IGCC整体煤气化联合循环技术完整的资料

IGCC整体煤气化联合循环技术完整的资料
IGCC整体煤气化联合循环技术完整的资料

IGCC

百科名片

IGCC(Integrated Gasification Combined Cycle)整体煤气化联合循环发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。

目录[隐藏]

基本简介

原理

分类

喷流床气化炉

流化床气化炉

固定床气化炉

特点

发展障碍

基本简介

原理

分类

喷流床气化炉

流化床气化炉

固定床气化炉

特点

发展障碍

?前景

[编辑本段]

基本简介

IGCC

整体煤气化联合循环它由两大部分组成,第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮

机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气轮机作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图

[编辑本段]

原理

IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右。(目前国家二氧化硫为1 200mg/Nm3),氮氧化物排放只有常规电站的15%--20%,耗水只有常规电站的1/2-1/3,利于环境保护。

[编辑本段]

分类

由图中可以看出IGCC整个系统大致可分为:煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。可能采用的煤的气化炉有喷流床(entrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已经商业化多年且十分成熟的产品,因此IGCC发电系统能够最终商业化的关键是煤的气化炉及煤气的净化系统。具体来说,对IGCC气化炉及煤气的净化系统的要求是:

a) 气化炉的产气率、煤气的热值和压力及温度等参数能满足设计的要求

b) 气化炉有良好的负荷调节性能,能满足发电厂对负荷调节的要求

c) 煤气的成分、净化程度等要能满足燃气轮机对负荷调节的要求

d) 具有良好的煤种适应性

e)系统简单,设备可靠,易于操作,维修方便,具有电厂长期、安全可靠运行所要求的可用率

f)设备和系统的投资、运行成本低

[编辑本段]

喷流床气化炉

喷流床是目前IGCC各示范工程中采用最多的一种气化炉。

IGCC

它是一种高温、高压煤粉气化炉,气化炉的压力为20-60bar,要求采用90%以上的颗粒小于100μm的煤粉,采用氧、富氧、空气或水蒸气作为气化剂,当以氧为气化剂时,气化炉炉膛中心的火焰温度可达2000℃。由于是高温气化,在产生的粗煤气中不可能含有很多碳氢化合物、煤焦油和酚类物质,煤气的主要成分是CO、H2、CO2和水蒸气,离开气化炉的热煤气温度在1200-1400℃,往往高于灰的软化温度。为了防止热煤气中已软化了的粘性飞灰在气化炉下游设备(余热锅炉)粘结堵塞,将除尘后的冷煤气增压后再返送回煤气炉的出口和热煤气混合,将热煤气的温度降低到比灰的软化温度低50℃,然后,热煤气再经过气化炉的余热锅炉(辐射和对流蒸汽发生顺)产生饱和蒸汽,同时使热煤气的温度降低到200℃左右,约50%的煤中灰分

在气化炉高温炉膛中心变成液态渣,由炉底排出并通过集渣器送入渣池。

煤粉灰中的以飞灰的形式随热煤气,帮煤气须经除尘、洗涤脱硫处理,成为清洁的煤气,再送往燃烧室。

喷流床气化炉由于是煤粉高温高压气化,因此煤种适应性广,碳转化率高,能达到99%以上。

当前在欧美各地IGCC示范厂所选用的喷流床气化炉有:美国德士古和CE炉,荷兰的Shell炉,德国的Prenflo炉。给煤方式有湿法水煤浆给煤(如德士古炉)和干法给煤(如shell和Prenflo炉)。

由于喷流床气化炉的单炉生产能力大,并且具有较高的效率,燃料适应性广,因而在今后发展大容量高效率的IGCC电站中具有强有力的竞争地位。

[编辑本段]

流化床气化炉

流化床气化炉可以充分利用床内气固两相间的高强度的传热和传质,使整个床层内温度分布均匀,混合条件好,有利于气化反应的进行。同时,可以利用流化床低温燃烧,在燃烧和气化过程中加入脱硫剂(石灰石或白云石),将产生的大部分SO2和H2S脱除。由于流化床气化炉内的反应温度一般控制在850-1000℃,因此,它产生的焦油、烃、酚、苯和萘等大分子有机物基本上都能被裂解为简单的双原子或三原子气体,煤气的主要成分是C O和H2,CH4的含量一般少于2%。

当前,用于IGCC系统的流化床气化炉有KRW炉,U-Gas炉和温克勒炉等。

[编辑本段]

固定床气化炉

固定床气化炉是最早开发出的气化炉,它和燃煤的层燃炉类似,炉子下部为炉排,用以支承上面的煤层。通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。这种气化炉和燃煤的层燃炉一样,对煤的粒径有一定的要求。

IGCC

固定床气化炉有两种煤气出口集团的设计。粗煤气唯一出口位置设计在干燥区上面煤层的顶部,称为单段气化炉,此时出口处煤气的温度为370-590℃,在这煤气温度下,气的油和煤焦油等会发生裂解和聚合反应,从而生成彼一时质焦油和沥青。同时高温煤气穿过煤层时产生的剧烈干馏会使煤发生爆裂,产生大量煤尘,并随粗煤气一起带出气化炉。因而这种单段气化炉的粗煤气质量是比较差的。另一种设计是,有两个煤气出口,除了在干燥区上部的出口外,另一个则在气化区的顶部,煤气产量的一半从这个出口离开气化炉。由于流经挥发分析出区和干燥区的煤气量只有单段炉的,有利于防止由于煤的爆裂而产生的大量煤尘,而且不会产生彼一时质焦油和沥青。因此,两段炉产生的粗煤气的质量是比较好的。

用于IGCC系统的固定床气化炉主要是鲁奇炉,世界上最早的德国IGCC 示范厂采用的就是鲁奇固定床单段固态排渣气化炉。这种气化炉的最大缺点是,使用焦结性煤时,容易造成床体阻塞,使气流不畅,煤气质量不稳定。此外,由于煤在气化炉内缓慢下移至变成灰渣需停留0.5-1个小时,因而单炉的气化容量无法设计得很大。而且,排出的煤气中还含有大量的沥青、煤焦油和酚等,使煤气的净化处理过程十分复杂。为改善上述问题,强化煤的气化过程,英国煤气公司在固态排渣鲁奇炉的基础上,将其发展成液态排渣鲁奇炉。液态排渣气化炉由于其燃烧区的温度较高,因而有利于提高煤的氧化速率和碳的转化率,缩短煤在炉内的停留时间,对煤粒直径的要坟比固态排渣炉宽。但颗粒尺寸小于6mm的要限制在10%以下。液态排渣气化

炉有以下特点:1)碳转化率是三种气化炉中最高的,排渣的物理热损失大。2)相对安全可靠;3)煤气生产能力有限,是三种炉型中能力最低的。[编辑本段]

特点

IGCC电厂的优点

作为一家国际性的咨询、工程设计和运行企业,CH2M HILL公司的气化业务部副总裁Steve Jenkins表示,IGCC电厂较之利用煤粉(PC)的传统燃煤电厂有着多个众所周知的优点。

IGCC用水量较少

与同等规模的PC电厂相比,IGCC电厂用于冷却用途的水量减少33%。这是由于IGCC电厂生产的约2/3电力都来自于燃气轮机,1/3来自于汽轮发电机,而汽轮发电机才需要冷却水。尽量减少用水需要,在美国一些用水量属于重大选址难题的地区是一个显著的优点。

IGCC能够生成可利用的副产品

在采用高温气化技术时,原料所剩余的灰渣以一种类似玻璃一样的不会

渗析的废渣形式排出。这种废渣可用于生产水泥或屋面瓦,或作为沥青填缝料或集料。这种废渣与绝大多数PC电厂所生成的底灰和飞灰不同,底灰和飞灰更容易渗析。而且,这种废渣比飞灰更容易输送、贮存和运输。

IGCC具有碳捕集优点

虽然IGCC电厂(燃烧前)和PC电厂(燃烧后)都有可用的CO2捕集技术,但IGCC电厂可能具有优势,因为燃烧前CO2捕集所要求的技术已经成功地运用于煤气化(但不是IGCC)技术。目前,美国正对此项技术进行深入研究以便在IGCC电厂配置条件下达到更好的性能。此外,这些捕集技术当中的一些技术能在足够高的压力下生成浓缩的CO2气流,以满

足压缩CO2在管道内输送时压缩机的要求,以便将CO2埋藏或用于提高石油采收率。但是,IGCC与PC电厂之间在CO2捕集的成本和性能方面仍然存在巨大的差异。

IGCC受到的限制

作为一家位于芝加哥的咨询公司,Sargent & Lundy的总工程师DavidJ. Stopek表示,在考虑IGCC的优点时必须平衡考虑其受到的限制。

“比起传统PC电厂,IGCC电厂可以在以燃煤为基础的发电资产组合上向更低CO2足迹方向发展的转变中,提供一些优势。”他这样评论道,“尽管这样说,但我们必须理解,与传统PC技术商用状态水平相比,IGCC

仍然是一项正在进化中的技术。由于IGCC的部署受到了一些限制,所以每座电厂都要求投入大量的工程设计和开发成本。GE和其他公司在开发一种“标准”电厂方面所做出的努力就是降低部署成本。这些项目最初是由Duk e Energy公司构想出来的,American ElectricPower(AEP)也在这方面做出了努力。但是,事实却是,AEP无法获得所在州监管机构对其将电厂置于电费基础中的批准,导致这些努力在一定程度上脱离了原来的进程。”

[编辑本段]

发展障碍

IGCC发展的拦路虎

作为美国电力研究院(EPRI)先进发电技术部的高级项目经理,Jeffrey N.Phillips指出了IGCC技术所面临的一些重大实施挑战。

“对于没有采用CO2捕集的电厂来说,IGCC的建设成本比PC电厂更昂贵。”他说,“在天然气价格目前处于4美元/MMBtu范围内的条件下,很难选择IGCC而不是天然气联合循环技术。IGCC供应商需要提高自己相对于PC的成本竞争力。”

EPRI相信,有一种可以提高成本竞争力的方法,就是集中精力搞好能最大程度减少项目前工程设计成本的标准化设计。EPRI的CoalFleet F or Tomorrow项目一直通过发展自己的CoalFleet IGCC用户设计基础规格(UDBS)来鼓励这方面的进步,这个规格定义了电厂业主想要在IGCC电厂中看到的能力。

Jenkins列出了IGCC发展者目前所面临的一些其他挑战:

许可证上诉。环境利益集团提出的上诉(甚至对IGCC电厂)使项目难以继续进行。对于非公用事业公司项目来说,在许可证上诉期间,发展者有可能无法从投资者处获得继续开展项目的融资。当然,这也是这些利益集团熟练掌握战术。

IGCC

成本问题及公用事业公司管理委员会应对措施。由于IGCC电厂的电价高于PC电厂(相同容量下),一些公用事业公司管理委员会在批准这些增加的

成本方面显得犹豫不决,甚至在批准IGCC技术作为满足公共便利和必须证书的“电力需要”要求选择方案时也是如此。

以适当的价格获得意义重大的性能保函。由于美国只有两家以煤为基础的IGCC电厂,IGCC技术供应商并没有大量的经验数据库来运用,这点就与PC电厂不同。因此,对于这些供应商来说,在性能和可用性(以及相关联的金融债务)方面,就存在着更大的潜在风险,而他们必须将这种性能不达标的潜在风险转化成附加的成本。

Stopek还提出了在美国部署IGCC技术所要面临的另外两个障碍: 经济衰退已经压低了增加新基本负荷发电能力的动力。随着基本负荷需求在逐步减少,天然气的供应能力上升而成本下降。这些因素都使这些公司置身事外,等待新温室气体(GHG)法规出台,从而消除它们目前在供应未来客户电力需求方面所面临的不确定性。

国会需要加快速度并在气候和能源立法方面采取行动,以终止正在严重削弱新电厂建设行动的投机行为。在制订新法律时,必须仔细权衡激励措施和/或惩罚措施的分布,以确保不会出现非计划内的后果。新法律必须以一种能够在减少GHG排放量的同时,尽量减轻对能源消费者的影响且不会扰乱整个经济的方式来重新塑造能源局面。国会在迎接这一挑战时,要面临精巧微妙的权衡难题。

IGCC可用性的挑战

“历史数据清楚地表明,现有以煤为基础的IGCC电厂未在持续基础上达到85%的可用性。”Jenkins说,“典型情况下,需要进行数年的运行才能刚刚达到80%的可用性水平,有些甚至还未达到70%。但是,已经出现了单气化炉系列系统。”

他表示,通过利用运行数据以及所学习到的经验教训,IGCC技术供应商们一直在实施增强型的设计概念以提升可用性,包括采用多气化炉系列。IG CC发展者向州和联邦政府所提供的数据表示,双气化炉系列的设计方案预计可以达到约85%的可用性。增设一个备用(第三)系列有可能将整体IGCC可用性增加至约90%,尽管会付出相当多的附加成本。

Phillips对于人们在克服此项问题上所做的工作持乐观看法,“总体来说,以煤和石油为基础的IGCC的可用性已经随着时间的推移而提升了。”他说,“第一代IGCC的可用性类似于第一代超临界PC电厂和核电厂的可用性。而这些技术目前都达到了85%左右至90%的可用性。在考虑了其他经验后,可以合理预测IGCC的可用性也会升高。”

另外,他指出,所有的第一代IGCC的全部设备均以单系列设计为基础(一台气化炉、一台燃气轮机),而EPRI的IGCC UDBS采用双系列系统。EPRI的分析师也指出,尽管在一座气化炉或燃气轮机停运时,负荷有所降低,但电厂仍然可以连续运行,所以将带来更好的可用性。运行系列用于保留,可使另一系列设备保持在暖机状态下,这样就使第二台气化炉或联合循环达到更快的启动时间,从而有助于提升可用性。

建设IGCC电厂所面临的阻碍

据Phillips表示,一项重大的难题是公用事业公司能够拿出拥有可靠成本估算的详细设计方案之前,需要花费大量时间和费用。

“例如,Southern California Edison公司(SCE)最近从加利福尼亚州PUC(公共事业监管委员会)获批263万美元,用于一项“清洁氢气发电”项目的可行性研究,这将会是一个具备了CO2捕集和贮存能力的IGCC项目。”他说,“只有在这项研究完成时,他们才会知道建设这样一座电厂需要耗资多少,以及此电厂的运行性能将会怎样。而这只不过是“只看不买”就需付出的不菲代价。”

Stopek解释了寻求建造一座新PC电厂与一座将采用IGCC技术电厂对于公用事业公司的不同之处。他解释到,对于一家想要建设一座新PC电厂的电力公司来说,目前的惯例是先确定满足需要所要求的规模,然后对主要组成部分展开竞争性招标,例如锅炉、汽机和排放控制装置等。投标者随后根据多年以来的设计经验,以及具体的燃料、厂址和其他要求对详细规格做出回应,这些经验来自于他们的设计能够满足所有排放要求,且目前已成为行业标准的可靠发电设施。

“但对于IGCC,情况就并非如此。这项技术的供应商目前还不愿意按照传统的采购模式进行竞争。”他说,“除非付费让他们开展自己的前期工程设计研究工作,否则供应商就不能提供成本估算。要想制订出准确度达到±10%的成本估算,典型情况下要求约2000万美元的成本下执行大约30%的设计工作。Duke和AEP在开展技术审查后,选择它们认为能够为IGCC设施提供“最好”的产品和价格的公司,然后再以此公司为惟一来源的基础上继续开展项目。”

CO2捕集技术的负面影响

“美国能源部(DOE)和EPRI最近展开的详细研究清楚地表明,在IG CC电厂中增设CO2捕集设备对电厂效率和净输出功率以及资金成本上都有着重大影响。”Jenkins说。

这些研究表明,向使用烟煤的IGCC电厂增加CO2捕集系统将会带来以下影响:

以美元/净千瓦功率计的资金成本上升32%;

电力成本增加40%;

净输出功率降低15%;

效率降低22%,或8%~10%。

Jenkins说,这对性能和成本的影响是显著的。对于净输出功率来讲,一座600MW的纯IGCC基准电厂,这种降幅约为100MW。造成降幅的主要原因是CO2捕集设备所需要的额外内部功率;在CO2捕集系统内而不是在汽机发电部分使用蒸汽;以及CO2压缩机所需要的额外功率。他强调说,

许多人不理解的是这些“失去的”100MW必须随后由其他发电机组来弥补,而这些机组事实上在CO2和其他污染物的排放率更高。

Stopek同意Jenkins有关这些优点的看法,并提供了一些其他深入见解。“在现有IGCC电厂上添加CO2捕集能力的挑战必须在项目发展的早期阶段进行讨论。”他说,“业主必须理解将合成气从CO和H2的混合物转化成以H2为主的气体时,将导致电厂‘降额运行’,这种降额可以通过确保能够气化更多的燃料而在设计期间予以补偿。业主必须愿意接受这样的成本。如果不愿意,则业主必须愿意接受降额运行的现实。这种决策与仅仅在燃煤电厂内添加更多的升压风机,以适应烟气脱硫系统的压力下降的决策有着本质上的不同。”

据Stopeck说,气化炉和下游系统必须在设计上能够处理多余的燃料(高达15%以上)。由于有更多的灰分和硫分产生,所以所有支持性的贮罐、泵和设备必须在设计上留有充足的裕量以处理这种未来的流量。通过提高设计压力有可能提供一些容量,但随之而来的是整个设计必须得到仔细审查以确定是否能够适用于新的压力。

碳捕集和封存的长期计划框架

“首先,我们需要证明大规模(大于每年100万t)的CO2地下封存可以是一项用于封存电厂所捕集到CO2的可靠和长期的备选方案,而且还需要制

订用于管辖封存需要的法规。”

Phillips说,“在满足这些条件之前,要想让配备碳捕集和封存(CCS)手段的商业项目获得融资是非常困难的。但是,如果IGCC位于油田附近,则可以将捕集的CO2出售,用于提高石油采收率(EOR),这就是Mississip pi Power正在提议的做法。EOR应用中,所有涵盖CO2输送和贮存的法规和义务都已经确立。”

Stopek对Phillips的评论进行了延展。他强调,对于温室气体控制的需要就像一台向立法行动快速碾压的蒸汽压路机。但是,用于永远封存CO2

的技术必须得到验证,而验证就需要花费时间。整个行业都在以一种有计划性的方式迅速展开行动。

“就在5月上旬,我参加了一个在Pittsburgh举行的有关CCS的会议,并很高兴地看到来自全国各地的高级人才都在关注这些问题。”他说,“但是,每一个步骤都必须采用合用逻辑次序进行,而验证也要花费时间。立法方面的事务也很复杂,保险风险也是真实存在的。我相信这些问题都能得到解决,关键在于随着CCS要求的到位,特别是封存部分,所有的问题都能得到应对。而且,同时建立一个结构良好的监测和监管体系也很重要,而这个体系需要经过测试和验证。这些都要花费时间、费用和努力。我相信,当前政府认识到了这一点,并正在投入资源以实现这一使命。真正的问题是,这些结果能够及时提供以做出及时的决策吗?”

近期的技术创新

Jenkins指出了IGCC技术的一系列新进展:

更为高效的高温气体颗粒物脱除系统;

燃烧温度更高的燃气轮机;

设计用于燃烧高氢气浓度合成气的燃气轮机(用于配备CO2捕集设备的IGCC电厂);

工作寿命远长于之前开发的气化炉“燃烧器”;

以DOE所资助的最新研究和开发成果为基础,发展出的先进“配方”耐火材料;

采用专利启动燃料进行的无硫启动程序;

能够在更高压力下运行的更大气化炉(用于提高效率);

采用活性炭床来脱除汞;

合成气湿化及稀释气体的增强应用,如来自空气分离装置的氮气,以降低燃气轮机的燃烧温度,从而减少NOx的生成量;

能够更好耐受腐蚀性环境的制造材料;

通过使用粉河谷煤种达到更好的性能;

将燃气轮机压缩机与空气分离装置部分集成(减少整体电厂的内部负荷)。

Stopek对IGCC制造厂商的未来技术目标做出了评论。“每家设备供应商都在开展对自己技术的可靠性和可维护性分析工作,找出一些能够增强可用性、延长维护周期及消灭计划外停运的方法。”Stopek说,“但是,由于缺乏一种向公众开放的、类似于北美电力可靠性公司的GADS(发电可用性数据系统)数据库的集中报告功能,导致客户缺乏信息透明度,使客户必须‘信任’供货商或依赖于担保。”

Jenkins还评论了一些IGCC制造厂商正在试图实现的新技术突破: 通过使用增强型热回收系数达到更高的效率。

通过采用更为先进的制造材料(更能耐受腐蚀的合金)、气化炉耐火材料,优化备用设备、备用气化炉及合成气清洁系列的利用,达到更高的可用性。

“现有IGCC电厂中的几千项经验,都非常好地记录在了EPRI的CoalFl eetIGCCUDBS指南中,而且目前正在由制造厂商加入到新建IGC C电厂的设计当中。”他说。

法规阻碍

“AEP在自己所提议的西弗吉尼亚州IGCC项目上的经验是非常有益的。”Phillips说,“在这个项目获得西弗吉尼亚州批准后,还需要获得弗吉尼亚州的批准,因为这个电厂将向弗吉尼亚州的一些地区提供电力。弗吉尼亚州公用服务委员会拒绝了这项建议,因为IGCC电厂比传统燃煤电厂

整体煤气化联合循环发电

整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气轮机作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/N m3左右。(目前国家二氧化硫为1200mg/Nm3),氮氧化物排放只有常规电站的1 5%--20%,耗水只有常规电站的1/2-1/3,利于环境保护。 IGCC具有以下一些突出优点:(1)发电效率高,目前可达45%,继续提高的潜力大。(2)与传统的燃煤方式不同。它能实现98%以上的污染物脱除效率,并可回收高纯度的硫、粉尘和其他污染物在此过程中一并被脱除。(3)用水量小,约为同等容量常规火电机组的三分之一至二分之一。(4)通过采用低成本的燃烧前碳捕捉技术可实现零碳排放。(5)能与其他先进的发电技术如燃料电池等结合,并能形成制氢、化工等多联产系统。 气化炉、燃气轮机、空气分离装置和余热锅炉是IGCC关键设备。气化炉方面,我们认为壳牌气化炉具有产气热值高、煤种适应性广、停机维护时间短等特点,将成为未来IGCC 将推广的重要炉型。燃气轮机方面,适应煤气的低热值的燃气轮机将成为首选机型。空气分离装置方面,目前仍以深冷技术为主,未来将有可能在PSA变压吸附空分技术方面有所突破。 整体煤气化联合循环发电的分类 由图中可以看出IGCC整个系统大致可分为:煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。可能采用的煤的气化炉有喷流床(e ntrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已

整体煤气化联合循环发电

整体煤气化联合循环发电(IGCC)简介 一整体煤气化联合循环的工作过程 整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图: 二整体煤气化联合循环的特点 IGCC(整体煤气化联合循环)发电技术是当今国际上最引人注目的新型、高效的洁净煤发电技术之一。该技术以煤为燃料,通过气化炉将煤转变为煤气,经过除尘、脱硫等净化

工艺,使之成为洁净的煤气供给燃气轮机燃烧做功,燃气轮机排气余热经余热锅炉加热给水产生过热蒸汽,带动蒸汽轮机发电,从而实现了煤气化燃气蒸汽联合循环发电过程。 IGCC 发电技术把联合循环发电技术与煤炭气化和煤气净化技术有机的结合在一起,具有高效率、清洁、节水、燃料适应性广,易于实现多联产等优点,符合二十一世纪发电技术的发展方向。 1、IGCC将煤气化和高效的联合循环相结合,实现了能量的梯级利用,提高了采用燃煤技术的发电效率。目前国际上运行的商业化IGCC电站的供电效率最高已达到43%,与超超临界机组效率相当。当采用更先进的H系列燃气轮机时,IGCC供电效率可以达到52%。 2、IGCC对煤气采用“燃烧前脱除污染物”技术,煤气气流量小(大约是常规燃煤火电尾部烟气量的1/10),便于处理。因此IGCC系统中采用脱硫、脱硝和粉尘净化的设备造价较低,效率较高,其各种污染排放量都远远低于国内外先进的环保标准,可以与燃烧天然气的联合循环电厂相媲美。 目前常规燃煤电厂脱硫主要采用尾部脱硫的方法,脱硫所产出的副产品是石膏。IGCC 一般采用物理/化学方式脱硫,其脱硫效率可达99%以上,脱硫产物是有用的化工原料-硫磺。常规燃煤电厂目前没有有效的脱除CO2的方法,IGCC具有实现CO2零排放的技术潜力。在IGCC系统中可以对煤气中的CO进行变换,生成H2和CO2,H2可以作为最清洁的燃料(如燃料电池),CO2可以进行分离、填埋回注等,以实现CO2零排放。 3、IGCC的燃料适应性广,褐煤、烟煤、贫煤、高硫煤、无烟煤、石油焦、泥煤都能适应。采用IGCC发电技术,可以燃用我国储量丰富、限制开采的高硫煤,使燃料成本大大降低。 4、IGCC机组中蒸汽循环部分占总发电量约1/3,使IGCC机组比常规火力发电机组的发电水耗大大降低,约为同容量常规燃煤机组的1/2~2/3左右。 5、IGCC的一个突出特点是可以拓展为供电、供热、供煤气和提供化工原料的多联产生产方式。IGCC本身就是煤化工与发电的结合体,通过煤的气化,使煤得以充分综合利用,实现电、热、液体燃料、城市煤气、化工品等多联供。从而使IGCC具有延伸产业链、发展循环经济的技术优势。 三整体煤气化联合循环的发展 1972年在德国Ltinen酌斯蒂克电站投运了世界上第一个以增压锅炉型燃气一蒸汽联合循环为基础的IGCC电站,该电站的发电功率为170MW,实际达到的供电效率为34%,采用以空气为气化剂的燃煤的固定床式的Lurgi气化炉。显然,这个电站开创了煤在燃气一蒸汽联

联合循环发电技术

联合循环发电技术 联合循环发电技术(CCPP)是由燃气轮机发电和蒸汽轮机发电叠加组合起来的联合循环发电装置,与传统的蒸汽发电系统相比,具有发电效率高、成本低、效益好,符合调节范围宽,安全性能好、可靠性高,更加环保等等一系列优势。 联合循环由于做到了能量的梯级利用从而得到了更高的能源利用率,已以无可怀疑的优势在世界上快速发展。目前发达国家每年新增的联合循环总装机容量约占火电新增容量的40%~50%,所有世界生产发电设备的大公司至今(如美国的GE公司87年开始)年生产的发电设备总容量中联合循环都占50%以上。 最高的联合循环电站效率(烧天然气)已达55.4%,远远高于常规电站,一些国家(如日本等)已明确规定新建发电厂必须使用联合循环。 由于整体煤气化联合循环发电机组(IGCC)是燃煤发电技术中效率最高最洁净的技术,工业发达国家都十分重视,现在世界上已建成或在建拟建IGCC电站近20座,一些已进入商业运行阶段。 燃气轮发电机组在我国近几年才有较大发展,目前装机占火电总容量的 3.5%,大部分由国外购进,国产机组只占9.4%,且机组容量小、初温低,机组水平只处于国外80年代水平,且关键部件仍有外商提供,远不能满足大容量、高效率的联和循环机组的需要。 燃气轮机是联合循环包括燃煤联合循环的最关键技术,我公司虽然以前也曾设计制造过燃气轮机,但功率小、,初温低,且某些关键技术如冷却技术、跨音速压气机等项目尚处于研究开发阶段。 有一些公司对燃气轮机的研制始于1960年前后,在船用、机车用、发电用等几条线上同时进行。作为技术水平综合标志的综合技术能力即设计能力是:到七十年代中后期,基本能按自己的科研成果独立设计高原铁路使用的燃气轮机(7000马力);能按测绘资料设计长输气管线用的燃气轮机(17600kw);具有品种较全但规模较小检测设备较初级的实验台,进行了相当多的试验,取得了可观的成果。经过不小于十余种型号的整机的自行设计、试验、生产和运行的全过程不但掌握了技术而且培养了一批人。这正是现在可以也应该利用的宝贵的财富。 在以上基础上产生了高原机车用的燃气轮机方案,尽管燃气轮机本身并未达到国外先进水平,但机车总体可达到热力机车的先进水平,综合经济指标具有竞争力。总体说,当时我

煤气化技术及其工业应用

煤气化技术及其工业应用 摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。 关键词:煤化工,煤气化技术,工业应用 我国是一个以煤炭为主要能源的国家。近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。 以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。 煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。 1煤气化工艺概述 煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。 目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。气化剂为水蒸气、纯氧、空气、CO2和H2。煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。 煤气化根据供热原理大致可分为3种: (1)热分解(约500-1000℃):加热使煤放出挥发分,再由挥发分得到焦油和燃气(CO、CO2、H2、CH4),必须由外部供热,残留的固态炭(粉焦和焦炭等)作它用; (2)部分燃烧气化(约900-1600℃):煤在氧气中部分燃烧产生高温,并加入气化剂(H2O、CO2等),产生可燃气(CO、CO2、H2)和灰分;

整体煤气化联合循环发电技术

整体煤气化联合循环发电 简介 整体煤气化联合循环(IGCC- Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下: 煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。 IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。而污染物的排放量仅为常规燃煤电站的,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右。(目前国家二氧化硫为1200mg/Nm3),氮氧化物排放只有常规电站的15%--20%,耗水只有常规电站的-,利于环境保护。 分类及作用 IGCC整个系统大致可分为: 煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。可能采用的煤的气化炉有喷流床(entrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已经商业化多年且十分成熟的产品,因此IGCC发电系统能够最终商业化的关键是煤的气化炉及煤气的净化系统。具体来说,对 气化炉及煤气的净化系统的要求

整体煤气化联合循环发电(IGCC)项目简介

整体煤气化联合循环发电(IGCC) 整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图 整体煤气化联合循环系统简图

IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右。(目前国家二氧化硫为1200mg/Nm3),氮氧化物排放只有常规电站的15%--20%,耗水只有常规电站的1/2-1/3,利于环境保护。 整体煤气化联合循环发电的分类及作用 由图中可以看出IGCC整个系统大致可分为:煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。可能采用的煤的气化炉有喷流床(entrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已经商业化多年且十分成熟的产品,因此IGCC发电系统能够最终商业化的关键是煤的气化炉及煤气的净化系统。具体来说,对IGCC气化炉及煤气的净化系统的要求是: a) 气化炉的产气率、煤气的热值和压力及温度等参数能满足设计的要求 b) 气化炉有良好的负荷调节性能,能满足发电厂对负荷调节的要求 c) 煤气的成分、净化程度等要能满足燃气轮机对负荷调节的要求 d) 具有良好的煤种适应性 e) 系统简单,设备可靠,易于操作,维修方便,具有电厂长期、安全可靠运行所要求的可用率 f) 设备和系统的投资、运行成本低

IGCC整体煤气化联合循环技术完整的资料

IGCC 百科名片 IGCC(Integrated Gasification Combined Cycle)整体煤气化联合循环发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。 目录[隐藏] 基本简介 原理 分类 喷流床气化炉 流化床气化炉 固定床气化炉 特点 发展障碍 基本简介 原理 分类 喷流床气化炉 流化床气化炉 固定床气化炉 特点 发展障碍 ?前景 [编辑本段] 基本简介 IGCC 整体煤气化联合循环它由两大部分组成,第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮

机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气轮机作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图 [编辑本段] 原理 IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右。(目前国家二氧化硫为1 200mg/Nm3),氮氧化物排放只有常规电站的15%--20%,耗水只有常规电站的1/2-1/3,利于环境保护。 [编辑本段] 分类 由图中可以看出IGCC整个系统大致可分为:煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。可能采用的煤的气化炉有喷流床(entrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已经商业化多年且十分成熟的产品,因此IGCC发电系统能够最终商业化的关键是煤的气化炉及煤气的净化系统。具体来说,对IGCC气化炉及煤气的净化系统的要求是: a) 气化炉的产气率、煤气的热值和压力及温度等参数能满足设计的要求 b) 气化炉有良好的负荷调节性能,能满足发电厂对负荷调节的要求 c) 煤气的成分、净化程度等要能满足燃气轮机对负荷调节的要求 d) 具有良好的煤种适应性 e)系统简单,设备可靠,易于操作,维修方便,具有电厂长期、安全可靠运行所要求的可用率 f)设备和系统的投资、运行成本低 [编辑本段] 喷流床气化炉 喷流床是目前IGCC各示范工程中采用最多的一种气化炉。

整体煤气化联合循环的基本思想

第一节整体煤气化联合循环的基本思想 整体煤气化联合循环(Integerated Gasification Combined Cycle;简记为IGCC)是20世纪70年代石油危机时期西方国家开始发展的一项燃煤发电技术。它的技术路线非常清晰,那就是:使煤在气化炉中气化成为中热值或低热值的煤气,然后通过处理,去除其中的灰分、含硫化合物、重金属等有害物质,代替天然气供到常规燃气一蒸汽联合循环中去,从而实现洁净燃煤发电。 IGCC发电系统示意图如图6—1所示。 整体煤气化联合循环中的“整体”一词有两层含义: (1)在这个系统中,气化炉所用的蒸汽和空气多数情况下都直接来自于系统内的汽轮机和燃气轮机。反过来,气化过程中所产生的各种显热,都在系统适当的工艺环节中充分地利用,这样的系统是一个有机的整体; (2)系统流程及系统内各处的参数都要从机组整体性能最优的角度仔细考虑和设计。 图6—1 IGCC发电系统示意图 显然,在IGCC发电系统中,燃气轮机、余热锅炉、汽轮机都是成熟的技术,所需要解决的只是煤的大规模气化和煤气的净化问题。所以,就设备而言,气化炉和煤气净化系统的是整体煤气化联合循环发电技术的关键。 第二节煤的气化及气化炉 一、气化原理 众所周知,煤是由多种有机物和无机物}昆合组成的固体燃料。煤中的可燃物质主要是碳,其次是氢。要使煤气化,最理想地莫过于将其转化为以气态形式存在的c0、H2及碳氢化合物,如cH4等。因此,对煤进行气化实质上主要是使煤中的C与02反应生成CO。 然而,实际中煤的气化过程远非如此简单。尽管煤气化的历史已有200余年,但对其涉及到的某些问题至今也未完全研究清楚。如果大致描述一下的话,煤的气化大体上是这样进行的:在缺氧的条件下,对煤进行加热,使其释放出所含的水分而干燥;随着温度的升高,原先以固态形式存在的碳氢化合物分子中的一些较弱的化学键被破坏,开始析出挥发分,生成煤焦油、油、酚和某些气相碳氢化合物;接下来,析出挥发分后的固定碳将与氧气、蒸汽和氢气发生反应生成CO、C02和cH4等气体。在以上过程中,挥发分与氧之间可能还会发生反应,最终形成粗煤气。 煤的气化过程中,气化炉内所发生的化学反应主要有以下几个: 4C+30,一2CO,+2CO+热量 (6—1) 3C+20,一2CO,+CO+热量 (6—2) C+CO,一2CO一热量 (6—3) C+地O—cO+H,一热量 (6—4]

整体煤气化联合循环IGCC发电系统性能计算与分析

整体煤气化联合循环(I GCC)发电 系统性能计算与分析 白玉峰 (安徽华能巢湖发电有限公司,安徽巢湖230000) 摘 要:针对整体煤气化联合循环(I GCC )发电系统在技术、经济、环保综合性能上具有较大的优势,阐述了 I GCC 发电系统分类,对4种采用空气气化型的I GCC 发电系统进行了性能计算和参数分析,得到了供电效率与 燃气轮机压比、入口温度之间的关系。关键词:I GCC;煤气化;发电系统;性能分析 中图分类号:TK227.1 文献标识码:A 文章编号:1002-1663(2006)04-03 Perfor mance calcul ati on and analysis of I GCC power generati on syste m BA I Yufeng (Chaohu Power Generati on Cor porati on of China Huaneng Gr oup,Chaohu 230000,China ) Abstract:I ntegrated gasificati on combined circulati on (I GCC )power generati on syste m has many advantages in s ome as pects,such as in technol ogy,economy,envir onment p r otecti on and s o on,the paper intr oduced t o its classificati ons,and the perf or mance calculati on and para meter analysis of f our kinds of I GCC po wer genera 2ti on syste m with air gasificati on type were done,and the relati onshi p bet w een efficiency of power supp ly and inlet te mperature of gas turbine was gained . Key words:integrated gasificati on combined circulati on (I GCC );coal gasificati on;power generati on syste m;perfor mance analysis 目前,整体煤气化联合循环(I GCC )燃煤发电系统效率高、污染小,是一种洁净、高效的燃煤发 电技术[1-3] 。下面对不同型式的I GCC 发电系统进行分类和分析,并对四种不同型式的空气气化的I GCC 发电系统进行性能计算和参数分析 。 图1 氧气气化的I GCC 系统 图2 空气气化的I GCC 系统 1 整体煤气化联合循环(I GCC )系 统的分类 根据I GCC 系统气化炉型式和粗煤气净化系 统不同可以分为不同的型式。当I GCC 系统采用 收稿日期:2006-05-23 作者简介:白玉峰(1969-),男,1995年毕业于上海电力学院热能动力工程专业,硕士学位。 — 152—第28卷 第4期 黑龙江电力 2006年8月

整体煤气化联合循环(IGCC)

整体煤气化联合循环技术发展现状及展望 摘要:随着国内经济科技的迅速提高,人们对于能源的需求越来越大。其中对于电力资源的需求增长尤为迅速。我国在不断地努力满足现代人民生活生产需求的同时也在不懈的寻找最洁净环保的发电方式。在此之中取得了一系列突破性的成果。我国是一个贫铀国家大规模发展核电受到制约,因此在相当长的一段时间内还是要以煤发电为主。由此研究和改善现有煤矿发电技术就显得尤为重要。在诸多煤矿发电技术中整体煤气化联合循环是我国也是全世界立足研究的一个重要课题。整体煤气化联合循环发电技术既具有联合循环的高效率,又解决了燃煤发电带来的环境污染问题,以其高清洁的优越性能受到普遍关注,成为新一代燃煤发电方式的首选技术之一。 Abstract: with the rapid increase of domestic economy, science and technology, people's energy needs more and more. Among them for power resource demand growth is particularly fast. Our country in constant efforts to meet the production requirements of the modern people's life and also in unremitting find the most environmental clean way of generating. In a series of the achieved breakthrough results. Our country is a depleted uranium large scale development countries nuclear power be restricted, so in a long time or to give priority to coal to produce electricity. This study and improve current power generation technology coal mine are particularly important. In many coal mine in power generation technology integrated gasification combined cycle is our country also is the world based on an important task. Integrated gasification combined cycle power generation technology has both the combined cycle of high efficiency, and solves the coal-fired power brings pollution problems, with its GaoQingJie predominant performance been paid more attention to, as a new generation of coal-fired power the first selection of means technical one. 关键字:空气分离技术,煤的气化技术,煤气的净化技术,燃气一蒸汽联合循环技术,系统的整体化技术 Key word: air separation technology, coal gasification technology, gas purification technology, gas a steam combined cycle technology, system integration of technology 正文: 整体煤气化联合循环是把高效的联合循环和洁净的燃煤技术结合起来的先进发电技术,为当今世界能源动力界关注的一个热点。整体煤气化联合循环(IGCC)是把高效的联合循环和洁净的燃煤技术结合起来的先进发电技术,为当今世界能源动力界关注的一个热点。中国煤炭和水力资源丰富:巳探明的煤炭储量约10000Gt,占常规能源储量的90%以上;可开发的水能资源达379GW,居世界第一。石油、天然气相对少:石油总资源量为94Gt,天然气资源为381TM3。农村生活用能以生物质能为主。 表一:国内一次能源供应预测

整体煤气化联合循环IGCC

整体煤气化联合循环发电(IGCC) 目录 一、整体煤气化联合循环的工作过程………………………… 二、整体煤气化联合循环的特点……………………………… 三、整体煤气化联合循环的发展……………………………… 四、在整体煤气化联合循环的主要设备……………………… 五、整体煤气化联合循环的发展趋势………………………… 六、对我国发展IGCC技术的若干启示………………………

一、整体煤气化联合循环的工作过程 整体煤气化联合循环(IGCC-Integrated Gasification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。其原理图见下图: 二、整体煤气化联合循环的特点 IGCC(整体煤气化联合循环)发电技术是当今国际上最引人注目的新型、高效的洁净煤发电技术之一。该技术以煤为燃料,通过气化炉将煤转变为煤气,经

过除尘、脱硫等净化工艺,使之成为洁净的煤气供给燃气轮机燃烧做功,燃气轮机排气余热经余热锅炉加热给水产生过热蒸汽,带动蒸汽轮机发电,从而实现了煤气化燃气蒸汽联合循环发电过程。 IGCC发电技术把联合循环发电技术与煤炭气化和煤气净化技术有机的结合在一起,具有高效率、清洁、节水、燃料适应性广,易于实现多联产等优点,符合二十一世纪发电技术的发展方向。 1、IGCC将煤气化和高效的联合循环相结合,实现了能量的梯级利用,提高了采用燃煤技术的发电效率。目前国际上运行的商业化IGCC电站的供电效率最高已达到43%,与超超临界机组效率相当。当采用更先进的H系列燃气轮机时,IGCC供电效率可以达到52%。 2、IGCC对煤气采用“燃烧前脱除污染物”技术,煤气气流量小(大约是常规燃煤火电尾部烟气量的1/10),便于处理。因此IGCC系统中采用脱硫、脱硝和粉尘净化的设备造价较低,效率较高,其各种污染排放量都远远低于国内外先进的环保标准,可以与燃烧天然气的联合循环电厂相媲美。 目前常规燃煤电厂脱硫主要采用尾部脱硫的方法,脱硫所产出的副产品是石膏。IGCC一般采用物理/化学方式脱硫,其脱硫效率可达99%以上,脱硫产物是有用的化工原料-硫磺。常规燃煤电厂目前没有有效的脱除CO2的方法,IGCC具有实现CO2零排放的技术潜力。在IGCC系统中可以对煤气中的CO进行变换,生成H2和CO2,H2可以作为最清洁的燃料(如燃料电池),CO2可以进行分离、填埋回注等,以实现CO2零排放。 3、IGCC的燃料适应性广,褐煤、烟煤、贫煤、高硫煤、无烟煤、石油焦、泥煤都能适应。采用IGCC发电技术,可以燃用我国储量丰富、限制开采的高硫煤,使燃料成本大大降低。 4、IGCC机组中蒸汽循环部分占总发电量约1/3,使IGCC机组比常规火力发电机组的发电水耗大大降低,约为同容量常规燃煤机组的1/2~2/3左右。 5、IGCC的一个突出特点是可以拓展为供电、供热、供煤气和提供化工原料的多联产生产方式。IGCC本身就是煤化工与发电的结合体,通过煤的气化,使煤得以充分综合利用,实现电、热、液体燃料、城市煤气、化工品等多联供。从而使IGCC具有延伸产业链、发展循环经济的技术优势。 三、整体煤气化联合循环的发展

整体煤气化联合循环

整体煤气化联合循环(IGCC )发电技术 吕晶',孙福粼,吕华2, (1.滚龙江省电力职工大学,黑龙江哈尔滨巧0030浮 150030;3.牡丹江第二发电厂,黑龙江牡丹江157015) 张宏炜',黄贵林3 蔽龙江省电力科学研究院.黑龙江哈尔滨 摘要:介绍了IGCC发电的优点及工作原理,IGCC电站的设备构成以及各种设备的性能比较,并介绍了世 界几大IGCC发电工程状况和我国在该领域的研究开发情况.环境保护对电力发展的要求,为IGCC发电技 术的发展,提供了广阔的发展前景和空间.洁净煤发电技术作为21世纪燃煤电厂的换代技术,是电力可持 续发展的重要迭择. 关镇词:电力环保;IGCC发电;可持续发展 中圈*;t*: TK434.6: TK477文献标识码:A文全编号;1002一1663(2002)02一0132-04 Generation of Power by IGCC LD Jing',SUN Fu-zhu2, LD Flu.', ZHANG Hong-wei',DONG Gui-lin' ( 1. Heilongjiang Electric Power Science Research Institute, Harbin 150030, China; 2. Heilongiiang Electric Power Staff Univer- sity, Harbin 150030, China; 3. Mudanjiang No, 2 Power Plant,

Mudanjiang 157015, China) Abstract: Describes the advantages and theory behind generation of power by IGCC, the structural breakdown of IGCC power station and the performance o# equipment reguired, the development status of world major gen- eration of power by IGCC projects and R&D status of generation of power by IGCC technology in China, and points out the environmental protection requirement for the development of electric power provides a wide and bright prospect and space for the development of generation of power by IGCC, and the technology of genera- ting power using clean coal is the right choice for power plants buring coal for generation of power in the new century to achieve sustained development. Key words: environmental protection requirement for generation of power; generation of power by IGCC; sus- tained development 0前言 我国是一个产煤大国,是世界上为数不多的 几个以煤为主要能源的国家之一.这使我国能源 有两个明显的特点:一是煤炭在一次能源的生产 和消费中占有很大比重;二是我国的发电机组以

整体煤气化联合循环(IGCC)发电技术

《冶金自动化》2009年S2 整体煤气化联合循环(IGCC)发电技术 刘芳兵,刘伟 (华北电力大学控制科学与工程学院,河北保定071003) 摘要:整体煤气化联合循环(IGcc)发电技术是煤气化和蒸汽联合循环的结合,是当今国际兴起的一种先进的洁净煤(ccT)发电技术,具有商效、低污染、节水、综合利用性好等优点。本文主要介绍整体煤气化联合循环(IGcc)发电技术,对IGcc关键技术和设备进行了阐述。 关键词:ICCc;气化炉;燃气轮机 O引言 着眼于能源资源的限制和环境保护的要求, 从20世纪70年代开始,国外就开始有计划地开 展了“洁净煤技术”的研究。对于以煤作为主要能 源资源而环境污染情况又日益严重的我国来说, 发展此项技术尤为重要。 在洁净煤发电技术方面,燃煤的燃气一蒸汽 联合循环,特别是整体煤气化联合循环(IGcc)技 ……………‘一 娄竺茎罡墨支仝曼曼塞奎紫璧竺堡烹苎妻厂竺图。.Gcc系统流程图 热效率,并使污染问题获得非常满意的解决。在 今后的发展中,IGCC将成为一种最有发展前途的化剂反应,生成含有CO,H:,CH?等可燃气体的合发申.方式…。’成煤气。当气化剂是氧气时生成中热值煤气;气1IGCC发电技术化剂是空气时,因含有大量N:,生成低热值煤整体煤气化联合循环系统(IGcC)主要由两气拉1。其主要的化学反映方程式为: 4C+30z越C02+2cO(放热反应) 部分组成,煤的气化与净化部分和燃气一蒸汽联 3C+20:越CO+CO:(放热反应) 合循环发电部分。第l部分的主要设备包括气化 C+CO:qCO(吸热反应) 炉、空分装置、煤气净化设备;第2部分的主要设 备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电C斗HzO_cO+Hz(吸热反应) 系统。H20+CO_H2+C02(放热反应)系统流程为:使煤在气化炉中气化成为中热气化炉的发展已经有了很长的历史,技术也值煤气或低热值煤气,然后经过处理,把粗煤气中比较成熟。应用于IGcc气化站的炉型有喷流床的灰分、含硫化合物等有害物质除净,供到燃气一气化炉、硫化床气化炉和固定床气.化炉。通常,用蒸汽联合循环中去燃烧做功,借以达到以煤带油以下一些技术指标来衡量气化炉工作性能的好(或天然气)的目的。其流程如图l所示。坏: 2IGCC的主要设备分析(1)碳的转化率,即煤中所含的碳元素在气化2.1气化炉炉中转化成为煤气成分中含碳量的百分数。.气化炉是lGCc系统的关键设备之一,在煤气(2)冷煤气效率,即气化生成的煤气的化学能化过程中,部分碳在燃烧区的氧化气氛下燃烧,产与气化用煤的化学能的比值。 生的高温用来切断煤中高分子化学键,使其与气(3)热煤气效率,即(气化生成的煤气的化学收稿日期:2009_03刨;修改稿收到日期:2009J06.15 作者简介:刘芳兵(1984.),女,山东莱州人。硕士研究生,研究方向为IGcc建模与仿真。 ?809?

煤气化联合循环发电技术浅析

煤气化联合循环发电技术浅析 摘要:本文浅要分析了整体煤气化联合循环发电的关键技术,并简单展望了整体煤气化联合循环发电技术的发展前景。 关键词:关键技术联合循环降低成本 整体煤气化联合循环(IGCC-IntegratedGasificationCombinedCycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。 由于IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。 一、影响IGCC系统性能的关键技术 从理论上IGCC整个系统大致可分为三个相对独立的部分:煤气制备子系统、联合循环子系统和空气分离子系统。这三个子系统的技术均有成熟技术,但是第一台IGCC电站---美国的冷水电站直到1987年才开始成功运转。这主要是因为IGCC技术投资成本过高,影响系统性能的关键技术尚不过关等因素。下面详细介绍一下三个子系统中的关键技术及其发展现状。 1、煤气制备子系统 与常规的燃气蒸汽联合循环相比,IGCC系统所不同的是煤气制备子系统,即煤的气化和净化系统及其附属设备。因此,能量转换效率高的灵活气化技术和合适的粗煤气净化技术是IGCC系统技术的关键。 煤的气化床的形式有四种基本的气化炉装置:喷流床气化炉(如芬兰的Shell炉)、流化床气化炉(如美国的KRW炉)、固定床气化炉(如英国的BG/L炉)和熔融床气化炉(如

整体煤气化联合循环

整体煤气化联合循环(IGCC)现状及发展趋势 供稿人:宋鸿供稿时间:2009-12-23 关键字:整体煤气化联合循环(IGCC) 现状发展趋势 一、IGCC行业发展概况 整体煤气化联合循环(Integrated gasification combined cycle,IGCC)是指将煤炭、生物质、石油焦、重渣油等多种含碳燃料进行气化,将得到的合成气净化后与高效的联合循环相结合的先进动力系统。这种系统不仅可以符合2005-2010年日益严格的脱硫脱硝除尘要求,而且可以符合2010-2020年排上日程的微颗粒(PM10、PM2.5)和金属元素(如汞)的排放要求,同时也克服了天然气供应不足和价格昂贵的问题,并具有延伸产业链,发展循环经济的技术优势。从系统构成及设备制造的角度来看,这种系统继承和发展了当前热力发电系统几乎所有技术,代表21世纪洁净煤发电技术的发展方向。 IGCC的研发始于二十世纪七十年代初,1972年在西德Lǔnen 的Kellerman电厂建立了第一座IGCC装置,但世界上真正试运成功的第一座IGCC电站是1984年启动的美国加州Cool Water 电站。Cool Water电站成功地验证了IGCC技术的可行性,跨过了原理概念性开拓验证阶段,使IGCC从此转上了较为稳健、有效的开发阶段。之后,美国、英国、荷兰、西班牙、德国、日本、印度等国纷纷建起了IGCC商用化示范电站,其中最受关注的是美国的Wabash River(1995)、Free town(1995)、Tampa(1996)和Pinon Pine电站(1996),以及欧洲荷兰的Buggenum电站(1994)、西班牙的Puertollano电站(1998)等。它们多已并入电网作商用化示范运行,证明能够实现有害物质零排放、利于环境保护(污染物排放量仅为常规燃煤电站的1/10,脱硫效率达99%,氮氧化物排放只有常规电站的15%-20%,耗水只有常规电站的1/2-1/3),净效率可达43%以上(高于超临界参数燃煤发电机组在同样净化要求下的最高水平),运行可靠性良好,其建设投资和运行成本基本上已具备竞争力。近年来,IGCC的发展呈现

相关文档
最新文档