蛋白质芯片技术的研究进展

蛋白质芯片技术的研究进展
蛋白质芯片技术的研究进展

蛋白质芯片技术的研究进展

朱丽琳

(西宁青藏高原野生动物救护中心,青海西宁 810001)

摘 要:蛋白质芯片技术是生物化学和分子生物学上具有较大作用的生物检测技术。该文简要综述了该技术的发展概况、基本原理及目前应用,并指出了存在的问题和发展前景。

关键词:蛋白质芯片;生物芯片;应用

中图分类号:Q812 文献标识码:A 文章编号:1001-7542(2004)03-0084-04

生物芯片(biochip )主要是指通过微细加工工艺在固体芯片表面构建的微型化学分析系统,从而实现对细胞、蛋白质、DNA 以及其他生物组分的准确快速与大信息量的检测。其反应结果可用同位素法、化学荧光法、化学发光法或酶标法显示,然后用精密的扫描仪或CCD (charge -coupled device )摄像技术记录,最后通过计算机进行数据处理以得到综合的信息。常用的生物芯片分为三大类:基因芯片(G ene chip ,DNA chip ,DNA microarray )、蛋白质芯片(Proteinchip )、芯片实验室(Lab -on -a -chip )[1,2]。

人类基因组(genome )排序工作的完成是人类医学史上的里程碑。基因芯片虽可在mRNA 水平上分析整个基因组表达的情况,并得到了迅猛发展,但生命活动的主体是人体内存在的10万种以上的蛋白质,发展蛋白质芯片这一高新技术已成为生物芯片领域的挑战性课题。

1 蛋白质芯片的发展概况

蛋白质能直接反映基因携带的遗传信息,它的功能一旦出现异常就可能引起疾病,破坏人体健康。

如Alzheimer ’s 病人脑脊液中微量β淀粉样蛋白肽的出现[3]是目前公认的脑神经退行性变的标志物。蛋

白芯片可以将数十万个与生命相关的信息集成在一块厘米见方的芯片上,对抗原活体细胞和组织进行测试分析,同时蛋白质芯片的特异性高,亲和力强,受其他杂质的影响较小,因此对生物样品的要求较低,可简化样品的前处理,甚至可以直接利用生物材料(血样、尿样、细胞及组织等)进行检测。

蛋白质芯片是指固定于支持介质上的蛋白质构成的微阵列。又称蛋白质微阵列(Protein micoroar 2ray ),最早是在生物功能基因组学研究中继基因芯片之后,作为基因芯片功能的补充发展起来的。是在一个基因芯片大小的载体上,按使用目的的不同,点布相同或不同种类的蛋白质,然后再用标记了荧光染料的蛋白质结合,扫描仪上读出荧光强弱,计算机分析出样本结果。最早进行蛋白质芯片研究的是德国科学家Lueking [4,5]。目前,国内也有学者在从事蛋白芯片的研究。

2 蛋白质芯片的原理

蛋白芯片技术的研究对象是蛋白质,其原理是对固相载体进行特殊的化学处理,再将已知的蛋白分子产物固定其上(如酶、抗原、抗体、受体、配体、细胞因子等),根据这些生物分子的特性,捕获能与之特异性结合的待测蛋白(存在于血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等),经洗涤、纯化,再进行确认和生化分析;它为获得重要生命信息(如未知蛋白组分、序列。体内表达水平生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等)提供有力的技术支持[6,7]。

2.1 固体芯片的构建 常用的材质有玻片、硅、云母及各种膜片等。理想的裁体表面是渗透滤膜(如硝

收稿日期:2004-03-15

作者简介:朱丽琳(1968-),女(汉族),浙江新昌人,西宁青藏高原野生动物救护中心工程师.

2004年第3期 青海师范大学学报(自然科学版)Journal of Qinghai N ormal University (Natural Science ) 2004N o 13

酸纤维素膜)或包被了不同试剂(如多聚赖氨酸)的载玻片。外形可制成各种不同的形状。Lin ,SR 等人[8]采用A PTS -BS 3技术增强芯片与蛋白质的牢固结合。

2.2 探针的制备 低密度蛋白质芯片的探针包括特定的抗原、抗体、酶、吸水或疏水物质、结合某些阳离子或阴离子的化学集团、受体和免疫复合物等具有生物活性的蛋白质。制备时常常采用直接点样法,以避免蛋白质的空间结构改变。保持它和样品的特异性结合能力。高密度蛋白质芯片一般为基因表达产物,如一个cDNA 文库所产生的几乎所有蛋白质均排列在一个载体表面[9],其芯池数目高达1600个/cm 2,呈微距阵排列,点样时须用机械手进行,可同时检测数千个样品。

213 生物分子反应 使用时将待检的含有蛋白质的标本如尿液、血清、精液、组织提取物等,按一定程序做好层析、电泳、色谱等前处理,然后在每个芯池里点入需要的种类。一般样品量只要2—10μL 即可。

根据测定目的不同可选用不同探针结合或与其中含有的生物制剂相互作用一段时间,然后洗去未结合的或多余的物质,将样品固定一下等待检测即可。

2.4 信号的检测及分析 直接检测模式是将待测蛋白用荧光素或同位素标记,结合到芯片的蛋白质就会发出特定的信号,检测时用特殊的芯片扫描仪扫描和相应的计算机软件进行数据分析,或将芯片放射显影后再选用相应的软件进行数据分析。间接检测模式类似于E LISA 方法,标记第二抗体分子。以上两种检测模式均基于阵列为基础的芯片检测技术。该法操作简单、成本低廉,可以在单一测量时间内完成多次重复性测量。目前,国外多采用质谱(mass spectrometry ,MS )分析[10]基础上的新技术,如表面加强的激光离子解析—飞行时间质谱技术(S E LDI —TOF —MS ),可使吸附在蛋白质芯片上的靶蛋白离子化,在电场力的作用下计算出其质量电荷比,与蛋白质数据库配合使用,来确定蛋白质片段的分子量和相对含量,可用来进行检测蛋白质谱的变化。光学蛋白芯片技术是基于1995年提出的光学椭圆生物传感器的概念[11]。利用具有生物活性的芯片上靶蛋白感应表面及生物分子的特异性结合性,可在椭偏光学成像观察下直接测定多种生物分子。

3 蛋白芯片的分类

目前蛋白芯片主要有三类:蛋白质微阵列、微孔板蛋白质芯片、三维凝胶块芯片[11-14]等。

3.1 蛋白质微阵列 哈佛大学的Macbeath 和Schreiber L 等报道了通过点样机械装置制作蛋白质芯片的研究,将针尖浸入装有纯化的蛋白质溶液的微孔中,然后移至载玻片上,在载玻片表面点上1nl 的溶液,然后机械手重复操作,点不同的蛋白质。利用此装置大约固定了10,000种蛋白质,并用其研究蛋白质与蛋白质间,蛋白质与小分子间的特异性相互作用。Macbeath 和Schreiber 首先用一层小牛血清白蛋白(BSA )修饰玻片,可以防止固定在表面上的蛋白质变性。由于赖氨酸广泛存在于蛋白质的肽链中,BSA 中的赖氨酸通过活性剂与点样的蛋白质样品所含的赖氨酸发生反应,使其结合在基片表面,并且一些蛋白质的活性区域露出。这样,利用点样装置将蛋白质固定在BSA 表面上,制作成蛋白质微阵列。3.2 微孔板蛋白芯片 Mendoza 等[15]在传统微滴定板的基础上,利用机械手在96孔的每一个孔的平底上点样成同样的四组蛋白质,每组36个点(4×36阵列),含有8种不同抗原和标记蛋白。可直接使用与之配套的全自动免疫分析仪,测定结果。适合蛋白质的大规模、多种类的筛选。

3.3 三维凝胶块芯片 三维凝胶块芯片是美国阿贡国家实验室和俄罗斯科学院恩格尔哈得分子生物学研究所开发的一种芯片技术。三维凝胶块芯片实质上是在基片上点布以10000个微小聚苯烯酰胺凝胶块,每个凝胶块可用于靶DNA 、RNA 和蛋白质的分析。这种芯片可用于筛选抗原抗体、酶动力学反应的研究。该系统的优点是:凝胶条的三维化能加进更多的已知样品,提高检测的灵敏度;蛋白质能够以天然状态分析,可以进行免疫测定、受体、配体研究和蛋白质组分分析。

4 蛋白质芯片的应用

4.1 用于基因表达的筛选 Angelika L.等人[17]从人胎儿脑的cDNA 文库中选出92个克隆的粗提物制

58第3期 朱丽琳:蛋白质芯片技术的研究进展

68 青海师范大学学报(自然科学版) 2004年

成蛋白质芯片,用特异性的抗体对其进行检测,结果的准确率在87%以上,而用传统的原位滤膜技术准确率只达到63%。与原位滤膜相比,用蛋白质芯片技术在同样面积上可容纳更多的克隆,灵敏度可达到pg级。

4.2 用于特异性抗原抗体的检测 在CavinM.等人的实验中,蛋白质芯片上的抗原抗体反应体现出很好的特异性,在一块蛋白质芯片上10800个点中,根据抗原抗体的特异性结合检测到唯一的1个阳性位点。Cavin M.[29]指出,这种特异性的抗原抗体反应一旦确立,就可以利用这项技术来度量整个细胞或组织中的蛋白质的丰富程度和修饰程度。其次利用蛋白质芯片技术,根据与某一蛋白质的多种组分亲和的特征,筛选某一抗原的未知抗体,将常规的免疫分析微缩到芯片上进行,使免疫检测更加方便快捷。

4.3 用于蛋白质的筛选及功能研究 常规筛选蛋白质主要是在基因水平上进行,基因水平的筛选虽已被运用到任意的cDNA文库,但这种文库多以噬菌体为载体,通过噬菌斑转印技术(plaque life procedure)在一张膜上表达蛋白质。但由于许多蛋白质不是全长基因编码,而且真核基因在细菌中往往不能产生正确折叠的蛋白质,况且噬菌斑转移不能缩小到毫米范围进行,所以这种方法的局限性,靠蛋白质芯片弥补。酶作为一种特殊的蛋白质,可以用蛋白质芯片来研究酶的底物、激活剂、抑制剂等。

蛋白质芯片为蛋白质功能研究提供了新的方法,合成的多肽及来源于细胞的蛋白质都可以用作制备蛋白质芯片的材料。Uetz将蛋白质芯片引入酵母双杂交研究中,大大提高了筛选率。建立了含6000个酵母蛋白的转化子,每个都具有开放性可阅读框架(Open Reading Frame,ORF)的融合蛋白作为酵母双杂交反应中的激活区,此蛋白质芯片检测到192个酵母蛋白与此发生阳性反应。

4.4 生化反应的检测 对酶活性的测定一直是临床生化检验中不可缺少的部分。Cohen用常规的光蚀刻技术制备芯片、酶及底物加到芯片上的小室,在电渗作用中使酸及底物经通道接触,发生酶促反应。通过电泳分离,可得到荧光标记的多肽底物及产物的变化,以此来定量酶促反应结果。动力学常数的测定表明该方法是可行的,而且,荧光物质稳定。Arenkov进行了类似的试验,他制备的蛋白质芯片的一大优点,可以反复使用多次,大大降低了试验成本[13]。

4.5 药物筛选 疾病的发生发展与某些蛋白质的变化有关,如果以这些蛋白质构筑芯片,对众多候选化学药物进行筛选,直接筛选出与靶蛋白作用的化学药物,将大大推进药物的开发。蛋白质芯片有助于了解药物与其效应蛋白的相互作用,并可以在对化学药物作用机制不甚了解的情况下直接研究蛋白质谱。还可以将化学药物作用与疾病联系起来,以及药物是否具有毒副作用、判定药物的治疗效果,为指导临床用药提供实验依据。另外,蛋白芯片技术还可对中药的真伪和有效成分进行快速鉴定和分析。

4.6 疾病诊断 蛋白质芯片技术在医学领域中有着潜在的广阔应用前景。蛋白质芯片能够同时检测生物样品中与某种疾病或者环境因素损伤可能相关的全部蛋白质的含量情况,即表型指纹(phenomic fingerprint)。表型指纹对监测疾病的过程或预测,判断治疗的效果也具有重要意义。Ciphelxen Biosystems 公司利用蛋白质芯片检测了来自健康人和前列腺癌患者的血清样品,在短短的三天之内发现了6种潜在的前列腺癌的生物学标记[12]。Englert将抗体点在片基上,用它检测正常组织和肿瘤之间蛋白质表达的差异,发现有些蛋白质的表达,如前列腺组织特异抗原,明胶酶A蛋白在肿瘤的发生发展中起着重要的作用,这给肿瘤的诊断和治疗带来了新途径。应用蛋白质芯片在临床上还发现乳腺癌患者中的2813K D的蛋白质;存在于结肠癌及其癌前病变患者的血清中的13.8K D的特异相关蛋白质[17]。

5 存在问题

蛋白质芯片技术与基因芯片相比较,还处在起步阶段,无论在芯片的制备,具体应用过程以及结果的检测方面还有很多的不足。主要表现在:

5.1 灵敏度 大部分病原微生物分子含量很低,必须经过信号放大才能检测到,目前常用的信号放大技术是PCR,PCR虽然能扩增目的基因,但如果单独采用PCR技术又不能够体现生物芯片的高通量特点,所以新的信号放大技术是蛋白质芯片广泛应用急待解决的问题[1]。

5.2 准确度 虽然蛋白质芯片技术中能对肝炎病毒感染所引发的一系列免疫反应进行监测,但芯片实验的准确性在一定程度上受限于所选择的抗原或抗体的来源、纯度与特异性,并且蛋白类抗体的生产与应用存在着抗原性,免疫原性的强弱、异源抗体的类风湿因子和自身抗体的干扰、罕见抗体的高工作量筛选、克隆株(细胞)的不易保存、无法标准化生产、体内与体外的识别特异性差异、抗体—靶相互作用的动力学参数、对温度敏感所发生的不可逆变性等因素,限制了蛋白质芯片技术优势的充分发挥[1,13]。5.3 高密度 高密度芯片对病原体准确识别、比较基因组学分析、分型、突变分析及耐药检测是必须的。目前制备高密度芯片的方法主要是美国A FFYMERTRIX 公司的光蚀到合成专利技术,限制了该技术的普遍采用。近来报导的喷印及分印章原位合成技术虽然避开了专利,但尚不成熟,因此,发展新的高密度合成技术势在必行[1]。

5.4 普及 目前蛋白质芯片技术只限于在少数条件好的实验室进行.对于大多数实验室来讲,设备昂贵,需要一定的时间。但随着经济的进一步改善,从根本上会满足需要[1,13]。

蛋白质芯片技术在新世纪里不仅会对认识基因组与人类健康错综复杂的关系,对疾病的早期诊断和疗效监测等会产生巨大的推动作用,而且在其他相关领域如环境保护、食品卫生、生物工程、工业制药等方面也将具有广阔的发展前景。特别是随着人类基因组计划的完成,一个以研究蛋白质功能为重点的后基因组时代已拉开序幕,许多人预言,蛋白质芯片技术将从根本上改变生物学和生物技术的观点和效率,为生命科学的发展做出卓越贡献[11-13]。

参考文献:

[1] 张浩,李晓霞.蛋白芯片的研究进展[J ].微生物学免疫学进展,2001,29,(4):69-72.

[2] 王关林,方宏筠.植物基因工程[M].北京:科学出版社.2002,127-128.

[3] Frears ER ,S tephens D J ,W alters CE 1The role of cholesterol in the biosynthesis of betaamyloid[J ]1Neuroreprot ,1999,10(8):1699-1705

[4] Lueking A 1Protein m icroarrays for gene expression and antibody screening[J ]1Analytical Biochem istry ,1999,270:103-111.

[5] 梁俊,卢莉琼.生物芯片应用于海洋生物科学领域的前景展望[J ].海洋科学,2003,27(3)13-17.

[6] 王艳.何为.蛋白质芯片的研究进展及其临床应用[J ].国外医学:微生物学分册,2002,25(2)7-9,36.

[7] 崔振玲,黄静.蛋白质芯片技术研究进展[J ].生物学通报,2002,37(7):5-6.

[8] Lin SR ,Tseng FG 1Huang H M ,et al 1M icrosized 2D Protein arrays imm obilized by m icro -stam ps and m icro -wells for disease diagnosis and drug

screening[J ]1Fresenius J Anal Chem 1Sep 12001,371(2):202-208.

[9] Buss ow K,Cahill D ,Nietfeld W 1et al 1A method for global protein expression and antibody screening on high -density filters of an arrayed cDNA li 2

brary[J ]1Nucleic Acids Res 11998126(21):5007-5008.

[10] W 1Hutchens ,T 1Y ip ,Rapid C ommun[J ]1M ass S pectrom ,1993,7:69-72.

[11] G 1J IN 1P 1T engvall ,I 1Lundstrom Arwin Anal Biochem 11995,232:69-72.

[12] 崔建国,蔡建明.蛋白质芯片及其应用[J ].国外医学:分子生物学分册,2003,25(1)19-21.

[13] 吴军林,林炜铁.蛋白质芯片技术研究及应用进展[J ].四川食品与发酵,2002,38(4)10-13.

[14] 梅茜,张春秀.蛋白芯片研究进展及应用[J ].中国药科大学学报,2001,32(5)329-332.

[15] M endoza L G,M cquary P ,M ongan A ,et al 1High -through m icroarrays -based enzyme -linked immunos orbent assay (E LIS A )[J ].Biotechniques ,

1999,27(4):778-788.

[16] Angelika I ,M artin H ,H olger E ,et al 1Protein M icroarrays for G ene Expression and Antibody Screening[J ]1Analytical Biochem istry ,1999,270(10).

[17] Bryum or W ,R obert S ,Shannon B ,et al 1Detection of early -stage cancer by serumm Protein analysis[J ]1Am Lab ,2001,32-36.

The research status on protein biochip technology

ZHU Li 2lin

(X ining Wildlife C onservation Center in Qinghai 2T ibet Plateau ,X ining 810001,China )

Abstract :Protein biochip tecnology is one of the m ost im portant biological testing technology on biocemistry and m olecular biology.This paper summarizes the status ,basic principle and present application of this technology ,meanwhile ,its problems and prosperity are put forward.

K ey w ords :Protein biochip ;biochip ;apply 78第3期 朱丽琳:蛋白质芯片技术的研究进展

生物芯片研究进展分子生物学论文

生物芯片研究进展 摘要 生物芯片是切采用生物技术制备或应用于生物技术的微处理器是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统或称缩微芯片实验室。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。本文主要阐述了生物芯片技术种类和应用方面的近期研究进展。 关键词 生物芯片,疾病诊断,研究运用,基因表达 基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,下面主要介绍四类基因芯片。 一、光引导原位合成技术生产寡聚核苷酸微阵列 开发并掌握这一技术的是Affymetrix公司,Affymetrix采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。 原位合成法主要为光引导聚合技术(Light-directed synthesis),它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引导聚合技术是照相平板印刷技术(photolithography)与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 Affymetrix公司已有诊断用基因芯片成品上市,根据用途可以分为三大类,分别为基因表达芯片、基因多态性分析芯片和疾病诊断芯片,基因表达分析芯片和基因多态性分析芯片主要用于研究机构和生物制药公司,可以用来寻找新基因、基因测序、疾病基因研究、基因制药研究、新药筛选等许多领域,Affymetrix公司主要生产通用寡聚核苷酸芯片;疾病诊断芯片则主要用于医学临床诊断,包括各种遗传病和肿瘤等,目前Affymetrix公司生产

蛋白质的二级结构

蛋白质的结构具有多种结构层次,包括一级结构和空间结构,空间结构又称为构象。空间结构包括二级结构、三级结构和四级结构。在二级与三级之间还存在超二级结构和结蛋白质的二级结构 构型:指一个不对称的化合物中不对称中心上的几个原子或基团的空间排布方式。如单糖的α-、β-构型,氨基酸的D-、L-构型。当从一种构型转换成另一种构型的时候,会牵涉及共价键的形成或破坏。 构象:指一个分子结构中的一切原子绕共价单键旋转时产生的不同空间排列方式。一种构象变成另一种构象不涉及共价键的形成或破坏。 蛋白质的二级结构 蛋白质的二级(Secondary)结构是指多肽链的主链本身在空间的排列、或规则的几何走向、旋转及折叠。它只涉及肽链主链的构象及链内或链间形成的氢键。氢键是稳定二级结构的主要作用力。 主要有α-螺旋、β-折叠、β-转角、自由回转。 二面角的概念 蛋白质中非键合原子之间的最小接触距离(A) 1.3 蛋白质的结构 (1)肽链空间构象的基本结构单位为肽平面或肽单位。 肽平面是指肽链中从一个Cα原子到另一个Cα原子之间的结构,共包含6个原子(Cα、C、O、N、H、 Cα),它们在空间共处于同一个平面。 (2)肽键上的原子呈反式构型 C=O与N-H p204 (3)肽键C-N键长0.132nm,比一般的C-N单键(0.147nm)短,比C=N双键(0.128nm)要长,具有部分双键的性质,不能旋转。 (二)蛋白质的构象 蛋白质多肽链空间折叠的限制因素:Pauling和Corey在利用X-射线衍射技术研究多肽链结构时发现: 1.肽键具有部分双键性质: 2.肽键不能自由旋转 3.组成肽键的四个原子和与之相连的两个α碳原子(Cα)都处于同一个平面内,此刚性结构的平 面叫肽平面(peptide plane)或酰胺平面(amide plane)。 4.二面角所决定的构象能否存在,主要取决于两个相邻肽单位中,非键合原子之间的接近有无阻碍。 1.α-螺旋及结构特点p207 螺旋的结构通常用“S N”来表示,S表示螺旋每旋转一圈所含的残基数,N表示形成氢键的C=O与H-N原子之间在主链上包含的原子数。又称为3.613螺旋,Φ= -57。,Ψ= -47。结构要点: 1.多肽链中的各个肽平面围绕同一轴旋转,形成螺旋结构,螺旋一周,沿轴上升的距离即螺距为0.54nm,含 3.6个氨基酸残基;两个氨基酸之间的距离为0.15nm; 2.肽链内形成氢键,氢键的取向几乎与轴平行,每个氨基酸残基的C=O氧与其后第四个氨基酸残基的N-H氢 形成氢键。 3.蛋白质中的α-螺旋几乎都是右手螺旋。 无规卷曲或自由回转(nonregular coil) p212 了解 指无一定规律的松散盘曲的肽链结构。 酶的功能部位常包含此构象,灵活易变。 纤维状蛋白 (了解) 纤维状蛋白质(fibrous protein)广泛地分布于脊椎和无脊椎动物体内,它是动物体的基本支架和外表保护成分,占脊椎动物体内蛋白质总量的一半或一半以上。 这类蛋白质外形呈纤维状或细棒状,分子轴比(长轴/短轴)大于10(小于10的为球状蛋白质)。分子是有规则的线型结构,这与其多肽链的有规则二级结构有关,而有规则的线型二级结构是它们的氨基酸顺序的规则性反映。 纤维状蛋白质的类型(了解) 纤维状蛋白质可分为不溶性(硬蛋白)和可溶性两类,前者有角蛋白、胶原蛋白和弹性蛋白等; 后者有肌球蛋白和纤维蛋白原等,但不包括微管(microtubule)和肌动蛋白细丝(actin filament),它们是球状蛋白质的长向聚集体(aggregate)。 角蛋白 Keratin(了解) 角蛋白广泛存在于动物的皮肤及皮肤的衍生物,如毛发、甲、角、鳞和羽等,属于结构蛋白。角蛋白中主要的是α-角蛋白。 α-角蛋白主要由α-螺旋构象的多肽链组成。一般是由三条右手α-螺旋肽链形成一个原纤维(向左缠绕),原纤维的肽链之间有二硫键交联以维持其稳定性 例如毛的纤维是由多个原纤维平行排列,并由氢键和二硫键作为交联键将它们聚集成不溶性的蛋白质。 α-角蛋白的伸缩性能很好,当α-角蛋白被过度拉伸时,则氢键被破坏而不能复原。此时α-角蛋白转变成β-折叠结构,称为β-角蛋白。 毛发的结构(了解)

论文 生物芯片技术

生物芯片技术——生物化学分析论文 08应化2 江小乔温雪燕袁伟豪张若琦 2011-5-3

一、摘要: 生物芯片技术,被喻为21世纪生命科学的支撑技术,是便携式生化分析仪器的技术核心,是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting 等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。 二、关键词 生物芯片;检测;基因 三、正文 (一)、生物芯片的简介 生物芯片技术是一种高通量检测技术,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization, SBH)等,为"后基因组计划"时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。(1)它包括基因芯片、蛋白芯片及芯片实验室三大领域。 基因芯片(Genechip)又称DNA芯片(DNAChip)。它是在基因探针的基础上研制出的,所谓基因探针只是一段人工合成的碱基序列,在探针上连接一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。它将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强度及分布来进行分析。 蛋白质芯片与基因芯片的基本原理相同,但它利用的不是碱基配对而是抗体与抗原结合的特异性即免疫反应来检测。蛋白质芯片构建的简化模型为:选择一种固相载体能够牢固地结合蛋白质分子(抗原或抗体),这样形成蛋白质的微阵列,即蛋白质芯片。 芯片实验室为高度集成化的集样品制备、基因扩增、核酸标记及检测为一体

蛋白质工程的现状发展及展望

蛋白质工程的现状发展及展望 摘要: 蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术。介绍了蛋白质工程的几种常用方法及其基本原理和研究进展。 关键词: 蛋白质工程;定点诱变; 定向进化 20世纪70年代以来, 对蛋白质的分子改造渐渐进入研究领域, 通过对蛋白质分子进行突变, 得到具有新的表型和功能或者得到比原始蛋白相对活力更高的突变体,对蛋白质的分子改造技术逐渐纯熟。蛋白质工程的主要技术分为理性进化和非理性进化,已经在农业、工业、医药等领域取得了较大的进展。 1.理性进化 理性进化主要是利用定点诱变技术, 通过在已知DNA序列中取代、插入或缺失一定长度的核苷酸片段达到定点突变氨基酸残基的目的。运用该技术已有不少成功改造蛋白质的例子。Markus Roth通过同源性比对和定点突变技术, 对EcoR DNA甲基化酶进行改造,使其对胞嘧啶的亲和性增加了22倍。定点突变还主要应用于蛋白质结构和功能的研究方面。酰基载体蛋白(ACP)的主要作用是在单不饱和脂肪酸的特定位置引入双键, Caho通过定点突变研究, 发现将五个氨基酸残基置换之后的酶, 由6- 16 : 0- ACP脱氢酶变成9- 18 : 0- ACP脱氢酶。Van den Burg利用蛋白同源建模和定点突变技术结合的方法将从Bacillus stear other mophilus分离出来的嗜热菌蛋白酶突变, 得到的突变体稳定性提高了8倍, 100 在变性剂存在的情况下还能发挥作用,但是大部分单个氨基酸的改变对于整个蛋白的影响比较小,很难在高级结构上改变蛋白质的三级结构, 从而造成很大的影响, 所以在定点突变的基础上又出现了许多新的技术, 用于改造蛋白质分子。[1] 2.非理性进化 非理性蛋白质进化, 又称定向进化或者体外分子进化,在实验室中模拟自然进化过程, 利用分子生物学手段在分子水平增加分子多样性, 结合高通量筛选技术, 使在自然界中需要千百万年才能完成的进化过程大大缩短,在短期内得到理想的变异。这种方法不用事先了解蛋白质结构、催化位点等性质, 而是人为地制造进化条件, 在体外对酶的编码基因进行改造, 定向筛选, 获得具有预期特征的改良酶, 在一定程度上弥补了定点诱变技术的不足, 具有很大的实际应用价值。一个比较成功应用定向进化的例子是对红色荧光蛋白的改造。绿色荧光蛋白由于

蛋白质工程及其应用研究进展

蛋白质工程及其应用研究进展 摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。 关键词:蛋白质工程特点;研究内容;实际应用;展望 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 1概念 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的编码蛋白质的基因去合成蛋白质等。为获得的新蛋白具备有意义的新性质或新功

蛋白质芯片技术的研究与发展

生物与环境工程学院课程论文 蛋白质芯片技术的研究与发展 学生姓名: 学号: 课程名称: 指导教师: 浙江树人大学生物与环境工程学院 2011年5月

蛋白质芯片技术的研究与发展 XXX (浙江树人大学生物与环境工程学院081班浙江杭州310015) 摘要:蛋白质芯片是一种研究蛋白质组学的新技术,是高通量、微型化和自动化的蛋白质分析技术,目前这一技术已经被广泛应用到生命科学研究的多个领域,如蛋白质组学研究,新药的开发以及疾病的临床诊断等,具体为用于构建蛋白质表达谱,进行受体一配体检测,靶目标和靶向药物筛选,蛋白质相互作用研究,肿瘤诊断等。本文从蛋白质芯片的概念、基本原理、制备及检测方法、蛋白质芯片的应用及展望方面对其进行综述。 关键词:蛋白质芯片;制备;应用;发展前景 生物芯片技术是20世纪80年代末才发展起来的,是一项融电子学、生命科学、物理学于一体的崭新技术,可分为DNA芯片、蛋白质芯片以及芯片实验室三类。伴随着人类基因组计划(HGP)的顺利实施,业已产生的大量DNA序列数据刺激人们去发掘湮没于其间的“珍宝”——功能基因组数据。因此,以生命活动的执行者和体现者——蛋白质为研究对象的蛋白质组学越来越显得重要。 蛋白质芯片的发展将会为蛋白质组学研究提供强有力的工具,从而推动疾病诊断、药物筛选、个性化药物的的生产和应用等发生重大革新。因此,利用蛋白质芯片分析蛋白质功能就必然是一种趋势。蛋白质芯片具有传统蛋白质检测技术所欠缺的优势,为蛋白质检测及蛋白质组学研究等方面开创了新的方式,对蛋白质检测及蛋白质组学研究等的发展期了推动作用。虽然蛋白质芯片技术为人们的研究提供可很大的便利,但其本身还有一些不足的地方,所以对其本身的研究还有很大的发展空间,是继基因芯片后的又一种用于生命科学研究的技术平台。 1 蛋白质芯片的概况 1.1 蛋白质芯片的概念 现在的蛋白质芯片[1]是指在固相支持物(载体)表面固定大量蛋白探针(可以

以多种蛋白为例阐述蛋白质结构与功能的关系

举例说明蛋白质结构和功能的关系 答: 1.蛋白质的一级结构与功能的关系 蛋白质的一级机构指:肽链中氨基酸残基(包括二硫键的位置)的排列顺序。一级结构是蛋白质空间机构的基础,包含分子所有的信息,且决定蛋白质高级结构与功能。 ①一级结构的变异与分子病 蛋白质一级结构是空间结构的基础,与蛋白质的功能密切相关,一级机构的改变,往往引起蛋白质功能的改变。 例如:镰刀形细胞贫血病 镰刀形细胞贫血病的血红蛋白(HbS)与正常人的血红蛋白(HbA)相比,发现,两种血红蛋白的差异仅仅来源于一个肽段的位置发生了变化,这个差异肽段是位于β链N端的一个八肽。在这个八肽中,β链N端第6位氨基酸发生了置换,HbA中的带电荷的谷氨酸残基在HbS中被置换成了非极性缬氨酸残基,即蛋白质的一级机构发生了变化。 ②序列的同源性 不同生物中执行相同或相似功能的蛋白质称为同源蛋白质,同源蛋白质的一级机构具有相似性,称为序列的同源性。最为典型的例子, 例如:细胞色素C(Cyt c) Cyt c是古老的蛋白质,是线粒体电子传递链中的组分,存在于从细菌到人的所有需氧生物中。通过比较Cyt c的序列可以反映不同种属生物的进化关系。亲缘越近的物种,Cyt c中氨基酸残基的差异越小。如人与黑猩猩的Cyt c完全一致,人与绵羊的Cyt c有10个残基不同,与植物之间相差更多。蛋白质的进化反映了生物的进化。 2.蛋白质空间结构与功能的关系 天然状态下,蛋白质的多肽链紧密折叠形成蛋白质特定的空间结构,称为蛋白质的天然构象或三维构象。三维构象与蛋白质的功能密切相关。 ①一级结构与高级结构的关系: 一级结构决定高级机构,当特定构象存在时,蛋白质表现出生物功能;当特定构象被破坏时,即使一级构象没有发生改变,蛋白质的生物学活性丧失。例如:牛胰核糖核苷酸酶A(RNase A)的变性与复性 当RNase A处于天然构象是,具有催化活性; 当RNase A处于去折叠状态时,二硫键被还原不具有催化活性;当RNase A恢复天然构象时,二硫键重新形成,活性恢复。 ②变构效应 变构效应:是寡聚蛋白质分子中亚基之间存在相互作用,这种相互作用通过亚基构象的改变来实现。蛋白质在执行功能是时,构象发生一定变化。 例如:肌红蛋白、血红蛋白与氧的结合 两种蛋白质有很多相同之处,结构相似表现出相似功能。这两钟蛋白质都含有血红素 辅基,都能与氧进行可逆结合,因此存在着氧合与脱氧的两种结构形式。但是肌红蛋白几乎在任何氧分压情况下都保持对氧分子的高亲和性。血红蛋白则不同,在氧分压较高时,血红蛋白几乎被氧完全饱和;而在氧分压较低时,血红蛋白与氧的亲和力降低,释放出携带的氧并转移给肌红蛋白。

生物芯片技术研究进展

生物芯片技术研究进展 张智梁 摘要:随着DNA测序技术的发展和几种同时监测大量基因表达的新技术出现,人类基因组DNA序列分析可能很快完成,并由此产生了生物信息学,而DNA芯片技术应运而生。生物芯片主要是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,是近些年来发展迅速的一项高新技术。生物芯片主要包括基因芯片、蛋白质芯片、组织芯片等。 关键词:生物芯片;研究进展;应用 生物芯片是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,其实质就是在面积不大的基片(玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)表面上有序地点阵排列一系列已知的识别分子,在一定条件下,使之与被测物质(样品)结合或反应,再以一定的方法(同位素法、化学荧光法、化学发光法、酶标法等)进行显示和分析,最后得出被测物质的化学分子结构等信息。因常用玻片/硅片等材料作为固相支持物,且制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。这项技术是由美国旧金山以南的的一个新兴生物公司首先发展起来的。S.P.AForder及其同事于90年代初发明了一种利用光刻技术在固相支持物上光导合成多肽的方法,并在此基础上于l993年设计了一种寡核苷酸生物芯片,直至l996年制造出世界上第一块商业化的DNA芯片。在此期间国际上掀起了一片DNA芯片设计的热潮,出现了多种类型的DNA芯片技术。DNA芯片在产生的短短几年时间内技术不断,现已经显现出在基因诊断、基因表达分析和新基因的发现、蛋白组学方面的应用、基因组文库作图等生物医学领域中的应用价值。 l、生物芯片的分类 目前常见的生物芯片分为3类:第1类为微阵列芯片,包括基因芯片、蛋白芯片、细胞芯片和组织芯片;第2类为微流控芯片(属于主动式芯片),包括各类样品制备芯片、聚合酶链反应(PCR)芯片、毛细管电泳芯片和色谱芯片等;第3类为以生物芯片为基础的集成化分析系统(也叫“芯片实验室”,是生物芯片技术的最高境界)。“芯片实验室”可以完成如样品制备、试剂输送、生化反应、结果检测、信息处理和传递等一系列复杂工作。这些微型集成化分析系统携带方便,可用于紧急场合、野外操作甚至放在航天器上。 2、生物芯片的应用 2.1基因测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速,具有十分诱人的前景。芯片技术能辨别单核苷酸多态性(SNPs),当基因组序列中的单个核苷酸发生突变,就会引起基因组DNA序列变异。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCAl基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性为83.5%~98.2%,提示了二者在进化上的高度相似性。Check 等通过运用DNA微集阵列分析研究与早期心血管疾病相关的候选基冈一丁SP基冈家族,结果发现TSP-1和TSP-4基因错义变异与早期冠状动脉疾病相关,它们在m液凝固和动脉修复中起重要作用,而丁SP一2基冈非编码区的突变却在心脏病的发生过程有一定的保护作用。在卵巢癌发展过程中,基因TP53起到临界

蛋白质工程的主要研究方法和进展

蛋白质工程的主要研究方法和进展 李 强 施碧红* 罗晓蕾 左祖祯 邢佩佩 刘 璐 (福建师范大学生命科学学院,福建福州 350108) 摘 要:蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术。介绍了蛋白质工程的几种常用方法及其基本原理和研究进展。 关键词:蛋白质工程;定点诱变;定向进化 中图分类号 Q816 文献标识码 A 文章编号 1007-7731(2009)05-47-02 Advances in The Techni q ues of P rotein Engineering L i Q iang et al (Co llege o f L ife Sc iences,Fu jian N or m a lU n i versity,Fuzhou350108,Chi na) Ab strac t:P ro tein eng ineer i ng is a techn i que used to i m prove prote i n m o l ecular In th i s paper,seve ra l m ethods and t he ir pr i nci p les and their advantag es f o r m olecu lar m odifica ti on have been rev ie w ed K ey words:P rote i n eng i neer i ng;site-d i rected m utag enesis;d irected evoluti on 20世纪70年代以来,对蛋白质的分子改造渐渐进入研究领域,通过对蛋白质分子进行突变,得到具有新的表型和功能或者得到比原始蛋白相对活力更高的突变体,对蛋白质的分子改造技术逐渐纯熟。蛋白质工程的主要技术分为理性进化和非理性进化,已经在农业、工业、医药等领域取得了较大的进展。 1 理性进化 理性进化主要是利用定点诱变技术,通过在已知D NA序列中取代、插入或缺失一定长度的核苷酸片段达到定点突变氨基酸残基的目的。运用该技术已有不少成功改造蛋白质的例子。M arkus Rot h通过同源性比对和定点突变技术,对E c o R DNA甲基化酶进行改造,使其对胞嘧啶的亲和性增加了22倍[1]。定点突变还主要应用于蛋白质结构和功能的研究方面。酰基载体蛋白(ACP)的主要作用是在单不饱和脂肪酸的特定位置引入双键,Cahoo 通过定点突变研究,发现将五个氨基酸残基置换之后的酶,由 6-16:0-ACP脱氢酶变成 9-18:0-ACP脱氢酶[2]。Van den Burg利用蛋白同源建模和定点突变技术结合的方法将从Bacill us stear other m oph il us分离出来的嗜热菌蛋白酶突变,得到的突变体稳定性提高了8倍,100在变性剂存在的情况下还能发挥作用[3],但是大部分单个氨基酸的改变对于整个蛋白的影响比较小,很难在高级结构上改变蛋白质的三级结构,从而造成很大的影响[4],所以在定点突变的基础上又出现了许多新的技术,用于改造蛋白质分子。 2 非理性进化 非理性蛋白质进化,又称定向进化或者体外分子进化,在实验室中模拟自然进化过程,利用分子生物学手段在分子水平增加分子多样性,结合高通量筛选技术,使在自然界中需要千百万年才能完成的进化过程大大缩短,在短期内得到理想的变异。这种方法不用事先了解蛋白质结构、催化位点等性质,而是人为地制造进化条件,在体外对酶的编码基因进行改造,定向筛选,获得具有预期特征的改良酶,在一定程度上弥补了定点诱变技术的不足,具有很大的实际应用价值。一个比较成功应用定向进化的例子是对红色荧光蛋白的改造。绿色荧光蛋白由于本身独特的发光性质,被应用到细胞生物学当中,作为体内原位跟踪蛋白质的一个极其有效的工具。D i sc oso m a红色荧光蛋白(Ds R ed)在荧光共振能量转移技术(fl uoresce nce resonance e ner gy tr ansfer)中可以和绿色荧光蛋白一起作用,作为研究两种蛋白质相互作用的有效工具,但是野生型的D s Red由于显色速率较慢,而且稳定性较差,B r oo ke B evi s建立随机突变文库,在103-105个转化子中筛选到了大大提高显色效率的突变体,使显色效率提高了10-15倍[5-6]。 易错PCR是利用DNA聚合酶不具有3!-5!校对功能的性质,在PCR扩增待进化酶基因的反应中,使用低保真度的聚合酶,改变四种d NTP的比例,加入锰离子并增加镁离子的浓度,使DNA聚合酶以较低的比率向目的基因中随机引入突变,并构建突变库。M oor e等对鼠伤寒沙门菌Sal m onella t yph m i uri u m产生的门冬氨酰二肽酶(asp art yld i pepti dase)进行改良,经两次易错PCR引入随机突变,并结合D NA改组和正向选择筛选,得到的pepEm3074突变株,其酶活力比野生菌提高47倍[7]。 D NA改组(DNA shuffli ng)技术克服了随机突变的随机性较大的限制,能够直接将多条基因的有利突变直接重组到一起,它的原理是使用D N ase?酶切或超声波断裂多条具有一定同源关系的蛋白编码基因,这些小片段随机出现部分片段的重叠,产生的片段在不加引物的情况下进行几轮PCR,通过随机的自身引导或在组装PCR过程中重 47 安徽农学通报,Anhu iAgri Sci Bu ll 2009,15(5) 作者简介:李强(1983-),男,辽宁抚顺人,硕士研究生,研究方向:分子遗传育种。*通讯作者 收稿日期:2009-01-15

蛋白质芯片技术及其应用

蛋白质芯片技术及其应用 发表时间:2016-05-24T14:14:25.390Z 来源:《医师在线》2016年1月第2期作者:布威海丽且姆·阿巴拜科日奥布力喀斯木·图尔荪[导读] 新疆维吾尔医学专科学校蛋白质芯片技术是研究蛋白质组的新技术,是高通量、微型化和自动化的蛋白质分析技术。 (新疆维吾尔医学专科学校新疆维吾尔 848000) 摘要:蛋白质芯片技术是研究蛋白质组的新技术,是高通量、微型化和自动化的蛋白质分析技术。该技术在对基因表达、抗原抗体检测、药物开发、疾病诊断等研究方面显示出快速、高效、高通量处理信息的能力。它不仅是蛋白质组学研究中强有力的工具,也是临床应用中疾病早期诊断、预后和治疗效果评测的新手段,其研究成果拓展了与人类健康更加贴近的应用领域。本文主要讲述了蛋白质芯片技术的原理和分类、制作、蛋白质芯片检测、及其在研究中的应用及前景进行了阐述。 关键词:蛋白质芯片、疾病诊断、应用。 1 蛋白质芯片技术 蛋白质芯片又称蛋白质阵列或蛋白质微阵列,它是将大量的蛋白质、蛋白质检测试剂或检测探针作为配基以预先设计的方式固定在玻片、硅片或纤维膜等固定载体上组成密集的阵列,能够高通量地测定蛋白质的生物活性、蛋白质与大分子和小分子的相互作用,或者用于高通量定性和定量检测蛋白质。 2 蛋白质芯片的分类及检测方法 蛋白质芯片是一种高通量、微型化、自动化的蛋白质分析技术,根据其结合被测蛋白的介质不同,可以大致分为两大类:化学型蛋白质芯片和生物化学型蛋白质芯片[1]。 2.1 化学型蛋白质芯片该类芯片的构想来源于经典色谱的介质,芯片上所铺的介质可通过疏水力、静电力、共价键等结合被测样品中的蛋白质,然后用特定的洗脱液去除杂质蛋白而保留感兴趣者。其缺点是特异性较差,但目前仍占已商品化并得到广泛应用的蛋白质芯片中的大部分。这一方法具有样品用量小、操作简便、灵敏度高、高通量等优点。 2.2 生物化学型蛋白质芯片该类芯片的基本原理是将已知的生物活性分子(如抗体、受体、配体、核酸等) 结合到芯片表面,来俘获样品中的靶蛋白。由于生物活性分子的多样性和高度特异性,所以其应用范围和前景都明显优于化学型蛋白质芯片。但由于蛋白质比DNA 难合成,更难于在固相支持物表面合成,且定位于固相载体表面的蛋白质容易因空间构象的改变而失活,造成了该类芯片的开发应用与商品化落后于化学型芯片。 2.3 蛋白质芯片的检测方法 目前在蛋白质芯片检测中应用最广的是荧光染料标记,原理较为简单、使用安全、敏感性高,且有很好的分辨率[2]。用荧光染料Cy3或Cy5直接标记待检测的蛋白质,或用荧光染料标记该蛋白质的二抗,和芯片上的蛋白质结合后,用激光扫描和CCD照相技术对激发的荧光信号检测,用计算机和相应的软件系统进行分析。对于低丰度的蛋白质样品来说,荧光和化学发光的检测方法的灵敏度低,近年来出现的滚环扩增方法对捕获的蛋白质的检测达到了飞摩尔的量级,有望改善荧光检测的灵敏度。蛋白质芯片联合表面加强激光解吸/电离-飞行质谱检测法。表面加强激光解吸/电离-飞行质谱仪具有分析速度快、简便易行、样品用量少和高通量等特点,可直接检测各种体液如尿液、血液、脑脊液、关节腔滑液、支气管洗脱液、细胞裂解液和各种分泌物等。 3.蛋白质芯片的应用 近来在蛋白质的固定、反应和检测等方面的研究进展为蛋白质芯片的走向成熟铺平了道路,许多研究者已经采用蛋白质芯片作为他们研究的工具。目前,蛋白质芯片被研究人员应用到生命研究的各个领域,如利用蛋白芯片发现新的蛋白并且阐明其功能;寻找与疾病有关或直接引发疾病的新蛋白;发现新的药物靶标和肿瘤标记物。 3.1 蛋白质芯片与疾病的诊断 微阵列的ELISAs在疾病的诊断中有广泛的应用前景,可以同时检测生物样本中的多个指标,敏感度高且需要的样本量少,试剂的消耗量少。在聚苯乙烯的96孔板上固定细胞因子抗体,在5~50ul样本中可一次检测9种细胞因子,检测的灵敏度达到1~10pg/ml,目前已有类似的细胞因子抗体芯片出现,一次可以检测50种细胞因子的表达,可以用于观测用药后病人对治疗药物的反应。抗原和抗体的相互作用可以用来发现食物中的变应原,将已知的多种变应原制成芯片,然后用病人的血清和芯片反应,可以及时找到变应原。通过和正常人血清反应芯片的比较,还可以更进一步研究过敏反应的机理,以及为什么不同个体对同种变应原有不同的反应。 3.2 肿瘤标志物的筛选与检测 近几年来,肿瘤的诊断与治疗虽然已经取得了巨大的进步,但是与人们的期望仍有距离,利用蛋白质芯片的高通量优点,可以使肿瘤标记物的发现和确认速度大大加快。Roboz等采用SELDI-TOSMS技术,分析了大肠癌患者与正常对照之间的血清蛋白图谱之间的差异,其中大肠癌患者高表达8.9kD蛋白,而9.3kD的蛋白呈低表达,正常对照组上述两个蛋白的表达情况与患者组正好相反。实验过程中用胰岛素作为内标参照。根据质谱检测结果患者组8.9kD表达量为正常对照组的3倍。实验结果表明8.9kD和9.3kD蛋白可作为检测大肠癌的肿瘤标记物。Rosty等通过对胰腺分泌液的分析发现,67%(10/15)的胰腺癌患者和17%(1/7)的其它胰腺病患者出现16.57kD蛋白的高表达,免疫分析证实为肝癌-肠-胰腺/胰腺炎联合蛋白。该蛋白≥20mg/ml时,患者患胰腺癌的可能性增大。 4 存在的问题和发展前景 蛋白质芯片将为生物化学和分子生物学提供强有力的工具,相对于DNA芯片研究的进展速度,蛋白质芯片的研究进展显得相对滞后,主要有以下问题待解决:(1)寻找材料表面的修饰方法;(2)简化样品制备和标记操作;(3)增加信号检测的灵敏度,如低拷贝蛋白质的检测和难溶蛋白质的检测;(4)高度集成化样品的制备及检测仪器的研制和开发。这些问题不仅为蛋白质芯片技术增加了难度,同时也是蛋白质芯片能否从实验室推向临床应用的关键所在。 随着研究的不断深人和技术的更加完善,如表面化学修饰技术的进步,可以做到在载体上固定多种活性蛋白质;蛋白质工程可获得大量重组高特异性蛋白质用于芯片制作;纳米技术标记的引人可提高芯片检测的灵敏度。蛋白质芯片技术可以对成千上万的蛋白质的活性、功能、相互作用进行分析,并且使检测系统小型化,大大节约了样本和试剂的用量,缩短了检测时间,提高了敏感性,使成本效益比大大降低。蛋白质芯片技术作为一项有着广泛前途的新型技术,一旦投入实际应用,将在21世纪医学中的临床诊断、药物研究、环境检测、食

茶学学科发展报告-茶树种质资源研究进展

茶树种质资源研究进展 一、引言 种质资源是开展茶树种质创新、育种和新产品开发的重要基础,茶叶科技创新和产业可持续发展离不开丰富多样的种质资源。茶树种质资源是茶学学科的重要组成之一。 茶原产中国,在复杂的生态环境条件下,经过长期演化和选择形成了丰富多样的茶树种质资源,包括野生茶树、地方品种、选育品种、品系和遗传材料等。我国高度重视茶树种质资源的收集、保存和保护工作,专门建立了国家种质杭州茶树圃和勐海分圃,作为茶树资源的永久保存基地。近年来,茶树种质资源存量不断增加,资源管理基本实现了信息化,资源鉴定评价逐步从表型深入到分子水平,研究水平不断提高。 二、学科式展现状和进展 (一)发展现状与动态 1. 茶树资源的收集、保存与保护 我国茶树种质资源的收集起始于2 0世纪5 0年代,但有组织、有计划、大规模的收集工作集中在2 0世纪8 0-9 0年代,当时曾对从云南、四川、贵州、广西、广东、湖南、福建和海南等茶叶主产区的野生资源和地方品种等进行了较全面的考察收集[ l ] 。近年来,茶树资源的收集主要靠科研人员的自发需求,但收集手段和方法有了较大改进,如全球卫星定位仪( GP S )、数码照相机、数码摄像机、便携式电脑的应用使资源考察及信息的采

集更加准确、可靠。通过不间断的收集,截至2 0 0 9年年底国家种质杭州茶树圃和勤海分圃已收集保存各类茶组植物资源近3 0 0 0份,其中,约1 0 %为野生资源、6 0 %为地方品种、3 0 %为选育品种和育种材料。此外,在各省市茶叶研究所分散保存的茶树种质资源约有4 0 0 0份(含部分重复 保存的资源)。 茶树资源以迁地保存和保护为主。在保存方式上,除植株形式外,还有室内营养体保存、DNA库等辅助保存形式。中国农业科学院茶叶研究所利用组培技术在室内保存了200 余份野生及濒危茶树资源,利用超低温冷藏 方式保存了600 余份各地茶树资源的DNA 样本。近年来,各级地方政府逐渐开始关注茶 树原生境保护的问题。2005 年,云南省人民政府办公厅下发了《关于 加强古茶树资源保护管理的通知? (云政办发[ 2 0 0 5 J 9 4号) ,从政策上 对野生茶树原生境保护给予了支持。2008 年,福建省启动了茶树品种 资源保护项目,浙江省启动了龙井群体种和妈坑种的原生境保护项目,这些项目的实施对促进地方资源的遗传多样性保护具有重要意义。 2. 茶树资源的鉴定与评价 (1) 茶树种质资源的分类演化。中国是茶树的原产地,野生资源丰富多样。 对这些资源进行分类是开展资源鉴定和编目的基础。在茶树分类学研究中,早期主要以叶、花、果等形态学性状为依据,随着科学技术的不断发展,生物化学分析、染色体核型分析、子包粉显微形态分析和DNA分子标记 技术等逐步得到应用[ 2],为茶组植物种的分类提供了更充分的依据,茶组

蛋白质中二硫键的定位及其质谱分析解析

第20卷第6期2008年6月 化 学进展 PROGRESSINCHEMISTRY V01.20No.6June,2008 蛋白质中二硫键的定位及其质谱分析* 仇晓燕1’2 崔 勐1 (1.中国科学院长春应用化学研究所长春质谱中心 刘志强1 刘淑莹H‘ 长春130022;2.中国科学院研究生院 北京100039) 摘 要 二硫键是一种常见的蛋白质翻译后修饰,对稳定蛋白质的空间结构,保持及调节其生物活性有

着非常重要的作用。因此,确定二硫键在蛋白质中的位置是全面了解含二硫键蛋白化学结构的重要方面。在众多实验方法中,现代质谱技术因其操作简单、快速、灵敏等优点而成为分析二硫键的重要手段。本文介绍了目前主要的定位二硫键的方法以及质谱在二硫键定位分析中的应用与进展。 关键词 二硫键定位质谱串联质谱三羧乙基膦稳定同位素标记 中图分类号:0657.63;Q51 文献标识码:A文章编号:1005.281X(2008)06.0975—09 ProteinDisulfideBondDeterminationandItsAnalysisbyMassSpectrometry Qiu Xiaoyanl'2 CuiMen91Liu劢iqian91LiuShu乒n91‘‘ (1.ChangchunCenterofMassSpectrometry,ChangchunInstituteofAppliedChemistry,ChineseAcademyofSciences, Changchun130022,China;2.GraduateSchooloftheChineseAcademyof Sciences,Beijing100039,China) AbstractDisulfidebonds

生命科学与技术研究进展

1. 什么是系统生物学? 系统生物学是一种典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。它是一种整合型大科学,要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。对于多细胞生物而言,系统生物学就是要实现从基因到细胞、到组织、到个体的各个层次的整合。 系统生物学包括四个方面: 一、系统结构。包括基因,蛋白间关系以及由此得到的基因蛋白网络和生物通路,以及这些相互之间关系所牵涉到的细胞内和细胞外结构的物理特性和机制。 二、系统动力学。可以通过代谢分析,敏感性分析,动力学分析工具比如分叉分析等,以及识别不同行为所内含的机制等分析方法和手段来理解在不同时间点不同条件下系统的行为。 三、系统的控制方法。掌握这些控制细胞处于各种状态的机制,用来模拟系统,能得到治疗疾病的药靶。 四、设计的方法。基于某些设计的原则和模拟方法,可以修正和构造具有所需特性的系统,而不需要盲目地反复实验。 2. 生物芯片技术对于系统生物学的意义? 生物芯片是多领域相揉合的产物,生物芯片技术涉及电子技术、成像光学、材料学、计算机技术、生物技术等。简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。生物芯片技术是系统生物学技术的基本内容。 系统生物学有两个关键技术基础,“组学”数据基础,以及检测和实验技术基础。在检测和实验技术这一方面,生物芯片占有举足轻重的地位。二十世纪末期,生物芯片开始进入大家的视野,它有着传统技术无可比拟的优势:高通量、微型化、自动化。系统生物学需要处理海量的组学数据,如果仅仅依靠传统手段,将举步维艰,借助于芯片技术,将事半功倍。 3. 以某离子通道为例,叙述蛋白结构和功能的测量方法和手段 以BK通道为例,结构测量:首先得到通道的序列,设计引物,通过体外PCR 快速高效的体外扩增该片段,然后连接到合适的载体上导入宿主细胞中进行表达,获得蛋白,通过HPLC进行蛋白分析和分离,将纯化后的蛋白配制成浓溶液,进行晶体生长实验,获得高质量的单晶体后,进行X射线衍射来解析该通道的结构,功能测量:通过量:通过切除部分序列,来测量通道的功能序列,定点突变来确定通道的关键氨基酸。通过特异性药物或毒素与通道的结合相互作用来检测通道的生理活性和功能。 4、有哪些方法可用来确定离子通道生理功能? (1)电压钳技术 膜对某种离子通透性的变化是膜电位和时间的函数。用玻璃微电极插入细胞内,利用电子学技术施加一跨膜电压并把膜电位固定于某一数值,可以测定该膜电位条件下离子电流随时间变化的动态过程。利用药物使其他离子通道失效,即可测定被研究的某种离子通道的功能性参量

蛋白芯片的基本原理及技术研究现状

随着分子生物学芯片技术研究工作的进一步深入开展,NDA芯片技术已经被逐渐应用于对生物样品中的各种已知或未知的核酸序列表达的检测和比较研究。但是,作为生物体细胞中实施化学反应功能成分的蛋白质,其相当部分与活性基因所表达的mRNA之间未能显示出直接的关系,因此使作为高通量基因表达分析平台的cDNA芯片技术的应用过程受到一定的限制。另外,由于蛋白质结构和构象方面的各种微小的化学变化均能引起活性或功能的改变,为了进一步揭示细胞内各种代谢过程与蛋白质之间的关系以及某些疾病发生的分子机理,必须对蛋白质的功能进行更深入的研究。随着DNA芯片技术的不断成熟以及基因研究所取得的令人瞩目的成果,进一步推动了蛋白质功能的研究及其相关技术的发展,蛋白芯片技术也就应运而生。本文拟对蛋白芯片的基本原理、相应技术研究的概况和存在问题进行综述。 1 蛋白芯片技术的基本原理 蛋白芯片技术的基本原理是将各种蛋白质有序地固定于滴定板、滤膜和载玻片等各种载体上成为检测用的芯片,然后,用标记了特定荧光抗菌素体的蛋白质或其他成分与芯片作用,经漂将未能与芯片上的蛋白质互补结合的成分洗去,再利用荧光扫描仪或激光共聚焦扫描技术,测定芯片上各点的荧光强度,通过荧光强度分析蛋白质与蛋白质之间相互作用的关系,由此达到测定各种蛋白质功能的目的。为了实现这个目的,首先必须通过一定的方法将蛋白质固定于合适的体上,同时能够维持蛋白质天然构象,也就是必须防止其变性以维持其原有特定的生物活性。另外,由于生物细胞中蛋白质的多样性和功能的复杂性,开发和建立具有多样品并行处理能力、能够进行快速分析的高通量蛋白芯处技术将有利于简化和加快蛋白质功能研究的进展。 2 蛋白芯片技术的研究现状 在多年的蛋白芯片技术的研究过程中,研究者为了寻找合适的物质作为蛋白的载体进行了不懈的探索。例如日本学者Velev利用含有阳离子表面活性剂(HTAB)脂质体作为载体,通过戊二醛作用使其与一种铁蛋白包裹外壳的成分结合组装制备成为一种纳米水平的装配体,这种装配体可以在适当的pH条件下,使铁蛋白分子进入并固定于包裹外壳内面,形成蛋白质的载体。Adachi等利用某些固体表面或薄膜覆盖上含有电解质的薄膜作为载体,可以将胶体蛋白质颗粒成分转移至薄膜上形成蛋白芯片。Uetz等在分析啤酒酵母基因组序列全长度阅读框架编码各种蛋白质的相互作用的过程,使用不同孔数的平板作为载体,建立了约含有6000个酵母转化株组成的平板蛋白芯片系统,平板上的每一个小孔中含有一个酵母转化株,可以根据其活性功能区开放阅读框架的编码表达生成一种蛋白质,利用这个系统可以用于蛋白质功能的检测和分析。Arenkov等利用聚丙烯酰胺凝胶板作为支持物,将蛋白样品置于凝胶上,然后经过电泳分离,使其成为蛋白的阵列用于进一步的研究。最近,哈佛大学蛋白芯片研究中心Gavin等利用制备DNA芯片的高精密度机械手的针状点样枪头在只有显微镜载玻片一半大小的玻片上,制备了第一张含有样品点数为10800的蛋白芯片。这张芯片用已纯化的蛋白,G按每点为1纳升的点样量点样10799次,另一次用FRB(FK-BR12-rapamycin binding domain of FKBP-rapamycin-associated protein)点样。为了确保不同分子量的点样蛋白质都能够被固定在玻片上,他们首先在玻片表面涂上BSA,然后使用N,N’-二琥珀酰胺碳酸(N,N,-disuccinimidyl carbonate)激活BSA表面的赖氨酸、天冬氨酸和谷氨酸残基成为BSA-NHS玻片,其作用是促进BSA与点样蛋白质的结合而使蛋白质被固定于玻片上。在制备芯片过程中,为了保证被固定在载体上的蛋白质依然保持天然的构象和生物学活性,他们在蛋白质点样的磷酸盐缓冲液中加入40%的甘油,以防止因体的蒸发而造成的蛋白质变性。点样后再经3h的温浴并将零片浸泡于含有小牛血清蛋白(BSA)的缓冲液中,使芯片表面含有一层小牛血清蛋白,用于封闭与其他蛋白质产生非特异性结合的部位及在表面未参加反应的醛基。为了检测芯片的应用,他们用不同荧光抗体分别标记能

相关文档
最新文档