标系 矢量线元 d l = e r d r + e θr d θ + e ϕr sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2 sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕ θ ϕ ϕ θ 三、矢量场的散度和旋度 1. 通量与散度 = ⋅⎰ A S S d Φ 0 l i m ∆→⋅=∇⋅= ∆⎰A S A A S v d div v 2. 环流量与旋度 = ⋅⎰ A l l d Γ m ax n 0 rot =lim ∆→⋅∆⎰A l A e l S d S 3. 计算公式 ∂∂∂∇= ++∂∂∂⋅A y x z A A A x y z 11()∂∂∂ ∇= + +∂∂∂⋅A z A A A z ϕ ρρρρ ρϕ

电磁场与电磁波_知识点总结

已经将文本间距加为24磅, 第18章:电磁场与电磁波 一、知识网络 二、重、难点知识归纳 1.振荡电流与振荡电路 (1)大小与方向都随时间做周期性变化的电流叫振荡电流。能够产生振荡电流的电路叫振荡电路。自由感线圈与电容器组成的电路,就是一种简单的振荡电路,简称LC 回路。在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷与电流相联系的电场与磁场都发生周期性变化的现象叫电磁振荡。 (2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电与充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小 (3) LC 电路中能量的转化 : a 、电磁振荡的过程就是能量转化与守恒的过程.电流变大时,电场能转化为磁场能,电 LC 回路中电磁振荡过程中电荷、电场。 电路电流与磁场的变化规律、电场能与磁场能相互变化。 分类:阻尼振动与无阻尼振动。 振荡周期:LC T π2=。改变L 或C 就可以改变T 。 电磁振荡 麦克斯 韦电磁场理论 变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为3、0×108m/s 电磁波 电磁场 与电磁波 发射 接收 应用:电视、雷达。 目的 :传递信息 调制:调幅与调频 发射电路:振荡器、调制器与开放电路。 原理:电磁波遇到导体会在导体中激起同频率感应电流 选台:电谐振 检波:从接收到的电磁波中“检”出需要的信号。 接收电路:接收天线、调谐电路与检波电路

流变小时,磁场能转化为电场能。 b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大. c 、理想的LC 回路中电场能E 电与磁场能E 磁在转化过程中的总与不变。回路中电流越大时,L 中的磁场能越大。极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。 (4) LC 电路的周期公式及其应用 LC 回路的固有周期与固有频率,与电容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L 及电容器的电容C 。 2、电磁场 麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线就是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。 a 、均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场; b 、不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。 c 、振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场。 d 、变化的电场与变化的磁场总就是相互联系着、形成一个不可分离的统一体,称为电磁场。电场与磁场只就是这个统一的电磁场的两种具体表现。 3、电磁波: (1)变化的电场与变化的磁场不断地互相转化,并且由近及远地传播出去。这种变化的电磁场在空间以一定的速度传播的过程叫做电磁波。 (2)电磁波就是横波。E 与B 的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波就是横波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为 c =3、0×108m/s 。 振荡电路发射电磁波的过程,同时也就是向外辐射能量的过程. (3)电磁波三个特征量的关系:v =λf 4、电视与雷达 LC f LC T π频率的决定式:π周期的决定式:21 2= =

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波基础知识总结

电磁场与电磁波基础知识总结 电磁场是指存在于空间中的电场和磁场的分布。电场是由电荷引起的 空间中的力场,磁场是由电流引起的空间中的力场。根据麦克斯韦方程组,电场和磁场之间存在着相互变化的关系。电场和磁场是通过电磁波进行能 量传递和信息传递的媒介。 电场和磁场都具有一些基本的性质。首先,电场和磁场都是矢量场, 它们的大小和方向都可以用矢量来表示。其次,电场和磁场都服从超定的 麦克斯韦方程组,这些方程组描述了电场和磁场的变化规律。最后,电场 和磁场都具有能量和动量,它们可以对物质产生力的作用。 电磁波是由变化的电场和磁场共同组成的波动现象。电磁波的产生需 要电荷的加速运动或者电流的变化。根据电磁波的频率和波长,可以将其 分为不同的类型,包括射频波、微波、红外线、可见光、紫外线、X射线 和γ射线等。 电磁波具有一些基本的特性。首先,电磁波是横波,即电场和磁场的 振动方向垂直于波的传播方向。其次,电磁波的传播速度是光速,即 3×10^8米/秒。最后,电磁波可以在真空中传播,不需要介质的支持。 电磁场和电磁波在现代科学和技术中有着广泛的应用。首先,电磁场 和电磁波是电磁学的基础,它们为电磁学的研究提供了理论基础和实验手段。其次,电磁波在通信领域中起着重要的作用,如无线通信、卫星通信 和光纤通信等。此外,电磁波还被广泛应用于医学、雷达、导航、遥感和 天文观测等领域。 总之,电磁场与电磁波是电磁学的基础知识。电磁场是指存在于空间 中的电场和磁场的分布,而电磁波是由变化的电场和磁场共同组成的波动

现象。电磁场和电磁波在现代科学和技术中具有广泛的应用,对于我们理解自然现象和推动社会发展都具有重要意义。

电磁场与电磁波

电磁场与电磁波 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电场会产生磁场,变动的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。 在电磁学里,电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。 处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。 定义编辑 有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 随时间变化着的电磁场(electromagncfic field)。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。 电磁波是电磁场的一种运动形态。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期转化以电磁波的形式向空间传播出去。电磁波为横波,电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少。 电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播的(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性变化,其强度与距离的平方成反比,波本身带有能量,任何位置之能量、功率与振幅的平方成正比,其速度等于光速(每秒30万公里)。光波也是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同、且量值最大的两点之间的距离,就是电磁波的波长λ。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c。根据λγ=c,求出λ=c/γ。 电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播即形成了电磁波,所以电磁波也常称为电波。1864年,英国科学家麦克斯韦在总结前人研究电磁现象取得的成果的基础上,建立了

2023最新-电磁场与电磁波知识点总结通用6篇

电磁场与电磁波知识点总结通用6篇 高中地理知识点总结与篇一高中地理知识点总结人类对宇宙的认识过程天圆地方说、地圆说、地心说、日心说、大爆炸宇宙学说。 宇宙的基本特点由各种形态的物质构成,在不断运动和发展变化。 天体的分类星云、恒星、行星、卫星、彗星、流星体、星际物质。 天体系统的成因天体之间因相互吸引和相互绕转,形成天体系统。 天体系统的级别地月系-太阳系-银河系(河外星系)-总星系。 日地平均距离1.496亿千米。 电磁波的知识点总结篇二电磁波的知识点总结 电磁波: 电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效地传递能量和动量。 电磁波的产生: 电磁波是由时断时续变化的电流产生的。 电磁波谱: 按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。以无线电的波长最长,宇宙射线的波长最短。 无线电波3000米~0.3毫米。(微波0.1~100厘米) 红外线0.3毫米~0.75微米。(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米) 可见光0.7微米~0.4微米。 紫外线0.4微米~10纳米 X射线10纳米~0.1纳米 γ射线0.1纳米~1皮米 高能射线小于1皮米 传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对于金属类东西,则会反射微波。 电磁波的发现 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1) 均匀变化的磁场产生稳定电场(2) 非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 理解:(1) 均匀变化的电场产生稳定磁场 (2) 非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂- =⨯∇•∂∂+=•∂∂+ =⨯∇s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-•=-=-⨯=-=-•==-⨯ ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-•==-⨯==-•==-⨯ ((

(1)基本方程 00 2 2 =•==∇- =∇=•=•∇=•=⨯∇⎰ ⎰⎰A A p s l l d E Q s d D D l d E E ϕϕϕε ρ ϕρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ——> 计算能量 ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

高考物理电磁感应及电磁场(波)知识点总结

高考物理电磁感应及电磁场(波)知 识点总结_ 高中物理电磁场和电磁波知识点总结。你要清楚地知道你到底是谁,要去哪里。要成为一个什么样的人,很多人浑浑噩噩,得过且过。你能清楚地意识到,或者梦想去到达彼岸,有时候,人生境遇就是如此,轻而易举滴到达你的彼岸。下面是为同学们精心整理的高考物理知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.

2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长和频率f 的乘积,即v=f,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.0010 8 m/s. 下面为大家介绍的是2021年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式1麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 - -cD ∖ H=J _ Ct -

(完整word版)电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂- =⨯∇•∂∂+=•∂∂+ =⨯∇s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )(ϖϖϖϖϖϖϖϖ ϖϖϖϖϖϖ ϖϖϖϖ ϖϖρ 本构关系: E J H B E D ϖ ϖϖϖϖ ϖσμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇s s l l s d B B Q s d D D l d E E I l d H J H 0 000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖϖϖ ϖϖϖ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0)0 )(0 )==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖ ϖϖϖ((

(1)基本方程 00 2 2 =•==∇- =∇=•=•∇=•=⨯∇⎰ ⎰⎰A A p s l l d E Q s d D D l d E E ϕϕϕε ρ ϕρ ϖϖϖϖϖϖϖϖ 本构关系: E D ϖ ϖε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

电磁场与电磁波公式总结

电磁场与电磁波复习 j dS x =dydz dS y 二 dxdz ,体积元:d ,dxdydz |dS z =dxdy 第一部分 知识点归纳 第一早 矢量分析 1三种常用的坐标系 (1)直角坐标系 (2 )柱坐标系 [dl r = dr 面积元{ dS 半=dl r dl i dl z = dz (3 )球坐标系 长度元: dS r 二 dl dl z 二 rd dz z =drdz ,体积元:d ■ = rdrd dz dS z = dl .dl z = rdrdz dl r = dr dl .J - rd v dl r sin 8 : d 二 r 2 sin 闵rd ^d 2、三种坐标系的坐标变量之间的关系 (1 )直角坐标系与柱坐标系的关系 长度元: dS r 二 dl dl .J - r 2 sin rd rd : ,面积 元:* dS^ = dl r dl^= r sinOdrd® ,体 积元: dS 半=dl r dg = rdrd 日 I =rcos 护 r y =rsin z=z =x 2 y 2 y = arcta n — x z =z (2 )直角坐标系与球坐标系的关系 x = r si n Geos®