Linux设备驱动程序的概念、作用以及模块

Linux设备驱动程序的概念、作用以及模块
Linux设备驱动程序的概念、作用以及模块

Linux设备驱动程序的概念、作用以及模块

我们首先对linux系统整个框架要有个了解。Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,Linux的虚拟地址空间也为0~4G。 Linux 内核将这4G字节的空间分为两部分,分别是用户空间(0~3G)和内核空间(3G~4G)。其中,用户空间存放的是应用程序,而内核空间存放的是内核,设备驱动和硬件。

为什么需要存在设备驱动呢?我们知道,内核是操作系统基本的部分,而操作系统是不能够直接控制硬件的,这样我们就需要设备驱动作为操作系统和硬件设备间的粘合剂,相当于一个中间人吧,负责上下两边的沟通。驱动负责将操作系统的请求传输,转化为特定物理设备控制器能够理解的命令。

这样我们就知道,驱动需要完成两大功能:

1、为linux内核提供调用接口。

2、控制硬件。因为寄存器是控制硬件的操作,所以驱动程序控制硬件,也就是要通过读写硬件寄存器达到控制硬件的目的。

内核是为应用程序服务的,其本质其实是函数的集合,内核要实现的功能我们可以分为两部门:基本功能和扩展功能。其中,基本功能包括进程管理,线程管理等等,而扩展功能,可以根据用户的需求自行添加。

下面我们就来探讨一下怎样向内核添加一项功能呢?

1、我们首先想到,肯定需要写一个功能函数,假如我们命名为fun.c,那么函数写好后,必须要和linux源码一起编译,生成zImage内核镜像文件。

2、重新编译内核。

这样就得到了新的内核,这种添加的方式我们称为静态添加。大家发现,每次修改一次fun.c,都要重新编译一次内核,灰常的麻烦,所以引进了内核模块机制,只需要加载或卸载模块,就可以动态的增加或者删除内核的功能,不用每次都重新编译,是不是很方便?那么接下来我们会想到,这个模块怎么就能和内核连接在一起呢?其实很简单,fun.c文件除了要实现功能呢,还需要包含和内核的接口,内核也提供了模块的接口,只要这两个接口一致,模块就可以融入内核,成为内核的一部分。Linux驱动程序都是以模块的形式存在的,所以我们称之为驱动模块。

所以我们总结出添加模块的步骤是:

1、写功能函数fun.c。

怎么样编写模块的源码文件,我们以一个Hello模块实例分析。

#include

#include //①模块的头文件,在对应内核下

的include目录中{

… //②功能函数hello.c(同普通} 的.c文件)

Static int __int hellomudule_init(void) //③模块初始化函数

{

Printk(“Hello world!\n”);

Return 0;

}

Static void __ exit hellomodule_exit(void) //模块退出函数

{

Printk(“Goodbye world!\n”);

Return 0;

}

module_init(hellomodule_init); //④用module_init和module_exit module_exit(hellomodule_exit); 指定模块初始化函数和退出函数

MODULE_LICENSE(“GPL”) //⑤“GPL”

2、编译hello.c,生成内核模块文件hello.ko。

模块编译是通过内核顶层目录下的Makefile(如Linux-2.6.30.9/Makefile)文件来实现的。以下是一个例子:

Obj-m=hello.o

KDIR=/home/linux-2.6.30.9

all:

make –C $(KDIR) SUBDIRS=$(shell pwd)modules //make module规

则就类似于make zImage KDIR:内核目录

SUBUDIRS:模块代码所在的目录

然后make一下,就生成了模块文件hello.ko。

3、将内核模块文件动态的装载到内核。

加载模块命令:insmod

例:

root# insmod ./hello.ko

显示当前加载的模块命令:Ismod

例:

root# Ismod

这样,我们就完成了整个添加模块的过程,过程还是比较容易理解的。今天就写到这里,下次我再把具体做的点亮led灯的一个最简单的字符驱动程序总结一下。

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

基本建设程序等名词解释

基本建设程序等名词解释 基本建设程序等名词解释 1、基本建设程序 它指基本建设项目从决策、设计、施工到竣工验收以及后期评价整个工作过程中的各个阶段及其先后次序。 2、基本建设程序的内容 项目建议书(可分初步可行性研究或预可行性研究);可行性研究;编制设计任务书;选择建设地点;编制设计文件(初步设计、技术设计、施工图设计);做好建设准备(含列入年度计划);全面施工;生产准备;竣工验收、交付使用。以上是大型工程建设程序的内容,对中型工程建设程序的内容:立项;可行性研究;编制设计文件(初步设计,施工图设计);建设准备;组织施工;竣工验收、交付使用。住宅建筑和小型工程还可以简化。 3、建设项目建议书 项目建议书是国家中、长期规划中一个必要文件,是基本建设程序中最初阶段的工作,是投资决策前对拟建项目的轮廓设想。它的作用是推荐一个拟进行建设的项目的初步说明。它不是项目的最终决策,供建设管理部门选择并确定是否进行下一步工作的依据。我国有些部门在提出项目建议书之前还增加了初步可行性研究(或称预可行性研究),经初步论证后,再编制项目建议书。

项目建议书要按照建设总规模和限额预划分的审批权限规定报批。 4、可行性研究 项目建议书一经批准,便可着手进行可行性研究。它是确定建设项目、编制设计任务书的重要依据,故要求必须有相当的深度和准确性。具体讲,它的主要作用有:(1)作为建设项目投资决策依据;(2)编制计划任务书(或设计计划任务书)的依据;(3)筹集资金的依据;(4)与建设项目有关部门签订协议的依据;(5)开展建设前期工作的依据;(6)编制国民经济计划的依据和资料(指大、中型项目)(7)作为技术发展、改进设备制造、开展科学试验的参考。(8)作为环保部门审查建设项目对环境的影响的依据。无论建设什么项目,如要兴建,则必须回答以下问题:①拟建什么样的建设项目;②拟建项目技术上可行性如何; ③拟建项目经济效益、社会效益如何;④拟建项目财务上可行性如何;⑤拟建项目的兴建和实施的主要措施;⑥需要建设时间; ⑦需要多少人力、物力。这些问题可归纳为三个方面:一是工艺技术;二是市场要求;三是财务经济。三者关系,市场是前提,技术是手段,财务经济是核心,即投资效益。可行性研究报告按审批权限要经中央或地方批准,我国目前一般由有资格的咨询机构编制。为保证可行性研究的质量,国家和各专业部都颁发了编制可行性研究的深度和规定。 5、设计任务书(计划任务书)

粒度测试的基本概念和基本知识

. 粒度测试的基本概念和基本知识 1.什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。2.什么叫粒度?颗粒的大小称为颗粒的粒度。3.什么叫粒度分布?不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 常见的粒度分布的表示方法?4.表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分?布和累计分布。图形法:用直方图和曲线等图形方式表示粒度分布的方法。?什么是粒径?5. 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。什么是等效粒径?6.文档Word . 同质球形颗粒相同或相近时,我们就当一个颗粒的某一物理特性与 用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法,等效粒径可具体分为下列几种:等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激?光法所测粒径一般认为是等

效体积径。等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直?Stokes离心沉降法所测的粒径为等效沉速粒径,也叫径。重力沉降法、径。等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗?粒的直径。库尔特法所测的粒径就是等效电阻粒径。即与所测颗粒具有相同的投影面积的球形颗粒的直等效投影面积径:?径。图像法所测的粒径即为等效投影面积直径。为什么要用等效粒径概念?7. 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的是用粒径来描述颗一个量,所以在实际的粒度分布测量过程中,人们还都 粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中文档Word . 。等效直径是当被等效直径所说的粒径并非颗粒的真实直径,而是虚拟的“”测颗粒的某一物理特性与某一直径的同质球体最相近时,就

编译原理概念_名词解释

编译过程的六个阶段:词法分析,语法分析,语义分析,中间代码生成,代码优化,目标代码生成 解释程序:把某种语言的源程序转换成等价的另一种语言程序——目标语言程序,然后再执行目标程序。 解释方式是接受某高级语言的一个语句输入,进行解释并控制计算机执行,马上得到这句的执 行结果,然后再接受下一句。 编译程序:就是指这样一种程序,通过它能够将用高级语言编写的源程序转换成与之在逻辑上等价的低级语言形式的目标程序(机器语言程序或汇编语言程序)。 解释程序和编译程序的根本区别:是否生成目标代码 句子的二义性(这里的二义性是指语法结构上的。):文法G[S]的一个句子如果能找到两种不同的最左推导(或最右推导),或者存在两棵不同的语法树,则称这个句子是二义性的。 文法的二义性:一个文法如果包含二义性的句子,则这个文法是二义文法,否则是无二义文法。 LL(1)的含义:(LL(1)文法是无二义的; LL(1)文法不含左递归) 第1个L:从左到右扫描输入串第2个L:生成的是最左推导 1:向右看1个输入符号便可决定选择哪个产生式 某些非LL(1)文法到LL(1)文法的等价变换: 1. 提取公因子 2. 消除左递归 文法符号的属性:单词的含义,即与文法符号相关的一些信息。如,类型、值、存储地址等。 一个属性文法(attribute grammar)是一个三元组A=(G, V, F) G:上下文无关文法。 V:属性的有穷集。每个属性与文法的一个终结符或非终结符相连。属性与变量一样,可以进行计算和传递。 F:关于属性的断言或谓词(一组属性的计算规则)的有穷集。断言或语义规则与一个产生式相联,只引用该产生式左端或右端的终结符或非终结符相联的属性。 综合属性:若产生式左部的单非终结符A的属性值由右部各非终结符的属性值决定,则A的属性称为综合属继承属性:若产生式右部符号B的属性值是根据左部非终结符的属性值或者右部其它符号的属性值决定的,则B的属性为继承属性。 (1)非终结符既可有综合属性也可有继承属性,但文法开始符号没有继承属性。 (2) 终结符只有综合属性,没有继承属性,它们由词法程序提供。 在计算时:综合属性沿属性语法树向上传递;继承属性沿属性语法树向下传递。 语法制导翻译:是指在语法分析过程中,完成附加在所使用的产生式上的语义规则描述的动作。 语法制导翻译实现:对单词符号串进行语法分析,构造语法分析树,然后根据需要构造属性依赖图,遍历语法树并在语法树的各结点处按语义规则进行计算。 中间代码(中间语言) 1、是复杂性介于源程序语言和机器语言的一种表示形式。 2、一般,快速编译程序直接生成目标代码。 3、为了使编译程序结构在逻辑上更为简单明确,常采用中间代码,这样可以将与机器相关的某些实现细节置于代码生成阶段仔细处理,并且可以在中间代码一级进行优化工作,使得代码优化比较容易实现。 何谓中间代码:源程序的一种内部表示,不依赖目标机的结构,易于代码的机械生成。 为何要转换成中间代码:(1)逻辑结构清楚;利于不同目标机上实现同一种语言。 (2)便于移植,便于修改,便于进行与机器无关的优化。 中间代码的几种形式:逆波兰记号,三元式和树形表示,四元式 符号表的一般形式:一张符号表的的组成包括两项,即名字栏和信息栏。 信息栏包含许多子栏和标志位,用来记录相应名字和种种不同属性,名字栏也称主栏。主栏的内容称为关键字(key word)。 符号表的功能:(1)收集符号属性(2) 上下文语义的合法性检查的依据:检查标识符属性在上下文中的一致性和合法性。(3)作为目标代码生成阶段地址分配的依据

软件测试基本概念整理

软件测试基本概念整理 根据《软件测试基础》期中练习文档整理,供概念学习 1.在需求分析(编制产品说明书)阶段,软件缺陷修复费用最低。 2.单元测试中用来模拟被测模块调用者的模块是驱动模块 3.选择发现错误可能性大的数据作为测试数据可以提高软件测试的效率 4.关于几种类型软件测试的特点概念 压力测试:侧重于观察资源耗尽情况下的软件表现的系统测试 验收测试:必须要求用户参与 健壮性测试:健壮性等价类测试的测试用例要求在有效等价类中取值 用户界面测试:不属于单元测试内容 配置测试:是指使用各种硬件来测试软件操作的过程 软件测试有多种分类方式: 按测试方式分为:1.静态测试2.动态测试 按测试方法划分为:1.白盒测试2.黑盒测试 ◆区分黑盒测试和白盒测试的依据是:是否能看到被测源程序 ◆在白盒测试中:使用白盒测试方法时,确定测试数据的依据是指定的覆 盖标准和程序的内部逻辑 静态白盒测试:在不执行代码的条件下有条理地仔细审查软件设计、体系结构和代码,从而找出软件缺陷的测试方法 白盒测试又称为结构测试 ◆黑盒测试用例设计方法主要包括:等价类划分法、边界值分析法、错误 推测法、因果图法等。等价类划分法分为两步:一是划分等价类表,二 是设计相应测试用例 动态黑盒测试:在测试够工作中进行输入、接受输出、检验结果,不深入代码细节的测试方法 黑盒测试又称为功能测试 按测试目的划分:功能测试、性能测试、安全测试、压力测试、用户界面测试、接口性测试、健壮性测试、兼容性测试等

◆兼容性测试向前兼容是指可以使用软件的以前版本;向后兼容是指可 以使用软件的未来版本 5.测试文档包括内容有:软件测试文档、测试计划、测试设计规格说明书、测 试用例说明、测试规程规格说明、测试日志、软件缺陷报告、测试总结报告等。 ◆测试计划中包括:测试资源、进度安排;测试策略;测试范围。 ◆产品说明书(需求文档)的变更应当受到控制 6.软件开发模式包括:大棒模式、流水模式、瀑布模式、编写边改模式、螺旋 模式 软件开发模式特点:边写边改模式:几乎没有产品计划、进度安排和正规的开发过程的软件开发模式 7.关于测试和测试员: ?软件测试员的目的是发现软件缺陷,尽可能早一些,并确保其得以修复 ?测试不能证明软件的正确性 ?测试员需要良好的沟通技巧 ?QA与testing属于一个层次的概念 ?在进行单元测试中,采用白盒测试,辅之以黑盒测试 ?软件自动化测试的优点是:准确度和精确度高、速度快、效率高、能提 高测试的质量 ?软件测试是有效的排除软件缺陷的手段 ?测试过程中,测试计划描述用于描述测试的整体方案,缺陷报告描述依 据测试案例找出的问题。 ?动态测试的两个基本要素是:被测试程序,被测试数据(测试用例) 8.软件缺陷:软件缺陷是存在于软件(文档、数据、程序)之中的那些不希 望或者不可接受的偏差,会导致软件产生质量问题. 不需要修复的软件缺陷原因包括:没有时间,风险太大,不能算是软件缺陷,不值得修复等。

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

Linux设备驱动模型之platform总线深入浅出

Linux设备驱动模型之platform总线深入浅出 在Linux2.6以后的设备驱动模型中,需关心总线,设备和驱动这三种实体,总线将设备和驱动绑定。在系统每注册一个设备的时候,会寻找与之匹配的驱动;相反,在系统每注册一个驱动的时候,会寻找与之匹配的设备,而匹配由总线完成。 对于依附在USB、PCI、I2C、SPI等物理总线来这些都不是问题。但是在嵌入式系统里面,在Soc系统中集成的独立外设控制器,挂接在Soc内存空间的外设等却不依附在此类总线。基于这一背景,Linux发明了一种总线,称为platform。相对于USB、PCI、I2C、SPI等物理总线来说,platform总线是一种虚拟、抽象出来的总线,实际中并不存在这样的总线。 platform总线相关代码:driver\base\platform.c 文件相关结构体定义:include\linux\platform_device.h 文件中 platform总线管理下最重要的两个结构体是platform_device和platform_driver 分别表示设备和驱动在Linux中的定义如下一:platform_driver //include\linux\platform_device.h struct platform_driver { int (*probe)(struct platform_device *); //探测函数,在注册平台设备时被调用int (*remove)(struct platform_device *); //删除函数,在注销平台设备时被调用void (*shutdown)(struct platform_device *); int (*suspend)(struct platform_device *, pm_message_t state); //挂起函数,在关机被调用int (*suspend_late)(struct platform_device *, pm_message_t state); int (*resume_early)(struct platform_device *); int (*resume)(struct platform_device *);//恢复函数,在开机时被调用struct device_driver driver;//设备驱动结构}; 1 2 3 4 5 6 7 8

软件测试基本概念

软件测试基本概念 1、测试分类 从不同的角度,可以把软件测试技术分成不同种类:(4个维度) 1.1从是否需要执行被测软件的角度分类: 1.1.1静态测试(代码评审、文档会审) 指以人工的、非形式化的方法对软件进行分析和测试。如文档评审、代码会审。 1.1.2动态测试(功能测试和性能测试) 1.2按测试方法分类 1.2.1黑盒测试 不考虑程序的内部逻辑结构与特性,只根据程序功能或程序的外部特性进行测试,注重于测试软件的功能性需求。 1.2.2白盒测试 分析程序的内部逻辑结构,选择适当的覆盖标准,对主要路径进行尽可能多的测试。 1.2.3灰盒测试 不需要懂代码,只需懂接口、集成。 1.3按测试阶段分类 1.3.1单元测试(一般是开发人员进行) 指对源程序中每一个程序单元进行测试,检查各个模块是否正确实现规定的功能。 1.3.2集成测试 是在单元测试基础上,将模块和模块结合成一个完整的系统进行测试,重视的是接口测试。 1.3.3系统测试

系统测试是将经过集成测试的软件,作为计算机系统的一个部分,与系统中其他部分结合起来,在运行环境下对计算机系统进行的一系列严格有效的测试。包含的测试类型: 1) 功能测试,测试软件系统的功能是否正确。 2) 性能测试,测试系统的负载。 3) 健壮性测试,测试软件系统在异常情况下能否正常运行的能力。健壮性有两 层含义:一是容错能力,二是恢复能力。 1.3.4确认测试(依据需求规格说明书) 又称有效性测试,检查软件的功能与性能是否与需求规格说明书中确定的指标相符。主要做功能测试和性能测试。 1) Alpha 测试:在开发环境中,模拟各类用户对即将发布的产品进行测试。 2) Beta 测试:在真实运行环境下实施的测试。 1.3.5验收测试 是指系统开发生命周期方法论的一个阶段,这时相关的用户或独立测试人员根据测试计划和结果对系统进行测试和接收。它让系统用户决定是否接收系统。它是一项确定产品是否能够满足合同或用户所规定需求的测试。 一般包含五类: 1) 功能确认测试:用户手册中提及的所有功能测试 2) 安全性测试:用户权限限制测试;系统备份与恢复测试;异常情况及网络故 障对系统的影响测试。 3) 兼容性测试:软件在规定的不同操作系统、数据库、浏览器运行是否正常。 4) 性能测试:系统性能指标和资源占有率测试。 5) 用户文档测试:各类文档描述清晰,包括软件安装、卸载测试。 1.4测试种类 1.4.1数据库设计测试(开发和设计阶段) 1.4.2需求测试(需求阶段) 1.4.3功能测试 1.4.4性能测试 1.4.5其他测试类型:安全性测试、兼容性测试、用户文档测试、单元测试、接口测试、冒烟测试 2、常用名词解释 1) 软件测试:在规定的条件下对程序进行操作,以发现错误,对软件质量进行 评估的一个过程,它是保障软件质量的重要方法。 2) 边界值:边界值就是软件操作界限所在的边缘条件。 3) 因果图法: 因果图方法是一种利用图解法分析输入条件的各种组合情况,从

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念 (2011-09-25 15:47) 标签: 虚拟内存设备驱动程序Linux技术分类:Linux设备驱动程序 这部分主要研究 Linux 内存管理的基础知识, 重点在于对设备驱动有用的技术. 因为许多驱动编程需要一些对于虚拟内存(VM)子系统原理的理解。 而这些知识主要分为三个部分: 1、 mmap系统调用的实现原理:它允许设备内存直接映射到一个用户进程地址 空间. 这样做对一些设备来说可显著地提高性能. 2、与mmap的功能相反的应用原理:内核态代码如何跨过边界直接存取用户空间的内存页. 虽然较少驱动需要这个能力. 但是了解如何映射用户空间内存到内 核(使用 get_user_pages)会有用. 3、直接内存存取( DMA ) I/O 操作, 它提供给外设对系统内存的直接存取. 但所有这些技术需要理解 Linux 内存管理的基本原理, 因此我将先学习VM子 系统的基本原理. 一、Linux的内存管理 这里重点是 Linux 内存管理实现的主要特点,而不是描述操作系统的内存管理理论。Linux虚拟内存管理非常的复杂,要写可以写一本书:《深入理解Linux 虚拟内存管理》。学习驱动无须如此深入, 但是对它的工作原理的基本了解是必要的. 解了必要的背景知识后,才可以学习内核管理内存的数据结构. Linux是一个虚拟内存系统(但是在没有MMU的CPU中跑的ucLinux除外), 意味着在内核启动了MMU 之后所有使用的地址不直接对应于硬件使用的物理地址,这些地址(称之为虚拟地址)都经过了MMU转换为物理地址之后再从CPU的内存总线中发出,读取/写入数据. 这样 VM 就引入了一个间接层, 它是许多操作成为可能: 1、系统中运行的程序可以分配远多于物理内存的内存空间,即便单个进程都可拥有一个大于系统的物理内存的虚拟地址空间. 2、虚拟内存也允许程序对进程的地址空间运用多种技巧, 包括映射程序的内存到设备内存.等等~~~ 1、地址类型 Linux 系统处理几种类型的地址, 每个有它自己的含义: 用户虚拟地址:User virtual addresses,用户程序见到的常规地址. 用户地址在长度上是 32 位或者 64 位, 依赖底层的硬件结构, 并且每个进程有它自己 的虚拟地址空间.

linux设备驱动中常用函数

Linux2.6设备驱动常用的接口函数(一) ----字符设备 刚开始,学习linux驱动,觉得linux驱动很难,有字符设备,块设备,网络设备,针对每一种设备其接口函数,驱动的架构都不一样。这么多函数,要每一个的熟悉,那可多难啦!可后来发现linux驱动有很多规律可循,驱动的基本框架都差不多,再就是一些通用的模块。 基本的架构里包括:加载,卸载,常用的读写,打开,关闭,这是那种那基本的咯。利用这些基本的功能,当然无法实现一个系统。比方说:当多个执行单元对资源进行访问时,会引发竞态;当执行单元获取不到资源时,它是阻塞还是非阻塞?当突然间来了中断,该怎么办?还有内存管理,异步通知。而linux 针对这些问题提供了一系列的接口函数和模板框架。这样,在实际驱动设计中,根据具体的要求,选择不同的模块来实现其功能需求。 觉得能熟练理解,运用这些函数,是写号linux设备驱动的第一步。因为是设备驱动,是与最底层的设备打交道,就必须要熟悉底层设备的一些特性,例如字符设备,块设备等。系统提供的接口函数,功能模块就像是工具,能够根据不同的底层设备的的一些特性,选择不同的工具,方能在linux驱动中游刃有余。 最后就是调试,这可是最头疼的事。在调试过程中,总会遇到这样,那样的问题。怎样能更快,更好的发现并解决这些问题,就是一个人的道行咯!我个人觉得: 发现问题比解决问题更难! 时好时坏的东西,最纠结! 看得见的错误比看不见的错误好解决! 一:Fops结构体中函数: ①ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 用来从设备中获取数据. 在这个位置的一个空指针导致 read 系统调用以-EINVAL("Invalid argument") 失败. 一个非负返回值代表了成功读取的字节数( 返回值是一个 "signed size" 类型, 常常是目标平台本地的整数类型). ②ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 发送数据给设备. 如果 NULL, -EINVAL 返回给调用 write 系统调用的程序. 如果非负, 返回值代表成功写的字节数 ③loff_t (*llseek) (struct file *, loff_t, int); llseek 方法用作改变文件中的当前读/写位置, 并且新位置作为(正的)返回值. loff_t 参数是一个"long offset", 并且就算在 32位平台上也至少 64 位宽. 错误由一个负返回值指示. 如果这个函数指针是 NULL, seek 调用会以潜在地无法预知的方式修改 file 结构中的位置计数器( 在"file 结构" 一节中描述). ④int (*open) (struct inode *, struct file *);

测试技术基本概念

基本概念 1.传感器的定义:工程中通常把直接作用于被测量,能按一定规律将其转换成同种或别种量值输出的器件称作传感器。 2.传感器的分类。 (1)物性型传感器:依靠敏感元件材料本身物理化学性质的变化来实现信号变换的传感器。属于物性型传感器有:光电式和压电式,如:电阻应变片,压电式加速度计,光电管等。 (2)结构型传感器:依靠传感器结构参量的变化实现信号转换。属于结构型传感器的有:电感式,电容式,光栅式。如:电容传感器,涡流传感器,差动变压器式等。 (3)按照工作原理分类,固体图象式传感器属于(光电式传感器) 3.静态指标:线性度,灵敏度,重复性等。 (1)线性度:指测量装置输出、输入之间保持常值比例关系的程度。 (2)灵敏度:输出的变换量与输入的变换量之比。 (3)重复性:指测量系统在输入量按同一方向做全量程连续多次测试时所得输入、输出特性曲线不重合程度。 4.动态指标:属于传感器动态性能的有:固有频率, 5.灵敏度: (1)测试系统的灵敏度越高,则其测量范围:越窄 (2)对于理想的定常线性系统,灵敏度是(常数) (3)传感器灵敏度的选用原则。①尽量选用灵敏度高的传感器②尽量选用信噪比大的传感器③当被测量是向量时要考虑交叉灵敏度的影响④过高的灵敏度会缩小其适用的测量范围 6.线性度:非线性度是表示校准曲线( 偏离拟合直线)的程度。 7.稳定性:测试装置在规定条件下保持其测量特性恒定不变的能力称( 稳定度 ) 8.精确度: (1)精度:也称为精确度,是反映测量系统误差和随机误差的综合误差指标,即准确度和精密度的综合偏差程度。 (2)传感器精确度的选用原则。①尽量选用精确度高的传感器,同时考虑经济性②对于定性试验,要求传感器的精密度高③对于定量试验,要求传感器的精确度高④传感器的精确度越高,价格越昂贵。 9.可靠性:是指在使用环境和运行指标不超过极限的情况下,系统特性保持不变的能力。 10.在静态测量中,根据绘制的定度曲线,可以确定测量系统的三个静态特性:

编译原理基本概念

1.编译程序 编译程序是一种翻译程序,它将高级语言所写的源程序翻译成等价的机器语言或汇编语言的目标程序。 2.词法分析(Lexical analysis或Scanning)和词法分析程序(Lexical analyzer 或Scanner) 词法分析阶段是编译过程的第一个阶段。这个阶段的任务是从左到右一个字符一个字符地读入源程序,即对构成源程序的字符流进行扫描然后根据构词规则识别单词(也称单词符号或符号)。词法分析程序实现这个任务。词法分析程序可以使用lex等工具自动生成。 3.语法分析(Syntax analysis或Parsing)和语法分析程序(Parser) 语法分析是编译过程的一个逻辑阶段。语法分析的任务是在词法分析的基础上将单词序列组合成各类语法短语,如“程序”,“语句”,“表达式”等等.语法分析程序判断源程序在结构上是否正确.源程序的结构由上下文无关文法描述. 4.语义分析(Syntax analysis)及中间代码生成 语义分析是编译过程的一个逻辑阶段. 语义分析的任务是对结构上正确的源程序进行上下文有关性质的审查, 进行类型审查.例如一个C程序片断: int arr[2],b; b = arr * 10; 源程序的结构是正确的. 语义分析将审查类型并报告错误:不能在表达式中使用一个数组变量,赋值语句的右端和左端的类型不匹配.语义分析时,根据语句的含义,可对它进行翻译,用另一种语言形式(比源语言更接近于目标语言的一种中间代码或直接用目标语言)来描述这种语义。 5.代码优化 代码优化的任务是对前阶段产生的中间代码进行等价变换或改造,以期获得更为高效的,即省时间和空间的代码。 6.目标代码生成 目标代码的生成的任务是将中间代码变换成特定机器上的绝对指令代码或可重定位的指令代码或汇编指令代码。 7.遍 8.前端(Front-end)和后端(Back end) 有时,常常把编译的过程分为前端(front end)和后端(back end),前端由那样一些阶段组成:这些阶段的工作主要依赖于源语言而与目标机无关。通常这些阶段包括词法分析、语法分析、语义分析和中间代码生成,某些优化工作也可在前端做,也包括与前端每个阶段相关的出错处理工作和符号表管理工作。后端工作指那

软件测试的基本概念

[模拟] 软件测试的基本概念 选择题 第1题: 在指定条件下使用时,软件产品维持规定的性能水平的能力。这是指软件外部质量的______。 A.效率 B.易用性 C.功能性 D.可靠性 参考答案:D 软件的效率是指:在规定条件下,相对于所用的资源的数量,软件产品可提供适当性能的能力。软件的易用性是指:在指定条件下使用,软件产品被理解、学习、使用和吸引用户的能力。软件的功能性是指:当软件在指定条件下使用,软件产品提供明确的和隐含的要求的功能的能力。软件的可靠性是指:在指定的条件下使用时,软件产品维持规定的性能水平的能力。 第2题: CMU SEI的watts Humphrey指出:软件产品必须首先提供用户所需要的 ______。 A.性能 B.人机界面 C.可靠性 D.功能 参考答案:D 软件质量是产品、组织和体系或过程的一组固有特性,反映它们满足顾客和其他相关方面要求的程度。如CMU SEI的watts Humphrey指出:“软件产品必须首先提供用户所需的功能,如果做不到这一点,什么产品都没有意义。其次,这个产品能够正常工作。如果产品中有很多缺陷,不能正常工作,那么不管这种产品性能如何,用户也不会使用它。” 第3题: 以下选项中不属于ISO软件质量模型的是______。 A.外部质量模型 B.使用质量模型 C.维护质量模型 D.内部质量模型

参考答案:C 按照ISO/IEC 9126—1:2001,软件质量模型可以分为内部质量模型、外部质量模型和使用质量模型3种,故该题不属于ISO软件质量模型的是C。 第4题: 下列关于软件质量模型的说法中正确的是______。 A.外部质量是表征软件产品在规定条件下使用时,决定其满足规定的和隐含的要求的能力 B.容错性、通用性、结构性和通信性不全属于软件的质量特性 C.内部质量是表征软件产品在规定条件下使用时,满足规定的和隐含的要求的程度 D.使用质量是软件产品在规定的使用环境中规定的用户能实现规定目标的要求 参考答案:D 外部质量是针对要求的满足程度而言的,是表征软件产品在规定条件下使用时,满足规定的和隐含的要求的程度;而内部质量则主要是根据软件产品的情况给出的,是表征软件产品在规定条件下使用时,决定其满足规定的和隐含的要求的能力的产品属性的全体,故选项A和C叙述刚好颠倒,另外软件的质量特性有很多种,选项B中所述皆属于软件的质量特性,选项D中关于使用质量的叙述是完全正确的。 第5题: 下列选项中不属于使用质量的属性的是______。 A.有效性 B.安全性 C.稳定性 D.满意度 参考答案:C 软件的使用质量属性分为4种:有效性、生产率、安全性和满意度。 第6题: 下列软件属性中,软件产品首要满足的应该是______。 A.功能需求 B.性能需求 C.可扩展性和灵活性 D.容错、纠错能力 参考答案:A

软件测试的基本概念(三)

软件测试的基本概念(三) (总分:100.00,做题时间:90分钟) 一、{{B}}选择题{{/B}}(总题数:40,分数:100.00) 1.在指定条件下使用时,软件产品维持规定的性能水平的能力。这是指软件外部质量的______。 ? A.效率 ? B.易用性 ? C.功能性 ? D.可靠性 (分数:2.50) A. B. C. D. √ 解析:[解析] 软件的效率是指:在规定条件下,相对于所用的资源的数量,软件产品可提供适当性能的能力。软件的易用性是指:在指定条件下使用,软件产品被理解、学习、使用和吸引用户的能力。软件的功能性是指:当软件在指定条件下使用,软件产品提供明确的和隐含的要求的功能的能力。软件的可靠性是指:在指定的条件下使用时,软件产品维持规定的性能水平的能力。 2.CMU SEI的Watts Humphrey指出:软件产品必须首先提供用户所需要的______。 ? A.性能 ? B.人机界面 ? C.可靠性 ? D.功能 (分数:2.50) A. B. C. D. √ 解析:[解析] 软件质量是产品、组织和体系或过程的一组固有特性,反映它们满足顾客和其他相关方面要求的程度。如CMU SEI的Watts Humphrey指出:“软件产品必须首先提供用户所需的功能,如果做不到这一点,什么产品都没有意义。其次,这个产品能够正常工作。如果产品中有很多缺陷,不能正常工作,那么不管这种产品性能如何,用户也不会使用它。” 3.ANSI/IEEE STD729—1983给出软件质量的定义:软件产品满足规定的和隐含的与需求能力有关的全部特征和特性。以下叙述中不属于这些质量特征和特性的是______。 ? A.产品功能 ? B.效率 ? C.可实用性 ? D.项目成本和进度

Linux设备驱动程序简介

第一章Linux设备驱动程序简介 Linux Kernel 系统架构图 一、驱动程序的特点 ?是应用和硬件设备之间的一个软件层。 ?这个软件层一般在内核中实现 ?设备驱动程序的作用在于提供机制,而不是提供策略,编写访问硬件的内核代码时不要给用户强加任何策略 o机制:驱动程序能实现什么功能。 o策略:用户如何使用这些功能。 二、设备驱动分类和内核模块 ?设备驱动类型。Linux 系统将设备驱动分成三种类型 o字符设备 o块设备 o网络设备 ?内核模块:内核模块是内核提供的一种可以动态加载功能单元来扩展内核功能的机制,类似于软件中的插件机制。这种功能单元叫内核模块。 ?通常为每个驱动创建一个不同的模块,而不在一个模块中实现多个设备驱动,从而实现良好的伸缩性和扩展性。 三、字符设备 ?字符设备是个能够象字节流<比如文件)一样访问的设备,由字符设备驱动程序来实现这种特性。通过/dev下的字符设备文件来访问。字符设备驱动程序通常至少需要实现 open、close、read 和 write 等系统调用 所对应的对该硬件进行操作的功能函数。 ?应用程序调用system call<系统调用),例如:read、write,将会导致操作系统执行上层功能组件的代码,这些代码会处理内核的一些内部 事务,为操作硬件做好准备,然后就会调用驱动程序中实现的对硬件进 行物理操作的函数,从而完成对硬件的驱动,然后返回操作系统上层功 能组件的代码,做好内核内部的善后事务,最后返回应用程序。 ?由于应用程序必须使用/dev目录下的设备文件<参见open调用的第1个参数),所以该设备文件必须事先创建。谁创建设备文件呢? ?大多数字符设备是个只能顺序访问的数据通道,不能前后移动访问指针,这点和文件不同。比如串口驱动,只能顺序的读写设备。然而,也 存在和数据区或者文件特性类似的字符设备,访问它们时可前后移动访

最新程序设计基本概念

第一章程序设计基本概念 1.1程序和程序设计 程序:连续执行的一条条指令的集合称为“程序”。 对于计算机来说,它不能识别由高级语言编写的程序,它只能接受和处理由0和1的代码构成的二进制指令或数据。由于这种形式的指令是面向机器的,因此也被称为“机器语言”。所以所有由高级语言编写的程序都要经过编译,编译成二进制代码。这种具有翻译功能的软件称为编译程序。 语言有很多种,我们现在要谈论的就是C语言。为什么计算机会能进行各种各样的操作,就是由不同的指令来实现的。而不是只有C语言才可以实现这样的功能。还有其它很多语言。但是我们一般说C语言是其它语言的母语。会了C语言其它的语言在学习的过程就会感到轻松一些。 1.1.2程序设计 1.确定数据结构 2.确定算法 3.编码 4.在计算机上调试程序 5.整理并写出文档资料 1.2算法 定义:是指为了解决某个特定的问题而采取的确定且有限的步骤。 1.有穷性 2.确定性 3.可行性 4.有零个或多个输入 5.有一个或多个输出 1.3结构化程序设计和模块化结构 结构化程序由三种基本结构组成 顺序结构 1. 2.选择结构

3.循环结构

12)计算机能直接执行的程序是(B )。 A)源程序 B)目标程序 C)汇编程序 D)可执行程序 13)以下叙述中正确的是( D ) A)程序设计的任务就是编写程序代码并上机调试 B)程序设计的任务就是确定所用数据结构 C)程序设计的任务就是确定所用算法 D)以上三种说法都不完整 第二章:C程序设计的初步知识 2.1 C语言程序的构成和格式 #include Main() { double a,b,area; a=1.2,b=3.6; /*将矩形的两条边长分别赋给a和b 变量*/ area=a*b; printf(“a=%f,b=%f,area=%f\n”,a,b,area);/*输出矩形的两条边长和面积*/ } #include :每当写一个程序时,第一条语句永远是这个语句,因为一个程序可以没有输入但必须要有输出,而这个语句就是控制输入输出的。所以任何一个程序都必须由这个语句开始。 Main():是一个程序的主函数。一个程序是由多个函数组成的,而任何一个程序都要有一个主函数,有且只有一个。任何程序都是由主函数开始执行的。 {}:它们两个必须要成对出现,它们中的语句是主函数体。包括定义部分和执行部分。它们中的语句,每一条必须由;结束。;是C语句的一个组成部分而不是一个结束标识。 /**/:注释符一定要成对出现,不允许嵌套。两个符号间的语句不被执行。 例年真题: #include

相关文档
最新文档