基于PLC系统下的大棚温湿自动智能控制系统毕业设计论文

基于PLC系统下的大棚温湿自动智能控制系统毕业设计论文
基于PLC系统下的大棚温湿自动智能控制系统毕业设计论文

基于plc大棚温湿自动控制系统

摘要:

讨论了在温室控制中引入PLC技术构成分布式控制系统的方法,详细介绍了系统的特点、组成、硬件设计、实时动态监控系统及通信问题。分布式的控制结构,使各子系统相对独立,管理与控制功能分开,易于实现群控化管理,提高了系统的可靠性,且易于扩展。系统成本低廉,性能稳定,通用性好,符合中国国情,具有广泛的应用前景。

关键词:温室大棚;PLC;集散控制;温湿控制

Title Design the agriculture temperature and humidity glasshouse control system with the programmable logic controller

Abstract:

The method of distributed control system composed by PLC technology in glasshouse control is introduced in this paper. It gives a detailed introduction to the characteristics, constitutes,software and hardware design , real - time dynamic surveillance and communication of the system.The distributed control structure makes all sub - systems independent relatively , separates the management and control function , and easy to realize the swarm control management , greatly improves the reliability and expandable of the system. It has the characacters of low cost , stable function , wide adoptability , etc , which matches the conditions of China and has charming application foreground.

Keywords:Glasshouse agriculture; PLC; Distributed control system;Swarm control management

目录

引言 (1)

一研究背景 (1)

1.2研究的目的及意义 (2)

2 系统概述 (2)

2.1系统设计任务 (2)

2.2系统总体设计 (2)

2.3 系统工作原理 (7)

2.4 温湿度传感器 (8)

3 系统硬件设计 (9)

3.1 PLC简介 (9)

3.2 总线简介 (9)

3.3电磁阀的简介与安装 (10)

3.4湿度传感器 (13)

3.5温度传感器 (14)

3.6 喷灌系统的设计 (15)

结论 (21)

参考文献 (22)

致谢 (24)

图1 (25)

1 引言

1.1 研究背景

我国的设施园艺绝大部分用于蔬菜生产。80年代以来,温室、大棚蔬菜的种植面积连年增加。目前的栽培设施中,有国家标准的装配式钢管塑料大棚和玻璃温室仅占设施栽培面积的少部分,大多数的农村仍然采用自行建造的简单低廉的竹木大小棚,只能起到一定的保温作用,根本谈不上对温光水气养分等环境条件的调控,抗自然环境的能力极差。即使那些数量不多的装配式塑料大棚和玻璃温室也缺乏配套的调控设备和仪器,主要依靠经验和单因子定性调控,设施栽培的智能化程度非常低。

我国设施农业的发展,以超时令、反季节生产的设施园艺作物的发展为主,且发展迅猛。1997年设施园艺作物栽培面积达86.7万公顷,较80年代初期的栽培面积增长了128 倍,人均设施蔬菜占有量1996~1997年为33公斤,较1980~1981年人均设施蔬菜占有量增长了近164倍。2001年,我国设施园艺面积将突破100万公顷,全国设施蔬菜人均占有量将达到40公斤。

塑料大棚、中棚及日光温室为我国主要的设施结构类型。其中能充分利用太阳光热资源、节约燃煤、减少环境污染的日光温室为我国所特有。1997年我国日光温室面积已超过近16.7万公顷。由农业部联合有关部门试验推广的新一代节能型日光温室,每年每亩可节约燃煤约20吨。采用单层薄膜或双层冲气薄膜、PC板、玻璃为覆盖材料的大型现代化连栋温室,具有土地利用率高、环境控制自动化程度高和便于机械化操作等特点,自1995年以来,呈现出迅猛发展之势,目前全国共有大型温室面积200 公顷,其中自日本、荷兰、以色列、美国等国家引进的温室面积达140公顷。

我国设施农业目前还存在着诸如土地利用率低、盲目引进温室、设施结构不合理、能源浪费严重、运营管理费用高、管理技术水平低、劳动生产率低及单位面积产量低等诸多问题,但随着社会的进步和科学的发展,我国设施农业的发展将向着地域化、节能化、专业化发展,向着高科技、自动化、机械化、规模化、产业化的工厂型农业发展,为社会提供更加丰富的无污染、安全、优质的绿色健康食品。

1.2 研究的目的及意义

温室的作用是用来改变植物的生长环境 ,避免外界四季变化和恶劣气候对作物生长的不利影响 ,为植物生长创造适宜的良好条件。温室一般以采光和覆盖材料作为主要结构材料 ,它可以在冬季或其他不适宜植物露地生长的季节栽培植物 ,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。温室环境指的是作物在地面上的生长空间 ,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。温室控制主要是控制温室内的温度、湿度、通风与光照。

虽然有些温室也安装有各种加热、加湿、通风和降温的设备 ,但其主要操作大多仍是由人工来完成的当温室面积较大或数量较多时 ,操作人员的劳动强度很大 ,而且也无法达到对温湿度的准确控制。本文介绍一种基于PLC和数字式温湿度传感器的温室控制系统。该系统实现了室内温湿度的自动测量和调节 ,大大降低了操作人员的劳动强度,采用喷灌系统作为改变温室湿度环境的方法节约了水资源。充分利用太阳能节约了能源。

2 系统概述

2.1 系统设计任务

温室的作用是用来改变植物的生长环境 ,避免外界四季变化和恶劣气候对作物生长的不利影响 ,为植物生长创造适宜的良好条件。温室一般以采光和覆盖材料作为主要结构材料 ,它可以在冬季或其他不适宜植物露地生长的季节栽培植物 ,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。温室环境指的是作物在地面上的生长空间 ,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。温室控制主要是控制温室内的温度、湿度、通风与光照。灌溉系统采用电磁阀控制的喷灌系统的方式,节约了水源,温度调节主要有遮阴帘风机的动作来解决。

2.2 系统总体设计

2.2.1 plc的选择

由于德国 SIEMENS系列产品具有功能强大、可靠灵活等特点 ,从系统设计的整体性、一致性出发 ,考虑到经济性、功能性等各方面的原因 ,我们选用西门子公司的产品 ,以最优的性能/价格比进行系统的配置。本系统可以实现各个子系统的单独调

控 ,通过通讯网络由总控室进行统一的管理 ,便于实现群控化控制。系统配置上各个子系统选择了 SIEMENS系列的 S7 - 215 PLC,这是因为在200 系列 PLC中 ,只有215具有 Profibus- DP口 ,可以联到 Profibus上进行高速数据传输。S7 - 215 本机 14 个输入点和 10 个输出点 ,内存 13K字节。扩展模块 EM231 可以实现 3 路模拟量输入的 A/D 转换 ,EM235 实现 3 路模拟量输入的A/D 转换 1 路模拟量输出的D/A 转换 ,可以根据需要方便地进行功能的扩展。另外调整相应系统的硬件设备或者对应的用户子程序,可以方便地改变对参数的设置。系统通过开关量传感器、模拟量传感器对温室内的温度、湿度、光照等进行检测。通过D/A通道要实现对各种执行和调节机构的控制,以及各种环境设备的启停和电机等设备的保护。各子系统选用 PLC的主机内部带有存储程序的 EPROM,停电后程序不会丢失。总控室选择 S7 - 315 ,它集成有数据通讯接口 ,可以方便地通过 PROFIBUS - DP 口实现和其他子系统的通信 ,进行集中管理。在这里通过动态监控画面可以动态地了解各种参数的变化。各个子系统可以实现独立运行 ,当网络出现意外或其他子系统出现问题也不会引起瘫痪。环境控制子系统配置硬件原理图如图 2.1所示。

图2.1 系统组成框图

大棚温室自动控制系统毕业设计(精)

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。 第一章概述 大棚、中棚及日光温室为我国主要的设施结构类型。其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。温室的性能指标: 1.温室的透光性能 温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。透光率是指透进温室内的光照量与室外光照量的百分比。温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。一般,连栋塑料温室在 50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。 2.温室的保温性能 加温耗能是温室冬季运行的主要障碍。提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。温室的保温比是衡量温室保温性能的一项基本指标。温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。保温比越大,说明温室的保温性能越好。 3.温室的耐久性

温室建设必须要考虑其耐久性。温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。一般钢结构温室使用寿命在15年以上。要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。 由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处 理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。 第二章比例微积分控制原理 3.1 比例积分调节器(PD 比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。c变化越快,pd越大,输出校正量也越大。它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。它的缺点是抗干扰能力变差。 3.2 PID调节器 积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。微分器能增加稳定性,加快响应速度。比例器为基本环节。三者合用,选择适当的参数,可实现稳定的控制。 图4—37为PID调节器的方块图。 第三章自动控制系统的设计

基于PLC的温室控制系统的设计开题报告

郑州科技学院毕业设计(论文)开题报告

年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代代末开始出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化无人化的方向发展。 目前,一些经济发达的国家和地区已经研制并实现计算机自动化控制的现代高科技温室,并形成了令人惊险的植物工厂。而我国的温室系统属于半开放系统,温室内环境控制水平较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 3.温室控制系统研制与开发的意义 温室是植物栽培生产中必不可少的设施之一,温度是影响植物生长发育最重要的因子之一。它的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。 虽然有些温室也安装有各种加热、通风和降温的设备,但其主要操作大多仍是由人工来完成的当温室面积较大或数量较多时,操作人员的劳动强度很大,而且也无法达到对温湿度的准确控制。本文介绍一种基于PLC和数字式温度传感器的温室控制系统。该系统实现了室内温度的自动测量和调节,大大降低了操作人员的劳动强度。 二、主要设计(研究)内容、设计(研究)思想、解决的关键问题、拟采用的技术方案及工作流程 1.研究内容: 温室的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。温室一般以采光和覆盖材料作为主要结构材料,它可以在冬季或其他不适宜植物露地生长的季节栽培植物,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。温室环境指的是作物在地面上的生长空间,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。温室控制主要是控制温室内的温度、湿度、通风与光照。

农业大棚远程智能监控与PLC自动化控制系统解决方案

农业大棚远程智能监控与P L C自动化控制系统解决方案 目录

1前言 1.1 智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显着的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,

降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2 实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民投入的良性运行机制,当前,全省发展智能农业,有丰富的资源、成熟的技术和广阔的市场,具备了进一步发展的基础,也蕴藏着巨大的潜力。 智能农业远程监控管理系统融合先进的信息技术、自动化控制、无线通讯技术等高新技术和农业科技专家为一体的综合平台,实现资金、技术、人才和信息的有效调配,改善农民的传统作业和手工操作,将产生巨大的经济和社会效益,推动农业和农村经济发展,成为江苏统筹城乡经济发展,建设现代化农业的重要内容和全面建设小康社会的强势产业。 2背景分析 江苏省在“十二五”期间加大智慧城市建设,将智能农业纳入六大智慧产业之一,突出显示了农业信息化在智慧城市建设中的重要地位。智慧农业建设较好地适应了市场经济发展要求和农业增效、农民增收的需要,取得了突破性进展,生产规模稳步扩大,突破了光热水气资源的限制,基本实现了淡季不淡、全年生产、保障供应;科技含量较快提高,无立柱日光温室、二氧化碳气肥、病虫害生物防治、无公害栽培、组织培养、工厂化育苗等先进技术得到推广应用,科技进步贡献率达到65%以上,成为种植业中科技含量较高的产业;智能农业以其病虫害相对较轻、用药量少、标准化程度高的优势,成为全省无公害蔬菜的骨干,质量安全水平明显提高。 随着自动化农业、精准农业、绿色农业的发展需求,迫切需要在农业领域引入物联网、4G等技术,进一步深化农业各环节的信息化水平,结合ZigBee技术、CDMA网络数据传输和传感器技术组成无线传感网络,通过ZigBee无线网络实时采集温室内温度、湿度信号以及光照、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为智能农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统
解决方案

目录
1、设计原则.............................................................................................................................................. 3 2、设计依据.............................................................................................................................................. 3 3、系统简介.............................................................................................................................................. 4 3、系统架构.............................................................................................................................................. 5 4、系统组成.............................................................................................................................................. 6
结构图................................................................................................................................................ 6 现场的监测设备: ........................................................................................................................ 7 智慧大棚系统结构: .................................................................................................................... 7 智慧农业大棚系统介绍 ................................................................................................................ 8 温度控制系统 ............................................................................................................................ 8 通风控制系统 ............................................................................................................................ 8 光照控制系统 ............................................................................................................................ 9 水分控制系统 ............................................................................................................................ 9 湿度控制系统 .......................................................................................................................... 10 视频监控系统 .......................................................................................................................... 10 控制系统平台: .......................................................................................................................... 10 应用软件平台:.......................................................................................................................... 11 视频监控系统:.......................................................................................................................... 11 农业溯源系统.............................................................................................................................. 12 种植环节: .............................................................................................................................. 12 物流环节: .............................................................................................................................. 12 其他:...................................................................................................................................... 12 室外气象观测站.......................................................................................................................... 13
5、系统特点............................................................................................................................................ 14 预测性:...................................................................................................................................... 14 强大的扩展功能:...................................................................................................................... 14 完善的资料处理功能:.............................................................................................................. 14 远程监控功能:.......................................................................................................................... 14 数据联网功能:.......................................................................................................................... 14
6、项目定位............................................................................................................................................ 14 7、控制逻辑............................................................................................................................................ 16
温度控制...................................................................................................................................... 16 控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 16 控制方式: .............................................................................................................................. 16
降温控制过程:.......................................................................................................................... 16 在软件中可以设定温度默认正常的上下限的值 .................................................................. 16 温度超过设定上限时 .............................................................................................................. 16
增温控制过程:.......................................................................................................................... 16 空气湿度控制.............................................................................................................................. 16
控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 17 控制方式: .............................................................................................................................. 17 增湿控制过程:.......................................................................................................................... 17 在软件可设定湿度默认正常的上下限的值; ...................................................................... 17 湿度低于设定下限时: .......................................................................................................... 17 除湿控制过程:.......................................................................................................................... 17

基于PLC的液位控制系统设计论文

题目:基于PLC的液位控制系统设计姓名: 学号: 系别: 专业: 年级班级: 指导教师: 2013年5月18日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。矚慫润厲钐瘗睞枥庑赖。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。聞創沟燴鐺險爱氇谴净。 本毕业论文内容不涉及国家机密。 论文题目: 作者单位: 作者签名: 年月日

目录 摘要............................................................................................................. 1残骛楼諍锩瀨濟溆塹籟。引言............................................................................................................. 1酽锕极額閉镇桧猪訣锥。 1.研究现状分析 ................................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.1题研究背景、意义和目的 ...................................................... 2謀荞抟箧飆鐸怼类蒋薔。 1.2液位控制系统的发展状况 ...................................................... 3厦礴恳蹒骈時盡继價骚。 1.3课题研究的主要内容................................................................ 4茕桢广鳓鯡选块网羈泪。 2.控制方案设计 ................................................................................... 4鹅娅尽損鹌惨歷茏鴛賴。 2.1系统设计 ...................................................................................... 4籟丛妈羥为贍偾蛏练淨。 2.2单容水箱对象特性 .................................................................... 6預頌圣鉉儐歲龈讶骅籴。 3.硬件配置 .............................................................................................. 8渗釤呛俨匀谔鱉调硯錦。 3.1控制单元 ...................................................................................... 8铙誅卧泻噦圣骋贶頂廡。 3.2检测单元 ...................................................................................... 9擁締凤袜备訊顎轮烂蔷。 3.3执行单元 ...................................................................................... 9贓熱俣阃歲匱阊邺镓騷。 4.软件设计 .............................................................................................. 9坛摶乡囂忏蒌鍥铃氈淚。 4.1STEP 7-Micro/WIN编程软件简介 ........................................ 9蜡變黲癟報伥铉锚鈰赘。 4.2参数设定及I/O分配 .............................................................. 10買鲷鴯譖昙膚遙闫撷凄。 5.程序编程和系统仿真.................................................................. 12綾镝鯛駕櫬鹕踪韦辚糴。 5.1程序设计 .................................................................................... 12驅踬髏彦浃绥譎饴憂锦。 5.2程序仿真和分析....................................................................... 13猫虿驢绘燈鮒诛髅貺庑。 6.结论....................................................................................................... 16锹籁饗迳琐筆襖鸥娅薔。参考文献................................................................................................ 17構氽頑黉碩饨荠龈话骛。附录........................................................................................................... 19輒峄陽檉簖疖網儂號泶。致谢........................................................................................................... 22尧侧閆繭絳闕绚勵蜆贅。

农业温室大棚智能控制系统详解

随着温室大棚近年来的发展,农业智能温室大棚控制系统也被广泛的应用,该监控系统充分应用现代信息技术,集成软件、物联网技术、音视频技术、智能控制、3S技术、无线通信技术及专家智慧与知识,实现大棚控制各关键环节的信息化、标准化,是云计算、物联网、地理信息系统等多种信息技术在大棚控制中综合、的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。 【温室大棚控制系统作用】 (农业温室大棚智能控制系统构架-图例) 农业智能温室大棚控制系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像、通过模型分析,自动控制温室湿帘风机、喷淋灌溉、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者发送实时监测信息、

报警信息,以实现温室大棚智能化远程管理,充分发挥物联网技术在设施农业生产中的作用,保证温室大棚内环境适宜作物生长,实现精细化的管理,为作物的高产、生态、安全创造条件,帮助客户提率、降低成本、增加收益。 【温室大棚控制系统组成部分】 (农业温室大棚智能控制系统-图例) 一、智能控制 通过控制系统,可以对农业生产区域内各种设备运行条件进行设定,当传感器采集的实时数据结果超出设定的阈值时,系统会自动通过继电器控制设备或模拟输出模块对温室大棚自动化设备进行控制操作,如自动喷洒系统、自动换气系统等,确保温室内为植物生长适宜环境。 常用的现场设备包括灌溉设备、风机、水帘、遮阳板等,这些设备均可以通过信号线进行控制,服务

器发送的指令被转化成控制信号后即可实现远程启动/关闭现场设备的运转。 用户通过点击界面上的按钮即可完成启动/关闭现场设备的指令发送。 除了手工进行指令的发送之外,系统还能够根据检测到的环境指标进行自动控制现场设备的启动/关闭。用户可以自定义温湿度、光照、CO2浓度等指标的上限值、下限值,并定义当指标超过上限或者下限时,现场设备如何响应(启动/关闭);此外,用户可以设置触发后的设备工作时间。 建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。 二、视频监控 (农业温室大棚智能控制系统-图例) 通过在农业生产区域内安装高清摄像机置,对包括种植作物的生长情况、投入品使用情况、病虫害状况情况进行实时视频监控,实现现场无人职守情况下,种植者对作物生长状况的远程在线监控,农业专家远程在线病虫害作物图像信息获取,质量监督检验检疫部门及上主管部门对生产过程的有效监督和及时干预,以及信息技术管理人员对现场数据信息和图像信息的获取、备份和分析处理。

温室大棚智能化控制系统毕业设计外文翻译

畢業設計論文外文資料翻譯 學院:電氣學院 專業:電氣工程及其自動化 姓名:鄭能文 學號: 080801332 外文出處:Agricultural greenhouses greenhouse intelligent automatic control 附件: 1.外文資料翻譯譯文;2.外文原文。 指導教師評語: 簽名: 年月日附件1:外文資料翻譯譯文

農業溫室大棚智能自動化控制 摘要: 歷來確定的軌跡到controlgreenhouse農作物生長的問題解決了用約束優化或應用人工智慧技術。已被用作經濟利潤的最優化研究的主要標準,以獲得充足的氣候控制設定值,為作物生長。本文討論了通過分層控制體系結構由一個高層次的多目標優化方法,要解決這個問題是要找到白天和夜間溫度(氣候相關的設定值)和電導率的參考軌跡管轄的溫室作物生長的問題( fertirrigation的相關設定值)。的目標是利潤最大化,果實品質,水分利用效率,這些目前正在培育的國際規則。在過去8年來,獲得在工業溫室的選擇說明結果顯示和描述關鍵字 分層農業;系統,過程控制,優化方法;產量優化 1。介紹 現代農業是時下在品質和環境影響方面的規定,因此,它是一個自動控制技術的應用已在過去幾年增加了很多([法卡斯,2005和Sigrimis,2000] [Sigrimis 等。,2001],[Sigrimis和國王,1999]和Straten等。,2010])。溫室生產agrosystem的是一個複雜的物理,化學和生物過程,同時發生,反應不同的回應時間和環境因素的模式,特點是許多相互作用(Challa及Straten,1993年),必須以控制種植者獲得最好的結果。作物生長過程是最重要的,主要是由周圍環境的氣候變數(光合有效輻射PAR - ,溫度,濕度,和內空氣中的二氧化碳濃度)的影響,水和化肥,灌溉,蟲害和疾病提供的金額,如修剪和處理他人之間的農藥和文化的勞動力。溫室是理想的增長,因為它構成一個封閉的環境,氣候和fertirrigation變數在可控制的作物。氣候和fertirrigation是兩個獨立的系統不同的控制問題和目標。經驗,不同的作物品種的水分和養分的要求是已知的,事實上,自動化系統控制這些變數。另一方面,市場價格波動的影響和環境的規則,以提高水的利用效率,減少化肥殘留在土壤中(如硝酸鹽含量)是考慮到其他方面。因此,最優在溫室agrosystem的生產過程可概括為達到以下目標的問題:優化作物生長(與品質更好,更大的生產),減少成本(主要是燃料,電力,化肥)副減少殘留(主要是農藥和土壤中的離子),水分利用效率的提高。許多方法已經被應用到這個問題,例如,與溫室氣候管理中的最優控制領域,如處理(1993)challa和麵包車Straten的Seginer和謝爾(1993年),凡Straten 等。(2010),Tantau(1993),或基於人工智慧技術([法卡斯,2003],[雷羅等,2008],[馬丁 - Clouaire等。,1996]和[森本和橋本龍太郎,2000年] )。溫室生產agrosystem的處理採用分層控制結構(Challa [和麵包車Straten的,1993年,Rodriguez等人,2003年,羅德裏格斯等人,2008年已被普遍]和[1993])Tantau,該系統應該被劃分成不同的時間尺度和控制系統被劃分成不同的層次,

智能温室大棚系统需求分析说明书

智能温室大棚系统软件需求分析说明书 小组成员:物联网12001 梁树强 物联网12001 于吉满 物联网12001 卜浩圻

目录 1.软件介绍3 2. 软件面向的用户群体 (3) 3. 软件应当遵循的规或规 (3) 4.软件围3 5. 软件中的角色3 6.软件的功能性需求4 6.0功能性需求分析4 6.0.1经管员功能性需求分类4 6.0.2用户功能性需求分类4 6.1 系统经管员功能细化5 6.2 用户功能细化6 7.系统功能模块用例图10 7.1系统经管员功能模块用例图10 7.2用户功能模块用例图11 8.软件的非功能性需求13 8.1 用户界面需求13 8.2 软硬件环境需求13 8.3 软件质量需求13 9.参考文献13

1.软件介绍 (1)该软件是智能温室大棚系统 (2)软件开发背景:随着社会和经济的发展,人们对物质生活的需求越来越高。中国人口众多,人均耕地面积很少,如何提高农作物产量,实行耕地面积利用率的最大化十分重要。为了提高单位面积上农作物的产量,国外纷纷提出了自己的智能温室大棚系统设计方案。所谓的智能温室大棚系统设计就是通过现代科学技术手段,调节农作物生长所需的各种环境条件,主要有光照、温度、土壤湿度、二氧化碳浓度这4个环境参数,从而使农作物处于最佳的生长环境中,进而最大幅度地提高农作物的产量。而开发此系统正是利用现代科技,来科学有序的发展农业,让人们从繁重的体力劳动中解放出来,体验到科技带来的快乐。 2.软件面向的用户群体 适应群体:以农作物为主要经济来源的企业或者个体劳动者,特别适合拥有多个温室大棚用来种植作物的用户。 该系统的开发,最大的好处是更加科学的经管温室大棚,细致化的从温度,湿度,二氧化碳浓度等可靠数据来分析和制定作物的更加适宜的环境。智能化的使用方法让用户对温室大棚的经管更加省时,省力,使使用者最终获得更大的收益。 3.软件应当遵循的规或规 1.数据库要求规完整,有系统崩溃手动恢复的功能 2.要求该软件的可扩展性好。 3.要求该软件整体的安全性强 4.要求该软件采集的数据准确性要高。 5.要求该软件组建的无线传感网稳定,安全性高。 4.软件围 本系统用C/S架构,安全性能和维护性高,并且用java语言对此系统进行的开发,移植性好。适合用户在不同的平台运行,灵活可靠,更加符合在温室大棚不同的设备硬件上进行移植。 5.软件中的角色 5.1经管员

基于PLC系统的中央空调控制系统毕业设计论文

哈尔滨理工大学毕业设计 题目:基于PLC的中央空调控制系统设计院、系:自动化学院自动化系 姓名: 指导教师: 系主任: 2012年06月25 日

哈尔滨理工大学毕业设计(论文)任务书 学生姓名:学号: 学院:自动化学院专业:自动化 任务起止时间:2012 年 2 月27 日至2012 年 6 月25 日 毕业设计(论文)题目: 基于PLC的中央空调控制系统设计 毕业设计工作内容: 1.第1~2周,查阅相关资料并翻译外文资料; 2.第3~4周,了解课题目前在国内外的研究现状、发展趋势,确定中央空调所要实现的功能和了解整个系统的结构框架; 3.第5~8周,进一步了解中央空调的所要实现的具体功能,确定系统中所要用到的原器件,并进行最初的硬件电路的设计,为软件编程做准备; 4.第9~11周,学习PLC程序的设计与开发,确定最终的硬件电路的设计; 5.第12~13周,编写PLC程序,并和硬件一起进行程序调试,来检查程序的可行性; 6.第14~15周,修改必要的程序部分来完善系统,并书写论文的初稿;7.第16~17周,修改并完成书面论文,准备答辩。 资料: 1.王卫兵,高俊山. 可编程控制器原理及应用.第二版.机械工业出版社,2005 2.任光.可编程序控制器(PC)应用技术与实例.华南理工大学出版社,2001 3.汤蕴缪,史乃. 电机学.机械工业出版社,1999 4.康贤永,万大福. 可编程控制器及其应用. 重庆大学出版社,1998 5.梅晓榕,柏桂珍. 自动控制元件及线路. 科学出版社,2005 6.刘金琨. 先进PID控制Matlab仿真(第二版). 电子工业出版社,2004 指导教师意见: 签名: 年月日系主任意见: 签名: 年月日 教务处制表

温室控制系统设计开题报告

毕业设计开题报告 一.选题的依据、意义和理论或实际应用方面的价值 随着农业现代化的发展,设施园艺工程因其涉及学科广、科技含量高、与人民生活关系密切,己越来越受到世界各国的重视。这也为我国大型现代化植物大棚的发展提供了极好的机遇,并产生巨大的推动作用。我国的现代化植物大棚是在引进与自我开发并进的过程中发展起来的。温室大棚是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的理想场所。实现温室大棚环境智能控制的目的是主动地调节温度、湿度、光照和二氧化碳气体浓度等环境因素,以满足作物最佳生长环境的要求。其中,温湿度是最重要的环境因数。目前,我国绝大多数温室大棚设备都比较简陋,温室大棚环境仍然靠人工根据经验来管理。环境因素的自动调节和控制的研究正处于起步阶段,已严重影响了设施农业的大力发展。特别是北方地区因其纬度高,寒冷季节长,四季温差和昼夜温差较大,不利于作物生长,目前应用于温室大棚的温湿度检测系统大多采用传统的温湿度检测。这种温湿度采集系统需要在温室大棚内布置大量的测温电缆和湿度传感器,才能把现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。同时线路上传送的是模拟信号,易受干扰和损耗,测量误差也比较大,不利于控制者根据温度变化及时做出决定。在这样的形式下,开发一种实时性高、精度高,能够综合处理多点温度信息的测控系统就很有必要。 二.本课题在国内外的研究现状 我国的现代化温室是在引进与自我开发并进的过程中发展起来的。国外对温室环境控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。目前,一些经济发达的国家和地区已经研制并实现计算机自动控制的现代化高科技温室,并且形成了令人惊羡的植物土厂。而我国的温室系统属于半开放系统,温室内环境控制水平比较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量和产量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 三.课题研究的内容及拟采取的方法 本设计以AT89C51 单片机的温度、湿度测量和控制系统为核心来对温湿度进行实时巡检。单片机能独立完成各自功能,同时能根据主控机的指令对温度

相关文档
最新文档