高三物理一轮复习专题讲义:第6.1讲 动量和动量定理

高三物理一轮复习专题讲义:第6.1讲 动量和动量定理
高三物理一轮复习专题讲义:第6.1讲 动量和动量定理

[高考导航]

考点内容要求

全国卷三年考情分析

201720182019

动量、动量定理、

动量守恒定律及其

应用

Ⅰ卷·T14:动量

守恒定律的应

Ⅲ卷·T20:动量

定理的应用

T24:动量守恒定

律、机械能守恒

定律

Ⅰ卷·T14:动量、

动能

Ⅱ卷·T24:牛顿

第二定律、动量

守恒定律

T15:动量定理

Ⅲ卷·T25:动量、

机械能守恒定

Ⅰ卷·T16:动量

定理的应用

T25:v-t图象、

动量守恒定律、

机械能守恒定

律、动能定理

Ⅱ卷·T25:动量

定理、动能定

理、匀变速直线

运动的规律

Ⅲ卷·T25:动量

守恒定律、动能

定理、牛顿第二

定律

弹性碰撞和非弹性

碰撞

实验七:验证动量

守恒定律

说明:只限于一维

第1讲动量和动量定理

知识要点

一、动量

1.定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示。

2.表达式:p=m v。

3.单位:kg·m/s。

4.标矢性:动量是矢量,其方向和速度方向相同。

二、冲量

1.定义:力和力的作用时间的乘积叫做这个力的冲量。

公式:I=Ft。

2.单位:冲量的单位是牛·秒,符号是N·s。

3.方向:冲量是矢量,冲量的方向与力的方向相同。

三、动量定理

1.内容:物体所受合外力的冲量等于物体动量的变化。

2.表达式:Ft=Δp=p′-p。

3.矢量性:动量变化量的方向与合外力的方向相同,可以在某一方向上应用动量定理。

基础诊断

1.(多选)下列关于动量的说法正确的是()

A.质量大的物体,动量一定大

B.质量和速率都相同的物体,动量一定相同

C.一个物体的速率改变,它的动量一定改变

D.一个物体的运动状态改变,它的动量一定改变

解析根据动量的定义,它是质量和速度的乘积,因此它由质量和速度共同决定,故A项错误;又因为动量是矢量,它的方向与速度的方向相同,而质量和速率都相同的物体,其动量大小一定相同,但方向不一定相同,故B项错误;一个物体的速率改变,则它的动量大小就一定改变,故C项正确;物体的运动状态变化,则它的速度就一定发生了变化,它的动量也就发生了变化,故D项正确。

答案CD

2.(多选)恒力F作用在质量为m的物体上,如图1所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t,下列说法正确的是()

图1

A.拉力F对物体的冲量大小为零

B.拉力F对物体的冲量大小为Ft

C.拉力F对物体的冲量大小是Ft cos θ

D.合力对物体的冲量大小为零

解析对冲量的计算一定要分清求的是哪个力的冲量,是某一个力的冲量、是合力的冲量、是分力的冲量还是某一方向上力的冲量。这一个力的冲量与另一个力的冲量无关。B、D项正确。

答案BD

3.质量为m的物体在力F作用下做初速度为v1的匀加速直线运动,经时间t,物体的动量由m v1增到m v2,则()

A.若该物体在2F力作用下经2t,则物体的动量变化量为4m v2-4m v1

B.若该物体在2F力作用下经2t,则物体的动量变化量为4m v2-3m v1

C.在2F力作用下经t,物体的动量变化量为2m v2

D.在2F力作用下经t,物体的动量变化量为2m v2-m v1

解析由动量定理得Ft=m v2-m v1,则2F·2t=4m v2-4m v1,2Ft=2m v2-2m v1,故只有选项A正确。

答案 A

4.(2018·全国Ⅱ卷,15)高空坠物极易对行人造成伤害。若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()

A.10 N

B.102 N

C.103 N

D.104 N

解析根据自由落体运动和动量定理有v2=2gh(h为25层楼的高度,约70 m),Ft=m v,代入数据解得F≈1×103 N,所以C正确。

答案 C

动量和冲量的理解

1.对动量的理解 (1)动量的两性

①瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻或位置而言的。 ②相对性:动量的大小与参考系的选取有关,通常情况是指相对地面的动量。 (2)动量与动能的比较

2.对冲量的理解 (1)冲量的两性

①时间性:冲量不仅由力决定,还由力的作用时间决定,恒力的冲量等于该力与力的作用时间的乘积。

②矢量性:对于方向恒定的力来说,冲量的方向与力的方向一致;对于作用时间内方向变化的力来说,冲量的方向与相应时间内物体动量改变量的方向一致。 (2)作用力和反作用力的冲量:一定等大、反向,但作用力和反作用力做的功之间并无必然联系。 3.冲量的计算

(1)恒力的冲量:直接用定义式I =Ft 计算。 (2)变力的冲量

①方向不变的变力的冲量,若力的大小随时间均匀变化,即力为时间的一次函数,则力F 在某段时间t 内的冲量I =F 1+F 2

2t ,其中F 1、F 2为该段时间内初、末两时刻力的大小。

②作出F -t 图线,图线与t 轴所围的面积即为变力的冲量。如图2所示。

图2

③对于易确定始、末时刻动量的情况,可用动量定理求解,即通过求Δp 间接求出冲量。

【例1】 (2018·全国Ⅰ卷,14)高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。在启动阶段,列车的动能( ) A.与它所经历的时间成正比 B.与它的位移成正比 C.与它的速度成正比

D.与它的动量成正比

解析 列车启动的过程中加速度恒定,由匀变速直线运动的速度与时间关系可知v =at ,且列车的动能为E k =12m v 2,由以上整理得E k =12ma 2t 2

,动能与时间的平方

成正比,动能与速度的平方成正比,A 、C 错误;将s =1

2at 2代入上式得E k =mas ,

则列车的动能与位移成正比,B 正确;由动能与动量的关系式E k =p 2

2m 可知,列车的动能与动量的平方成正比,D 错误。 答案 B

1.(多选)对于一个质量不变的物体,下列说法正确的是( ) A.物体的动量发生变化,其动能一定发生变化 B.物体的动量发生变化,其动能不一定发生变化 C.物体的动能发生变化,其动量一定发生变化 D.物体的动能发生变化,其动量不一定发生变化

解析 物体的动量发生变化,可能是方向改变也可能是大小改变,所以物体的动能不一定发生变化,故选项A 错误,B 正确;物体的动能变化,速度大小一定变化,则动量一定发生变化,故选项C 正确,D 错误。 答案 BC

2.如图3所示,竖直面内有一个固定圆环,MN是它在竖直方向上的直径。两根光滑滑轨MP、QN的端点都在圆周上,MP>QN。将两个完全相同的小滑块a、b 分别从M、Q两点无初速度释放,在它们各自沿MP、QN运动到圆周上的过程中,下列说法中正确的是()

图3

A.合力对两滑块的冲量大小相同

B.重力对a滑块的冲量较大

C.弹力对a滑块的冲量较小

D.两滑块的动量变化大小相同

解析这是“等时圆”,即两滑块同时到达滑轨底端。合力F=mg sin θ(θ为滑轨倾角),F a>F b,因此合力对a滑块的

冲量较大,a滑块的动量变化也大;重力的冲量大小、方向都相同;弹力N=mg cos θ,N a<N b,因此弹力对a滑块的冲量较小,选C。

答案 C

3.质量为0.2 kg的球竖直向下以6 m/s的速度落至水平地面,再以4 m/s的速度反向弹回。取竖直向上为正方向,在小球与地面接触的时间内,关于球的动量变化量Δp和合外力对小球做的功W,下列说法正确的是()

A.Δp=2 kg·m/s W=-2 J

B.Δp=-2 kg·m/s W=2 J

C.Δp=0.4 kg·m/s W=-2 J

D.Δp=-0.4 kg·m/s W=2 J

解析取竖直向上为正方向,则小球与地面碰撞过程中动量的变化量Δp=m v2-m v1=0.2×4 kg·m/s-0.2×(-6) kg·m/s=2 kg·m/s,方向竖直向上。

由动能定理知,合外力做的功W=1

2m v 2

2

1

2m v

2

1

1

2×0.2×4

2 J-

1

2×0.2×6

2 J=-2

J。

答案 A

动量定理的理解及应用

1.动量定理的理解

(1)动量定理不仅适用于恒定的力,也适用于随时间变化的力。变力的情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

(2)动量定理的表达式FΔt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

2.用动量定理解释现象

(1)Δp一定时,F的作用时间越短,力就越大;时间越长,力就越小。

(2)F一定,此时力的作用时间越长,Δp就越大;力的作用时间越短,Δp就越小。分析问题时,要把哪个量不变、哪个量变化搞清楚。

3.用动量定理解题的基本思路

【例2】(2019·全国Ⅰ卷,16)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为()

A.1.6×102 kg

B.1.6×103 kg

C.1.6×105 kg

D.1.6×106 kg

解析根据动量定理有FΔt=Δm v-0,解得Δm

Δt

=F v=1.6×103kg/s,所以选项B

正确。答案 B

1.下列解释中正确的是()

A.跳高时,在落地处垫海绵是为了减小冲量

B.在码头上装橡皮轮胎,是为了减小渡船靠岸过程受到的冲量

C.动量相同的两个物体受相同的制动力作用,质量小的先停下来

D.人从越高的地方跳下,落地时越危险,是因为落地时人受到的冲量越大

解析跳高时,在落地处垫海绵是为了延长作用时间从而减小冲力,不是减小冲量,故选项A错误;在码头上装橡皮轮胎,是为了延长作用时间,从而减小冲力,不是减小冲量,故选项B错误;动量相同的两个物体受相同的制动力作用,根据动量定理Ft=m v,则知运动时间相等,故选项C错误;从越高的地方跳下,落地时速度越大,动量越大,则冲量越大,故选项D正确。

答案 D

2.(多选)如图4所示,两位同学同时在等高处抛出手中的篮球A、B,A以速度v1斜向上抛出,B以速度v2竖直向上抛出,当A到达最高点时恰与B相遇。不计空气阻力,A、B质量相等且均可视为质点,重力加速度为g,以下判断正确的是()

图4

A.相遇时A的速度一定为零

B.相遇时B的速度一定为零

C.A从抛出到最高点的时间为v2 g

D.从抛出到相遇A、B动量的变化量相同

解析相遇时A还具有水平速度,则此时的速度不为零,选项A错误;因A在最高点的竖直速度为零,可知B的速度也一定为零,选项B正确;两球运动的时间

相等,即t=v2

g

,选项C正确;根据Δp=mgt可知从抛出到相遇A、B动量的变化量相同,选项D正确。

答案BCD

3.拍皮球是大家都喜欢的体育活动,既能强身又能健体。已知皮球质量为0.4 kg,为保证皮球与地面碰撞后自然跳起的最大高度均为1.25 m,小明需每次在球到达最高点时拍球,每次拍球作用距离为0.25 m,使球在离手时获得一个竖直向下4 m/s的初速度。若不计空气阻力及球的形变,g取10 m/s2,则每次拍球()

图5

A.手给球的冲量为1.6 kg·m/s

B.手给球的冲量为2.0 kg·m/s

C.人对球做的功为3.2 J

D.人对球做的功为2.2 J

解析人拍球的过程,人手对球的冲量为I,由动量定理:I+mgΔt=m v=0.4×4 kg·m/s=1.6 kg·m/s,则I<1.6 kg·m/s,则手给球的冲量小于1.6 kg·m/s,选项A、

B错误;设人对球做的功为W,由动能定理:W+mgh=1

2m v

2,解得W=12×0.4×42

J-0.4×10×0.25 J=2.2 J,选项D正确,C错误。

答案 D

4.(多选)(2017·全国Ⅲ卷,20)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。F随时间t变化的图线如图6 所示,则()

图6

A.t=1 s时物块的速率为1 m/s

B.t=2 s时物块的动量大小为4 kg·m/s

C.t=3 s时物块的动量大小为5 kg·m/s

D.t=4 s时物块的速度为零

解析由动量定理可得Ft=m v,解得v=Ft

m

。t=1 s时物块的速率为v=Ft

m

=2×1

2

m/s=1 m/s,故选项A正确;t=2 s时物块的动量大小p2=F2t2=2×2 kg·m/s=4 kg·m/s,故选项B正确;t=3 s时物块的动量大小为p3=(2×2-1×1) kg·m/s=3 kg·m/s,故选项C错误;t=4 s 时物块的动量大小为p4=(2×2-1×2) kg·m/s=2 kg·m/s,所以t=4 s时物块的速度为1 m/s,故选项D错误。

答案AB

动量定理与微元法的综合应用

考向流体类问题

流体及其特点通常液体流、气体流等被广义地视为“流体”,特点是质量具有连续性,题目中通常给出密度ρ作为已知条件

分析步骤1

建立“柱体”模型,沿流速v的方向选取一段柱形流体,其

横截面积为S

2

用微元法研究,作用时间Δt内的一段柱形流体的长度Δl=vΔt,对应的质量为Δm=ρV=ρSΔl=ρS vΔt

3建立方程,应用动量定理研究这段柱形流体

【例3】[2016·全国Ⅰ卷,35(2)]某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中。为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。忽略空气阻力。已知水的密度为ρ,重力加速度大小为g。求

(ⅰ)喷泉单位时间内喷出的水的质量;

(ⅱ)玩具在空中悬停时,其底面相对于喷口的高度。

解析(ⅰ)在刚喷出一段很短的Δt时间内,可认为喷出的水柱保持速度v0不变。

该时间内,喷出水柱高度Δl =v 0Δt ① 喷出水柱质量Δm =ρΔV ②

其中ΔV 为水柱体积,满足ΔV =ΔlS ③

由①②③可得:喷泉单位时间内喷出的水的质量为 Δm

Δt =ρv 0S 。

(ⅱ)设玩具底面相对于喷口的高度为h

由玩具受力平衡得F 冲=Mg ④ 其中,F 冲为水柱对玩具底部的作用力 由牛顿第三定律知F 压=F 冲⑤

其中,F 压为玩具底部对水柱的作用力,v ′为水柱到达玩具底部时的速度

由运动学公式得v ′2-v 2

0=-2gh ⑥

在很短Δt 时间内,冲击玩具水柱的质量为Δm Δm =ρv 0S Δt ⑦

由题意可知,在竖直方向上,对该部分水柱应用动量定理得 -(F 压+Δmg )Δt =-Δm v ′⑧

由于Δt 很小,Δmg 也很小,可以忽略,⑧式变为 F 压Δt =Δm v ′⑨

由④⑤⑥⑦⑨可得h =v 20

2g -M 2g 2ρ2v 20

S 2。

答案 (ⅰ)ρv 0S (ⅱ)v 20

2g -M 2g 2ρ2v 20S 2

考向 微粒类问题

微粒及其特点

通常电子流、光子流、尘埃等被广义地视为“微粒”,质量具有独立性,通常给出单位体积内粒子数n

分析步骤

1

建立“柱体”模型,沿运动的方向选取一段微元,柱体的横截面积为S

2 用微元法研究,作用时间Δt 内一段柱形流体的长度为Δl ,对应的体积为ΔV =S v 0Δt ,则微元内的粒子数N =n v 0S Δt 3

先应用动量定理研究单个粒子,建立方程,再乘N 计算

【例4】 正方体密闭容器中有大量运动粒子,每个粒子的质量均为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略,其速率均为v ,且与器壁各面碰撞的机会均等,与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。

解析 一个粒子每与器壁碰撞一次给器壁的冲量 ΔI =2m v

如图所示,以器壁上面积为S 的部分为底、v Δt 为高构成柱体,由题设可知,其内有1

6的粒子在Δt 时间内与器壁上面积为S 的部分发生碰撞,碰壁粒子总数

N =1

6n ·S v Δt

Δt 时间内粒子给器壁的冲量 I =N ·ΔI =1

3nSm v 2Δt

器壁上面积为S 的部分受到粒子的压力 F =I Δt

则器壁单位面积所受粒子的压力f =F S =1

3nm v 2。

答案 f =1

3nm v 2

1.水力采煤是利用高速水流冲击煤层而进行的。煤层受到3.6×106 N/m 2的压强冲击即可破碎,若水流沿水平方向冲击煤层,不考虑水的反向溅射作用,则冲击煤层的水流速度至少应为(水的密度为1×103 kg/m 3)( ) A.30 m/s B.40 m/s C.45 m/s

D.60 m/s

解析 设溅落在煤层表面的某水柱微元的质量为Δm ,由动量定理得F ·Δt =Δm ·v ,而Δm =ρ·S Δl ,Δl =v Δt ,联立可得F S =ρv 2,则速度v =F S ·1

ρ=

p

ρ=60 m/s ,选

项D 正确。 答案 D

2.用豆粒模拟气体分子,可以模拟气体压强产生的原理。如图7所示,从距秤盘80 cm 高处把1 000粒的豆粒连续均匀地倒在秤盘上,持续作用时间为1 s ,豆粒弹起时竖直方向的速度大小变为碰前的一半,方向相反。若每个豆粒只与秤盘碰撞一次,且碰撞时间极短(在豆粒与秤盘碰撞极短时间内,碰撞力远大于豆粒受到的重力),已知1 000粒的豆粒的总质量为100 g 。则在碰撞过程中秤盘受到的压力大小约为( )

图7

A.0.2 N

B.0.6 N

C.1.0 N

D.1.6 N

解析 豆粒从80 cm 高处下落到秤盘上时的速度为v 1, v 21=2gh ,

则v1=2gh=2×10×0.8 m/s=4 m/s

设竖直向上为正方向,根据动量定理Ft=m v2-m v1

则F=m v2-m v1

t

0.1×2-0.1×(-4)

1N=0.6 N,故B正确,A、C、D错误。

答案 B

课时作业

(时间:40分钟)

基础巩固练

1.(多选)(2019·北京西城区模拟)关于动量和冲量,下列说法正确的是()

A.物体所受合外力的冲量的方向与物体动量的方向相同

B.物体所受合外力的冲量等于物体动量的变化

C.物体所受合外力的冲量等于物体的动量

D.物体动量的方向与物体的运动方向相同

解析物体所受合外力的冲量的方向与合外力的方向相同,与物体动量变化量的方向相同,与动量的方向不一定相同,故选项A错误;由动量定理可知,物体所受合外力的冲量等于物体动量的变化,故选项B正确,C错误;物体的动量p=m v,故物体动量的方向与物体的运动方向相同,选项D正确。

答案BD

2.如图1所示,运动员向球踢了一脚,踢球时的力F=100 N,球在地面上滚动了10 s后停下来,则运动员对球的冲量为()

图1

A.1 000 N·s

B.500 N·s

C.0

D.无法确定

解析滚动了10 s是地面摩擦力对足球的作用时间,不是踢球时的力的作用时间,由于不能确定运动员对球的作用时间,所以无法确定运动员对球的冲量,选项D 正确。

答案 D

3.(多选)(2017·全国卷Ⅲ,20)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。F随时间t变化的图线如图2 所示,则()

图2

A.t=1 s时物块的速率为1 m/s

B.t=2 s时物块的动量大小为4 kg·m/s

C.t=3 s时物块的动量大小为5 kg·m/s

D.t=4 s时物块的速度为零

解析由动量定理可得Ft=m v,解得v=Ft

m

。t=1 s时物块的速率为v=Ft

m

=2×1

2

m/s=1 m/s,故选项A正确;t=2 s时物块的动量大小p2=F2t2=2×2 kg·m/s=4 kg·m/s,故选项B正确;t=3 s时物块的动量大小为p3=(2×2-1×1) kg·m/s=3 kg·m/s,故选项C错误;t=4 s 时物块的动量大小为p4=(2×2-1×2) kg·m/s=2 kg·m/s,所以t=4 s时物块的速度为1 m/s,故选项D错误。

答案AB

4.2018年3月22日,一架中国国际航空CA103客机,中午从天津飞抵香港途中遭遇鸟击,飞机头部被撞穿一个1米乘1米的大洞,雷达罩被砸穿。所幸客机于下午1点24分安全着陆,机上无人受伤。设客机撞鸟时飞行速度大约为1 080 km/h,小鸟质量约为0.5 kg,撞机时间约为0.01 s,估算飞机受到的撞击力为()

图3

A.540 N

B.54 000 N

C.15 000 N

D.1.50 N

解析本题为估算题,可以认为撞击前鸟的速度为零,撞击后鸟与飞机的速度相等,飞机速度为v=1 080 km/h=300 m/s,撞击过程对鸟,由动量定理得Ft=m v

-0,解得F=m v

t =0.5×300

0.01N=1.5×10

4 N,则C正确,A、B、D错误。

答案 C

5.如图4所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知运动员的质量m=70 kg,初速度v0=5 m/s,若经过1 s时,速度为v=5 5 m/s,则在此过程中,运动员动量的变化量为(g=10 m/s2,不计空气阻力)()

图4

A.700 kg·m/s

B.350 5 kg·m/s

C.350(5-1) kg·m/s

D.350(5+1) kg·m/s

解析根据动量定理得Δp=F合t,即Δp=mgt=70×10×1 kg·m/s=700 kg·m/s,故选项A正确。

答案 A

6.(2020·佛山模拟)如图5所示,一轻质弹簧固定在墙上,一个质量为m的木块以速度v0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。设相互作用的过程中弹簧始终在弹性限度范围内,那么在整个相互作用的过程中弹簧对木块冲量I 的大小为()

图5

A.I=0

B.I=m v0

C.I=2m v0

D.I=3m v0

解析设木块离开弹簧时的速度为v,根据机械能守恒定律得:1

2m v

2=12m v20,所

以v=v0,设向右的速度方向为正方向,根据动量定理得I=m v-(-m v0)=2m v0,故选项C正确。

答案 C

7.(多选)在港珠澳大桥施工过程中,我国科学家和工程技术人员自主创新了海底沉管技术。海底沉管要克服复杂多变的洋流,情境复杂,其简化原理图如图6所示,吊车处于静止状态,吊绳相对于吊车以速度v匀速向下放管子,管子的质量为m。假设图中P为管子开始被吊起的位置,Q为管子刚接触水面的位置,R为管子刚好完全进入水中的位置,S为管子刚好到达水底的位置,假定管子入水前后速度不变,则下列说法正确的是()

图6

A.管子从P位置到R位置,吊绳拉力等于管子重力

B.管子从Q位置到S位置,吊绳拉力小于管子重力,且拉力不变

C.管子从Q位置到R位置,吊绳拉力做功的功率在逐渐减小

D.管子从Q位置到最终停在S位置,合力对管子的冲量大小为m v

解析根据共点力的平衡条件可知,管子从P位置到Q位置,吊绳拉力等于管子重力,管子从Q位置到R位置,由于管子排开水的体积逐渐增大,管子所受的浮力逐渐增大,故吊绳拉力逐渐减小,又速度大小不变,故拉力做功的功率P=F v 逐渐减小,A错误,C正确;管子从Q位置到S位置,吊绳拉力小于管子重力,管子从Q位置到R位置,吊绳拉力逐渐减小,管子从R位置到S位置,吊绳拉力

不变,B错误;管子从Q位置到最终停在S位置,设向下的速度方向为正方向,根据动量定理可知,合力的冲量等于管子动量的变化量-m v,故合力对管子的冲量大小为m v,D正确。

答案CD

8.如图7所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,底端与竖直墙壁接触。现打开右端阀门,气体向外喷出,设喷口的面积为S,气体的密度为ρ,气体向外喷出的速度为v,则气体刚喷出时钢瓶底端对竖直墙面的作用力大小是()

图7

A.ρv S

B.ρv2

S C.

1

2ρv

2S D.ρv2S

解析Δt时间内贮气瓶喷出气体的质量Δm=ρS v·Δt,对于贮气瓶、瓶内气体及喷出的气体所组成的系统,由动量定理得F·Δt=Δm v-0,解得F=ρv2S,选项D 正确。

答案 D

9.质量为1 kg的物体做直线运动,其速度—时间图象如图8所示。则物体在前10 s内和后10 s内所受外力的冲量分别是()

图8

A.10 N·s,10 N·s

B.10 N·s,-10 N·s

C.0,10 N·s

D.0,-10 N·s

解析由图象可知,在前10 s内初、末状态的动量相同,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内末状态的动量p3=-5 kg·m/s,由动量定理得I2=p3-p2=-10 N·s,故选项D正确。

答案 D

综合提能练

10.(2019·四川省绵阳市第二次诊断)在水平地面上,两个具有相同初动量而质量不

同的物体,在大小相等的阻力作用下最后停下来。则质量大的物体()

A.滑行的距离小

B.滑行的时间长

C.滑行过程中的加速度大

D.滑行过程中的动量变化快

解析根据p=m v,初动量相同,质量大的物体速度小;根据动能定理可知-fL =0-E k=-p2

,因两物体受到的阻力大小相等,则质量大的物体滑行的距离小,2m

故A正确;根据动量定理,-ft=0-p,因动量相同,故滑行时间相同,故B错误;因两物体受到的阻力相同,由牛顿第二定律可知,质量大的加速度小,故C 错误;因两物体均停止,所以滑行过程中动量变化量相同,因滑行时间相同,故动量变化快慢相同,故D错误。

答案 A

11.(多选)(2019·泉州模拟)如图9所示,质量为m的小球从距离地面高H的A点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零。不计空气阻力,重力加速度为g。关于小球下落的整个过程,下列说法正确的有()

图9

A.小球的机械能减小了mg(H+h)

B.小球克服阻力做的功为mgh

C.小球所受阻力的冲量大于m2gH

D.小球动量的改变量等于所受阻力的冲量

解析小球在整个过程中,动能变化量为零,重力势能减小了mg(H+h),则小球的机械能减小了mg(H+h),故A正确;对小球下落的全过程运用动能定理得mg(H +h)-W f=0,则小球克服阻力做功W f=mg(H+h),故B错误;小球落到地面的速度v=2gH,对进入泥潭的过程运用动量定理得I G-I F=0-m2gH,得I F=I G +m2gH,知阻力的冲量大于m2gH,故C正确;对全过程分析,运用动量定理知,动量的变化量等于重力的冲量和阻力冲量的矢量和,故D错误。

答案AC

12.(多选)一质量为m的运动员托着质量为M的重物从下蹲状态(图10甲)缓慢运动到站立状态(图乙),该过程重物和人的肩部相对位置不变,运动员保持乙状态站立Δt时间后再将重物缓慢向上举,至双臂伸直(图丙)。甲到乙、乙到丙过程重物上升高度分别为h1、h2,经历的时间分别为t1、t2,(重力加速度为g)则()

图10

A.地面对运动员的冲量为(M+m)g(t1+t2+Δt),地面对运动员做的功为0

B.地面对运动员的冲量为(M+m)g(t1+t2),地面对运动员做的功为(M+m)g(h1+h2)

(完整版)高三物理动量训练试题

2018年11月18日xx 学校高中物理试卷 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.(10分) 蹦床是运动员在一张绷紧的弹性网上蹦跳,翻滚并做各种空中动作的运动项目.一名质量为60 kg 的运动员,从高处自由下落,着网时的速度v 1=8m/s,然后沿竖直方向蹦回,离开网时的速度v 2=10 m/s.已知运动员与网接触的时间为1.2s,g 取10m/s 2 .则在这段时间内网对运动员的平均作用力大小为( ) A.100N B.700N C.900N D.1500N 2.(10分) 如图所示, 1F 、2F 等大反向,同时作用在静止于光滑水平面上的A 、B 两物体上,已知两物体质量关系A B M M >,经过相等时间撤去两力,以后两物体相碰且粘为一体,这时A 、B 将( ) A.停止运动 B.向右运动 C.向左运动 D.仍运动但方向不能确定 3.(10分) 质量为m 的运动员从下蹲状态竖直向上起跳,经过时间t ,身体仲直并刚好离开地面,离开地面时速度为0v .在时间t 内( ) A.地面对他的平均作用力为mg B.地面对他的平均作用力为 mv t C.地面对他的平均作用力为v m g t ?? - ??? D.地面对他的平均作用力为v m g t ?? + ??? 4.(10分) 使用高压水枪作为切割机床的切刀具有独特优势,得到广泛应用,如图所示,若 水柱截面为S,水流以速度v 垂直射到被切割的钢板上,之后水速减为零,已知水的密度为ρ,则水对钢板的冲力力为( ) A.ρSV B.ρSV 2 C.0.5ρSV 2 D.0.5ρSV 5.(10分) 如图所示,光滑圆槽质量为M,半径为R,静止在光滑水平面上,其表面有一小球m 竖直吊在恰好位于圆槽的边缘处,如将悬线烧断,小球滑动到另一边最高点的过程中,下列说法正确( )

高中物理专题汇编物理动量守恒定律(一)及解析

高中物理专题汇编物理动量守恒定律(一)及解析 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

动量动量定理动量守恒定律专题

动量定理和动量守恒定律的应用 1. A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则[ ] A、经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同 B、A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下 C、三个小球运动过程的动量变化率大小相等,方向相同 D、三个小球从抛出到落地过程中A球所受的冲量最大 2. 某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了0.5m.在着地过程中地面对他双脚的平均作用力估计为[ ] A、自身所受重力的2倍 B、自身所受重力的5倍 C、自身所受重力的8倍 D、自身所受重力的10倍 3. 一个质点受到合外力F作用,若作用前后的动量分别为p和p’,动量的变化为△p,速度的变化为△v,则 A、p=-p’是不可能的 B、△p垂直于p是可能的 C、△P垂直于△v是可能的 D、△P=O是不可能的。 4. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 5. 质量为m的木块下面用细线系一质量为M的铁块,一起浸没 在水中从静止开始以加速度a匀加速下沉(如图),经时间t1s后细 线断裂,又经t2s后,木块停止下沉.试求铁块在木块停上下沉 瞬间的速度.

高中物理动量守恒专题训练

1.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向 射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统, 则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中() A. 动量守恒,机械能守恒 B. 动量守恒,机械能不守恒 C. 动量不守恒,机械能不守恒 D. 动量不守恒,机械能守恒 2.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为() A. mv/M,向前 B. mv/M,向后 C. mv/(m M),向前 D. 0 3.质量为m、速度为v的A球与质量为3m的静止B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度大小可能是( ). A. 0.6v B. 0.4v C. 0.3v D. v 4.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg·m/s,B球的动量是6kg·m/s,A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能为 A. p A=0,p B=l4kg·m/s B. p A=4kg·m/s,p B=10kg·m/s C. p A=6kg·m/s,p B=8kg·m/s D. p A=7kg·m/s,p B=8kg·m/s 5.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车.现有一质量也为m的小 球以v0的水平速度沿切线水平的槽口向小车滑去,不计一切摩擦,则() A. 在相互作用的过程中,小车和小球组成的系统总动量守恒 B. 小球离车后,可能做竖直上抛运动 C. 小球离车后,可能做自由落体运动 D. 小球离车后,小车的速度有可能大于v0 6.如图甲所示,光滑水平面上放着长木板B,质量为m=2kg的木块A以速度v0=2m/s滑上原来静止的长木板B的上表面,由于A、B之间存在有摩擦,之后,A、B的速度随时间变化情况如乙图所示,重力加速度g=10m/s2。则下列说法正确的是() A. A、B之间动摩擦因数为0.1 B. 长木板的质量M=2kg C. 长木板长度至少为2m D. A、B组成系统损失机械能为4J 7.长为L、质量为M的木块在粗糙的水平面上处于静止状态,有 一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出。设子弹射入木块过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,(其中M=3m)求: (1)木块与水平面间的动摩擦因数μ; (2)子弹受到的阻力大小f。(结果用m ,v0,L表示) 8.如图所示,A、B两点分别为四分之一光滑圆弧轨道的最高点和最低点,O为圆心,OA连线水平,OB连线竖直,圆弧轨道半径R=1.8m,圆弧轨道与水平地面BC平滑连接。质量m1=1kg的物体P由A点无初速度下滑后,与静止在B点的质量m2=2kg的物体Q发生弹性碰撞。已知P、Q两物体与水平地面间的动摩擦因数均为0.4,P、Q两物体均可视为质点,当地重力加速度g=10m/s2。求P、Q两物体都停止运动时二者之间的距离。

(物理)物理动量守恒定律专项习题及答案解析及解析

(物理)物理动量守恒定律专项习题及答案解析及解析 一、高考物理精讲专题动量守恒定律 1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的 1 2 反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2 10m/s g =。求: (1)碰撞后瞬间,小球受到的拉力是多大? (2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】 解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理: 22 1111011=22 m gL m v m v μ-- 解之可得:1=4m/s v 因为1v v <,说明假设合理 滑块与小球碰撞,由动量守恒定律:21111221 =+2 m v m v m v - 解之得:2=2m/s v 碰后,对小球,根据牛顿第二定律:2 22 2m v F m g l -= 小球受到的拉力:42N F = (2)设滑块与小球碰撞前的运动时间为1t ,则()0111 2 L v v t =+ 解之得:11s t = 在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ?=-= 设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ??-=-? ???

物理动量定理专项及解析

物理动量定理专项及解析 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

高中物理动量大题(含答案)

高中物理动量大题与解析1.(2017?平顶山模拟)如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b 两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求: (1)物块a与b碰后的速度大小; (2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.解:(1)对物块a,由动能定理得:,代入数据解得a与b碰前速度:v1=2m/s; ^ a、b 碰撞过程系统动量守恒,以a的初速度方向为正方向, 由动量守恒定律得:mv1=2mv2,代入数据解得:v2=1m/s; (2)当弹簧恢复到原长时两物块分离,a以v2=1m/s在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:mv2=(M+m)v3,代入数据解得:v3=s, 对小车,由动能定理得:, 代入数据解得,同速时车B端距挡板的距离:=; (3)由能量守恒得:, 解得滑块a与车相对静止时与O点距离:; ) 答:(1))物块a与b碰后的速度大小为1m/s; (2)当物块a相对小车静止时小车右端B到挡板的距离为 (3)当物块a相对小车静止时在小车上的位置到O点的距离为.

2.(2017?肇庆二模)如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V0滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求: (1)木板B上表面的动摩擦因素μ; (2)圆弧槽C的半径R ; (3)当A滑离C时,C的速度. > 解:(1)当A在B上滑动时,A与BC整体发生作用,规定向左为正方向,由于水平面光滑,A与BC组成的系统动量守恒,有:mv0=m×v0+2mv1 得:v 1=v0 由能量守恒得知系统动能的减小量等于滑动过程中产生的内能,有: Q=μmgL=m﹣m﹣×2m 得:μ= (2)当A滑上C,B与C分离,A 与C发生作用,设到达最高点时速度相等为V2,规定向左为正方向,由于水平面光滑,A与C 组成的系统动量守恒,有: m×v0+mv1=(m+m)V2, ^ 得:V 2= A与C组成的系统机械能守恒,有: m+m=×(2m)+mgR 得:R= (3)当A滑下C时,设A的速度为V A,C的速度为V C,规定向

高考物理动量守恒定律练习题

高考物理动量守恒定律练习题 一、高考物理精讲专题动量守恒定律 1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大 (m A+m C)v3=(m A+m B+m C)v4 得E p=9 J 考点:考查了动量守恒定律,机械能守恒定律的应用 【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题. 2.如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩擦因数为μ,求: (1)P1、P2刚碰完时的共同速度v1和P的最终速度v2; (2)此过程中弹簧最大压缩量x和相应的弹性势能E p。

高考物理专题汇编物理动量守恒定律(一)

高考物理专题汇编物理动量守恒定律(一) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度

(物理)物理动量定理专项含解析

(物理)物理动量定理专项含解析 一、高考物理精讲专题动量定理 1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。现将细绳拉至与水平方向成30?,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。若忽略空气阻力,重力加速度为g 。 (1)求细绳的最大承受力; (2)求从小球释放到最低点的过程中,细绳对小球的冲量大小; (3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。请通过计算,说明你的观点。 【答案】(1)F =2mg ;(2)()2 2F I mgt m gL =+;(3)当2 H L = 时小球抛的最远 【解析】 【分析】 【详解】 (1)小球从释放到最低点的过程中,由动能定理得 2 01sin 302 mgL mv ?= 小球在最低点时,由牛顿第二定律和向心力公式得 20 mv F mg L -= 解得: F =2mg (2)小球从释放到最低点的过程中,重力的冲量 I G =mgt 动量变化量 0p mv ?= 由三角形定则得,绳对小球的冲量 () 2 2F I mgt m gL = +

(3)平抛的水平位移0x v t =,竖直位移 212 H L gt -= 解得 2()x L H L =- 当2 H L = 时小球抛的最远 2.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。已知运动员与网接触的时间为1.2s ,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。(g 取10m/s 2) 【答案】1.5×103N ;方向向上 【解析】 【详解】 设运动员从h 1处下落,刚触网的速度为 1128m /s v gh == 运动员反弹到达高度h 2,,网时速度为 22210m /s v gh == 在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有 ()21()F mg t mv mv -=-- 得 F =1.5×103N 方向向上 3.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。求: ①A 与B 撞击结束时的速度大小v ; ②在整个过程中,弹簧对A 、B 系统的冲量大小I 。 【答案】①3m/s ; ②12N ?s 【解析】 【详解】 ①A 、B 碰撞过程系统动量守恒,以向左为正方向

高三物理能量和动量经典总结知识点

运用动量和能量观点解题的思路 河南省新县高级中学吴国富 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个 重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下 几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应 作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时 这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过 程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原 则是: 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量

高三物理碰撞与动量守恒

《碰撞与动量守恒》复习课 一、教学目的 1、复习巩固动量定理 2、复习巩固应用动量守恒定律解答相关问题的基本思路和方法 3、掌握处理相对滑动问题的基本思路和方法 二、教学重点 1、 本节知识结构的建立 2、 物理情景分析和物理规律的选用 三、教学难点 物理情景分析和物理规律的选用 四、教学过程 本章知识结构 〖引导学生回顾本章内容,建立相关知识网络(见下表)〗 典型举例 问题一:动量定理的应用 例1:质量为m 的钢珠从高出沙坑表面H 米处由静止自由下落,不考虑空气阻力,掉入沙坑后停止,如图所示,已知钢珠在沙坑中受到沙的平均阻力是f ,则钢珠在沙内运动时间为多少? 分析:此题给学生后,先要引导学生分清两个运动过程:一是在空气中的自由落体运动,二是在沙坑中的减速运动。学生可能会想到应用牛顿运动定律和运动学公式进行分段求解,此时不急于否定学生的想法,应该给予肯定。在此基础上,可以引导学生应用全过程动量定理来答题。然后学生自己思考讨论,动手作答,老师给出答案。 设钢珠在空中下落时间为t 1,在沙坑中运动时间为t 2,则: 在空中下落,有H= 2121gt ,得t 1= g H 2, 对全过程有:mg(t 1 +t 2)-f t 2=0-0 得: mg f gH m t -= 22

巩固:蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回

到离水平网面5.0m 高处。已知运动员与网接触的时间为1.2s 。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s 2) 〖学生自练,老师巡回辅导,给出答案N 3 105.1?,学生自评〗 例2:一根弹簧上端固定,下端系着质量为m 的物体A ,物体A 静止时的位置为P 处,再用细绳将质量也为m 的物体B 挂在物体A 的下面,平衡后将细绳剪断,如果物体A 回到P 点处时的速率为V ,此时物体B 的下落速度大小为u ,不计弹簧的质量和空气阻力,则这段时间里弹簧的弹力对物体A 的冲量大小为多少? 分析:引导学生分析,绳子剪断后,B 加速下降,A 加速上升,当A 回到P 点时,A 的速度达到最大值。尤其要强调的是本题中所求的是弹簧的弹力对物体A 的冲量,所以要分析清楚A 上升过程中 A 的受力情况。 解:取向上方向为正, 对B :-mgt=-mu ○ 1 对A :I 弹-mgt=mv ○ 2 两式联立得I 弹=m (v +u ) 问题二:动量守恒定律的应用 例3:质量为 M 的气球上有一质量为 m 的猴子,气球和猴子静止在离地高为 h 的空中。从气球上放下一架不计质量的软梯,为使猴子沿软梯安全滑至地面,则软梯至少应为多长? 分析:此题为前面习题课中出现过的人船模型,注意引导学生分析物理情景,合理选择物理规律。 设下降过程中,气球上升高度为H ,由题意知猴子下落高度为h , 取猴子和气球为系统,系统所受合外力为零,所以在竖直方向动量守恒,由动量守恒定律得:M ·H=m ·h ,解得M mh H = 所以软梯长度至少为M h m M H h L )(+=+= 例4:一质量为M 的木块放在光滑的水平桌面上处于静止状态,一颗质量为m 的子弹以速度v 0沿水平方向击中木块,并留在其中与木块共同运动,则子弹对木块的冲量大小是: A 、mv 0 ; B 、m M mMv +0 ; C 、mv 0-m M mv +0 ;D 、mv 0-m M v m +02 分析:题中要求子弹对木块的冲量大小,可以利用动量定理求解,即只需求出木块获得 的动量大小即可。 对子弹和木块所组成的系统,满足动量守恒条件,根据动量守恒定律得: mv 0=(M+m )v 解得:m M mv v += ,由动量定理知子弹对木块的冲量大小为 m M Mmv Mv I += =0

高中物理动量守恒定律试题经典

高中物理动量守恒定律试题经典 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求: (1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2 014 mv ;(2) 0mv 【解析】 【详解】 解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以 2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速 度相等,有:2 12 v v = 而第一次碰撞中系统动量守恒有:01222mv mv mv =+

由以上两式可得:0 12 v v = ,20 v v = 所以第一次碰撞中的机械能损失为:2 2 22012011 11222 2 24 E m v m v mv mv ?=--=g g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-= 3.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒:

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练 1.(19分)如图所示,光滑水平面上有一质 量M=4.0kg 的带有圆弧轨道的平板车,车的上表面 是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧 连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。现将一质量m=1.0kg 的 小物块(可视为质点)从平板车的右端以水平向左 的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。小物块恰能到达圆弧轨 道的最高点A 。取g=10m/2,求: (1)小物块滑上平板车的初速度v 0的大小。 (2)小物块与车最终相对静止时,它距O ′点的距离。 (3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大? 2.(19分)质量m A = 3.0kg .长度L =0.70m .电量q =+ 4.0×10-5C 的导体板A 在足够大的 绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105 N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于 其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求: (1)刚施加匀强电场时,物块B 的加速度的大小? (2)导体板A 刚离开挡板时,A 的速度大小? (3)B 能否离开A ,若能,求B 刚离开A 时,B 的 速度大小;若不能,求B 距A 左端的最大距离。

高三物理动量守恒定律教案

高三物理动量守恒定律教案 1、知识与技能:掌握运用动量守恒定律的一般步骤。 2、过程与方法:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。 3、情感、态度与价值观:学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。 (一)引入新课 动量守恒定律的内容是什么?分析动量守恒定律成立条件有哪些?(①F合=0(严格条件)②F内远大于F外(近似条件,③某方向上合力为0,在这个方向上成立。) (二)进行新课 1、动量守恒定律与牛顿运动定律 用牛顿定律自己推导出动量守恒定律的表达式。 (1)推导过程:

根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是: 根据牛顿第三定律,F1、F2等大反响,即 F1= - F2 所以: 碰撞时两球间的作用时间极短,用表示,则有: 代入并得 这就是动量守恒定律的表达式。 (2)动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年

人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。 2、应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象 在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。 (2)要对各阶段所选系统内的物体进行受力分析 弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。 (3)明确所研究的相互作用过程,确定过程的始、末状态

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到 Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为2 1v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证 明A 、B 的最终速度分别为:12 1121212112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 Ⅰ Ⅱ

⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 1121v m m m v v +='='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 21212122121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。 速度v 1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H 和物块的最终速度v 。 解:系统水平方向动量守恒,全过程机械能也守恒。 在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1 由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()g m M Mv H += 221 全过程系统水平动量守恒,机械能守恒,得1 2v m M m v += 本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。 2.子弹打木块类问题 子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。 例2. 设质量为m 的子弹以初速度v 0射向静止在光滑水 平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 解: 子弹和木块最后共同运动,相当于完全非弹性碰撞。

动量定理练习题

【典型例题】 1.关于冲量、动量与动量变化的下述说法中正确的是( ) A .物体的动量等于物体所受的冲量 B .物体所受外力的冲量大小等于物体动量的变化大小 C .物体所受外力的冲量方向与物体动量的变化方向相同 D .物体的动量变化方向与物体的动量方向相同 2.A 、B 两个物体静止在光滑水平面上,当分别受到大小相等的水平力作用,经相等时间,则正确的是( ) A .A 、 B 所受的冲量相同 B .A 、B 的动量变化相同 C .A 、B 的末动量相同 D .A 、B 的末动量大小相同 3.在光滑的水平面上, 两个质量均为m 的完全相同的滑块以大小均为P 的动量相向运动, 发生正碰, 碰后系统的总动能不可能是( ) A .0 B . p 2/m C . p 2/2m D .2p 2/m 4.2005年7月26日,美国“发现号”航天飞机从肯尼迪航天中心发射升空,飞行中一只飞鸟撞上了航天飞机的外挂油箱,幸好当时速度不大,航天飞机有惊无险.假设某航天器的总质量为10 t ,以8 km/s 的速度高速运行时迎面撞上一 只速度为10 m/s 、质量为5 kg 的大鸟,碰撞时间为1.0×10-5 s ,则撞击过程中的平均作用力约为( ) A.4×109 N B .8×109 N C.8×1012 N D.5×106 N 5.在光滑的水平面的同一直线上,自左向右地依次排列质量均为m 的一系列小球,另一质量为m 的小球A 以水平向右的速度v 运动,依次与上述小球相碰,碰后即粘合在一起,碰撞n 次后,剩余的总动能为原来的1/8,则n 为( ) A .5 B .6 C .7 D .8 6.如图所示,质量为m 的小车静止于光滑水平面上,车上有一光滑的弧形轨道,另一质量为m 的小球以水平初速沿轨道的右端的切线方向进入轨道,则当小球再次从轨道的右端离开轨道后,将作( ) A .向左的平抛运动; B .向右的平抛运动; C .自由落体运动; D .无法确定. 7.质量M =100 kg 的小船静止在水面上,船首站着质量m 甲=40 kg 的游泳者甲,船尾站着质量m 乙=60 kg 的游泳者乙,船首指向左方,若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s 的速率跃入水中,则( ) A .小船向左运动,速率为1 m/s B .小船向左运动,速率为0.6 m/s C .小船向右运动,速率大于1 m/s D .小船仍静止 8.如图所示,两个质量都为M 的木块A 、B 用轻质弹簧相连放在光滑的水平地面上,一颗质量为m 的子弹以速度v 射向A 块并嵌在其中,求弹簧被压缩后的最大弹性势能。 【针对训练】 1.A 、B 两球质量相等,A 球竖直上抛,B 球平抛,两球在运动中空气阻力不计,则下述说法中正确的是( ) A .相同时间内,动量的变化大小相等,方向相同 B .相同时间内,动量的变化大小相等,方向不同 C .动量的变化率大小相等,方向相同 D .动量的变化率大小相等,方向不同 2.在水平地面上有一木块,质量为m ,它与地面间的滑动摩擦系数为μ。物体在水平恒力F 的作用下由静止开始运动,经过时间t 后撤去力F 物体又前进了时间2t 才停下来。这个力F 的大小为( ) A .μmg B .2μmg C .3μmg D .4μmg 3.甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s ,p 乙=7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则关于甲球动量的大小和方向判断正确的是( ) A .p 甲′=2kg ·m/s ,方向与原来方向相反 B .p 甲′=2kg ·m/s ,方向与原来方向相同 C .p 甲′=4 kg ·m/s ,方向与原来方向相反 D .p 甲′=4 kg ·m/s ,方向与原来方向相同 4.篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球的动量变化率 C .减小球的动量变化量 D .减小球的动能变化量

相关文档
最新文档