高一数学 函数与方程 教案

高一数学 函数与方程 教案
高一数学 函数与方程 教案

第三章 函数的应用

函数与方程

一、函数的零点 1.函数零点的概念

对于函数()y f x =,我们把使_______的实数x 叫做函数()y f x =的零点. 易错提醒

1.函数的零点是实数,而不是点. 2.并不是所有的函数都有零点.

3.若函数有零点,则零点一定在函数的定义域内. 2.函数零点与方程根的联系

函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的________.所以方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点.

二、函数零点的判断

如果函数()y f x =在区间[,]a b 上的图象是_______一条曲线,并且有_______,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 注意:由零点存在性定理只能判断出零点存在,不能确定零点的个数. 三、二分法的定义

对于在区间[,]a b 上连续不断且______的函数()y f x =,通过不断地把函数()f x 的零点所在的区间________,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

注意:用二分法求函数的零点近似值的方法仅对函数的变号零点(曲线通过零点时函数值的符号变号)适用,对函数的不变号零点(曲线通过零点时函数值的符号不变号)不适用.

四、用二分法求函数零点近似值的步骤

给定精确度ε,用二分法求函数()f x 零点近似值的步骤如下: 1.确定区间[,]a b ,验证_______,给定精确度ε. 2.求区间(,)a b 的中点c . 3.计算()f c ,

(1)若()0f c =,则c 就是函数的零点;

(2)若()()0f a f c ?<,则令b c =(此时零点0(,)x a c ∈); (3)若()()0f c f b ?<,则令a c =(此时零点0(,)x c b ∈).

4.判断是否达到精确度ε:即若________,则得到零点近似值a (或b );否则重复2~4.

名师提醒

1.应用二分法求函数零点近似值(方程的近似解)时,应注意在第一步中要使: (1)区间[,]a b 的长度尽量小;

(2)()f a ,()f b 的值比较容易计算,且()()0f a f b ?<.

2.由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.

易错辨析

精确度与精确到不是一回事,精确度是近似数的误差不超过某个数,就说它的精确度是多少,即设x 为准确值,x '为x 的一个近似值,若x x ε'-<,则x '是精确度为ε的x 的一个近似值.而按四舍五入的原则得到准确值x 的前几位近似值x ',x '的最后一位有效数字在某一数位,就说精确到某一数位.

K 知识参考答案:

1.函数零点的求法

求函数的零点一般有两种方法.

(1)代数法:根据零点的定义,解方程()0f x =,它的实数解就是函数()y f x =的零点. (2)几何法:若方程()0f x =无法求解,可以根据函数()y f x =的性质及图象求出零点.

【例1】已知函数

221,1

()1log ,1

x x f x x x ?-≤=?+>?,则函数()f x 的零点为________.

【例2】若函数()2

f x x ax b =-+的两个零点是2和3,则函数()2

1g x bx ax =--的零点是

A .1-和

16 B .1和16

- C .12和13

D .1

2

-

2.函数零点个数的判断方法

(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.

(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.学科#网

(3)数形结合法:转化为两个函数的图象的交点个数问题,先画出两个函数的图象,看其交点个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.

【例3】已知01a <<,则函数log x

a y a x =-的零点的个数为______.

【技巧点拨】判断函数()()()f x h x g x =-的零点个数问题,可采用数形结合的方法. 3.判断函数零点、方程的根所在的区间

确定函数的零点(方程的根)所在的区间时,可以利用零点的存在性定理转化为判断区间两端点对应的函数值是否异号来确定,也可以利用数形结合法,通过画函数图象与x 轴的交点来确定. 【例4】已知实数,a b 满足23,32a

b

==,则函数()x

f x a x b =+-的零点所在的区间是 A .(2,1)-- B .(1,0)- C .(0,1)

D .(1,2)

4.求与零点(或方程的根)有关的参数的取值范围 (1)已知函数零点所在区间求参数或参数的取值范围

根据函数零点或方程的根求解参数的关键是结合条件给出参数的限制条件,此时应分三步: ①判断函数的单调性;

②利用零点存在性定理,得到参数所满足的不等式;

③解不等式,即得参数的取值范围.在求解时,注意函数图象的应用. (2)已知函数零点的个数求参数或参数的取值范围

一般情况下,常利用数形结合法,把此问题转化为求两函数图象的交点问题. 【例5】函数()2

2x f x a x

=--的一个零点在区间()1,2内,则实数a 的取值范围是 A .()1,3 B .()1,2 C .()0,3

D .()0,2

【例6】已知函数()()2

1,1

,1

a x x f x x a x ?-+≤?=?->??, 函数()()2g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数a 的取值范围是________.

5.二次函数的零点与一元二次方程根的分布问题 (1)二次函数2

)( 0y ax bx c a =++>的零点:

0?> 0?= 0?<

二次函数

2)( 0y ax bx c a =++>

的图象

与x 轴的交点 (x 1,0),(x 2,0)

(x 1,0)

无交点 零点个数

2

1

(2)一元二次方程20ax bx c ++=在区间内的根的问题一般转化为相应的二次函数的零点问题,转化时需要从三个方面考虑: ①判别式;

②区间端点函数值的正负; ③对称轴2b

x a

=-

与区间端点的关系. 【例7】若方程()()2

1210x k x k +--+=的一个根在区间()2,3内,则实数k 的取值范围是 A .()3,4 B .()2,3 C .()1,3

D .()1,2

【例8】(1)m 为何值时,2

()234f x x mx m =+++. ①有且仅有一个零点; ②有两个零点且均比1-大.

(2)若函数2()4f x x x a =-+有4个零点,求实数a 的取值范围.

6.二分法的适用条件

当方程()0f x =同时满足下列三个条件时:

(1)函数()f x 在闭区间[,]a b 上的图象是一条连续曲线; (2)函数()f x 在区间(,)a b 上有唯一的零点; (3)()()0f a f b ?<.

用二分法一定能够求出方程()0f x =的近似解.

【例9】下列函数图象与x 轴均有公共点,其中能用二分法求零点的是

7.二分法的简单应用

二分就是平均分成两部分,二分法就是通过不断地将所选区间一分为二,逐步逼近零点的方法,找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.学.科网 【例10】用二分法求函数()f x 的一个正实数零点时,经计算:()()0.640,0.720f f <>,()0.680f <,

()0.740f >,则函数()f x 的一个精确度为0.1的正实数零点的近似值为

A .0.64

B .0.8

C .0.7

D .0.6

1.函数f(x)=x2–3x–4的零点是

A.(1,–4)B.(4,–1)C.1,–4 D.4,–1 2.函数y=ax–2的零点有

A.0个B.1个

C.2个D.3个3.对于用二分法求函数的零点的说法,下列正确的是A.函数只要有零点,就能用二分法求

B.零点是整数的函数不能用二分法求

C.多个零点的函数,不能用二分法求零点的近似解

D.以上说法都错误

4.方程

1

x

x

-=的一个实数解的存在区间为

A.(0,1)B.(0.5,1.5)

C.(–2,1)D.(2,3)

5.方程2x+x=0在下列哪个区间内有实数根

A.(–2,–1)B.(0,1)

C.(1,2)D.(–1,0)

6.根据表格中的数据,可以断定函数f(x)=e x–x–2的一个零点所在的区间是

x+2 1 2 3 4 5

x–1 0 1 2 3

e x0.37 1 2.72 7.39 20.09

A.(–1,0)B.(1,2)

C.(0,1)D.(2,3)

7.已知函数f(x)=(1

4

)x–

1

5

x,那么函数f(x)零点所在的区间可以是

A.(–1,0)B.(0,1

5

)C.(

1

5

1

4

)D.(

1

4

,1)

8.已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值:

x 1 2 3 4 5 6

f(x)12 10 –2 4 –5 –10

函数f(x)在区间[1,6]上的零点至少有__________个.

9.函数f(x)=ax2+2ax+c(a≠0)的一个零点为1,则它的另一个零点是__________.

10.已知函数f(x)在定义域R上的图象如图所示,则函数f(x)在区间R上有__________个零点.

11.若f(x)在区间[a,b]内单调,且f(a)?f(b)<0,则f(x)在区间[a,b]内

A.至多有一个根B.至少有一个根

C.恰好有一个根D.不确定

12.方程x3–x–1=0在[1,2]的一个近似解(精确到0.1)是

A.1.2 B.1.3 C.1.4 D.1.5

13.已知函数f(x)=3x+x–5的零点x0∈[a,b],且b–a=1,a,b∈N*,则a+b=

A.–2 B.1 C.2 D.3

14.已知二次函数f(x)=ax2–(a+2)x+1,若a为整数,且函数f(x)在(–2,–1)上恰有一个零点,则a的值是

A.–1 B.1 C.–2 D.2

15.方程x3+x–1=0的解x∈[n,n+1](n∈N),则n=__________.

16.方程x5–x–1=0的一个零点存在的区间可能是__________.(端点值为整数)

17.已知函数f(x)对一切实数x都有f(2–x)=f(2+x),若函数f(x)恰有4个零点,则这些零点之间的和为__________.

18.已知函数f (x )=x +2,判断函数g (x )=[f (x )]2+f (x 2)有无零点?并说明理由.

19.利用二分法求方程x 2–2=0的一个正根的近似值(精确到0.1).

20.(2018?浙江)已知λ∈R ,函数f (x )=2443x x x x x λ

λ-≥??-+

,,,当λ=2时,不等式f (x )<0的解集是__________.若

函数f (x )恰有2个零点,则λ的取值范围是__________.

21.(2016?天津)已知函数2(43)3,0

()(01)log (1)1,0

且a x a x a x f x a a x x ?+-+<=>≠?

++≥?在R 上单调递减,且关于x 的方程|()|23

x

f x =-恰有两个不相等的实数解,则a 的取值范围是__________.

幂函数教学设计

§2.3幂函数(一) -----教学设计人:刘宏德 一.教材分析 幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合检测。 二.学情分析 学生通过对指数函数和对数函数的学习,已经初步掌握了如何去研究一类函数的方法,即由几个特殊的函数的图象,归纳出此类函数的一般的性质这一方法,为学习本节课打下了基础。 三.教学目标 1.知识目标 (1)通过实例,了解幂函数的概念; (2)会画简单幂函数的图象,并能根据图象得出这些函数的性质; (3)了解幂函数随幂指数改变的性质变化情况。 2.能力目标 在探究幂函数性质的活动中,培养学生观察和归纳能力,培养学生数形结合的意识和思想。 3.情感目标 通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意 识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。四.教学重点常见的幂函数的图象和性质。 五.教学难点画幂函数的图象引导学生概括出幂函数性质。 六.教学用具多媒体 七.教学过程 (一)创设情境(多媒体投影) 问题一:下列问题中的函数各有什么特征? (1)如果张红购买了每千克1元的蔬菜w(kg),那么她应支付p=w元.这里p是w的函数. (2)如果正方形的边长为a,那么正方形的面积为S=a2.这里S是a的函数. (3)如果立方体的边长为a,那么立方体的体积为V=a3.这里V是a的函数.

(4)如果一个正方形场地的面积为S,那么这个正方形的边长为a=.这里a是S的函数. (5)如果某人t(s)内骑车行进了1km,那么他骑车的平均速度为v=t-1(km/s).这里v是t的函数. 由学生讨论、总结,即可得出:p=w,s=a2,a=,v=t-1都是自变量的若干次幂的形式. 问题二:这五个函数关系式从结构上看有什么共同的特点吗? 这时,学生观察可能有些困难,老师提示,可以用x表示自变量,用y表示函数值,上述函数式变成:y=x a的函数,其中x是自变量,a是实常数.由此揭示课题:今天这节课,我们就来研究:§2.3幂函数 (二)、建立模型 定义:一般地,函数y=x a叫作幂函数,其中x是自变量,a是实常数。(投影幂函数的定义。) 深化认知(1)下列函数是幂函数的是: A.y=2x+1 B.y=3x2 C.y=x-3 D.y=1 (2)幂函数与指数函数有什么联系和区别? 学生回答,老师点评。 引导:有了幂函数的概念后,我们接下来做什么?―――研究幂函数的性质。 通过什么方式来研究?――――――画函数的图象。 为使作图高效,我们可先做点什么―――分析函数的定义域、奇偶性。(三)问题探究 1. 对于幂函数y=x a,讨论当a=1,2,3,,-1时的函数性质. 填表

【新教材】 新人教A版必修一 函数与方程 教案

2019-2020学年新人教A版必修一函数与方程教案 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c (a〉0)的图象与零点的关系 Δ>0Δ=0Δ〈0 二次函数y=ax2+bx +c(a〉0)的图象 与x轴的交点(x1,0),(x2,0)(x1,0)无交点 零点个数210 概念方法微思考 函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点? 提示不能. 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.(×) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×) (3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.(√) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)

高中数学对数函数教案

高中数学对数函数教案 数学对数函数教案【教学目标】 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 数学对数函数教案【教学建议】 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 数学对数函数教案【教学设计示例】 一.引入新课 一.对数函数的概念 1.定义:函数的反函数叫做对数函数. 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的 认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故 有着相同的限制条件. 在此基础上,我们将一起来研究对数函数的图像与性质.

中职数学第一册指数函数对数函数测试题

20XX 级建筑部3月份月考数学测试题 第Ⅰ卷(选择题,共60分) 一、选择题(本大题共20小题,每小题3分,共60分。在每小题所给出的四个选项中,只有一个符合题目要求,不选、多选、错选均不得分) 1、下列函数是幂函数的是( ) A 3+=x y ; B 3x y =; C x y 3=; D x y 2log = 2、数列-3,3,-3,3,…的一个通项公式是( ) A. n a =3(-1) n+1 B. n a =3(-1)n C. n a =3-(-1)n D. n a =3+(-1)n 3、对数1log 3的值正确的是( ). A. 0 B.1 C. 2 D. 以上都不对 4、将对数式24 1 log 2 -=化成指数式可表示为( ) A.224 1-= B.4122 =- C.2412 =?? ? ??- D.2412 -=?? ? ?? 5、若指数函数的图像经过点?? ? ??21,1,则其解析式为( ) A.x y 2= B.x y ??? ??=21 C. x y 4= D. x y ??? ??=41 6、下列运算中,正确的是( ) A.5553 44 3=? B.4 35÷553 4= C.55 3 44 3=??? ? ? ? D.05543 43=?- 7、已知3log 2log a a >,则a 的取值范围是( ) A 1>a ; B 1a a 或 8、将对数式ln 2x =化为指数式为 ( ) A. 210x = B. x = 2 C. x = e D. x = e 2 9、4 32813?-的计算结果为( )。 A .3 B.9 C.3 1 D.1 10.下列函数,在其定义域内,既是奇函数又是增函数的是( )

高中数学必修一幂函数教案

高中数学必修一幂函数 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学必修一幂函数教案 教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 问题引入. 索一般幂函数的图象规律.

教学过程与操作设计:

环节教学内容设计师生双边互动 组织探究 材料二:幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定 义,并且图象都过点(1,1); (2)0 > α时,幂函数的图象通过原 点,并且在区间) ,0[+∞上是增函数.特别 地,当1 > α时,幂函数的图象下凸;当 1 0< <α时,幂函数的图象上凸; (3)0 < α时,幂函数的图象在区间 ) ,0(+∞上是减函数.在第一象限内,当x从 右边趋向原点时,图象在y轴右方无限地逼 近y轴正半轴,当x趋于∞ +时,图象在x轴 上方无限地逼近x轴正半轴. 师:引导学生 观察图象,归纳概 括幂函数的的性质 及图象变化规律. 生:观察图 象,分组讨论,探 究幂函数的性质和 图象的变化规律, 并展示各自的结论 进行交流评析,并 填表.

探究与发现 1.如图所示,曲线 是幂函数αx y=在第一象 限内的图象,已知α分别 取2, 2 1 ,1,1 -四个值,则相 应图象依次 为:. 2.在同一坐标系内,作出下列函数的图 象,你能发现什么规律? (1)3- =x y和3 1 - =x y; (2)4 5 x y=和5 4 x y=. 规律1:在第 一象限,作直线 )1 (> =a a x,它同 各幂函数图象相 交,按交点从下到 上的顺序,幂指数 按从小到大的顺序 排列. 规律2:幂指 数互为倒数的幂函 数在第一象限内的 图象关于直线x y= 对称. 作业回馈 1.在函数 1 , , 2 , 1 2 2 2 = + = = =y x x y x y x y中,幂函数的个数为: A.0 B.1 C.2 D.3 环节呈现教学材料师生互动设计2.已知幂函数) (x f y=的图象过点 )2 ,2(,试求出这个函数的解析式. 3.在固定压力差(压力差为常数)下, 当气体通过圆形管道时,其流量速率R与管 道半径r的四次方成正比. (1)写出函数解析式; (2)若气体在半径为3cm的管道中,流 量速率为400cm3/s,求该气体通过半径为r 的管道时,其流量速率R的表达式; (3)已知(2)中的气体通过的管道半 径为5cm,计算该气体的流量速率. 4.1992年底世界人口达到54.8亿, 若人口的平均增长率为x%,2008年底世界人 口数为y(亿),写出: (1)1993年底、1994年底、2000年底 的世界人口数; (2)2008年底的世界人口数y与x的 函数解析式.

高一数学必修一函数与方程知识梳理

高一数学必修一函数与方程知识梳理 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,以下是函数与方程知识梳理,请大家学习。 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx 有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(bfaf是()fx在区间,ab内有零点的充分不必要条件。 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab 内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。(2)函数)(xfy零点个数(或方程0)(xf实数根的个

数)确定方法 ①代数法:函数)(xfy的零点0)(xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。(3)零点个数确定 0)(xfy有2个零点0)(xf有两个不等实根; 0)(xfy有1个零点0)(xf有两个相等实根; 0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度 ②求区间(,)ab的中点c; ③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ) 若()()0fafc,则令bc(此时零点0(,)xac (ⅲ) 若()()0fcfb,则令ac(此时零点0(,)xcb 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的

高三数学一轮复习教案:函数与方程 必修一

必修Ⅰ—08 函数与方程 1、函数的零点与方程的根:一般地,对于函数 ()f x ,如果存在实数c ,当x c =时,()0f c =,那么把x c = 叫做函数()f x 的零点.解方程()0f x =,即得()f x 的所有零点. 2、二分法的基本思想: (1)先找到a b 、,使(),()f a f b 异号,说明在区间()a b 、内一定有零点,然后求()2 a b f +. (2)假设()0,()0,f a f b a b <><,如果()2a b f +=0,该点就是零点;如果()2 a b f +<0,则在区间(,)2a b b +内有零点,如果()2a b f +>0,则在区间(,)2 a b a +内有零点, (3)按上述方法再求该区间中点的函数值,这样就可以不断接近零点.通过每次把()f x 的零点所在小 区间收缩一半的方法,使区间的两个端点逐步逼近函数的零点,以求得零点的近似值,这种方法叫做二分法. 3、函数的零点存在性: 如果函数()f x 在区间(,)a b 上是连续不间断的,且()()0f a f b ?<,则函数()f x 在区间(,)a b 上 存在实数c ,当x c =时, ()0f c =, x c =称为函数()f x 在区间(,)a b 上的一个零点.它只能判定函数在区间上有零点,但不能判定具体个数. 例1、 已知函数 2()log f x x =,问方程()0f x =在区间1,44??????上有没有实数根,为什么? 例2、 用二分法求函数 3()3f x x =-的一个正实数零点(精确到0.1).

例3、 若函数2()f x x ax b =++的两零点为—2和3,则方程(2)0f x -=的解是 . 例4、 已知二次函数2()f x ax bx c =++.若,a b c >>且(1)0f =,试证明()f x 必有两个零点.

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是( ) 2. 如果二次函数 )3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) 3. A.()6,2- B.[]6,2- C.{}6,2- D.( )(),26,-∞-+∞ 4. 已知函数22)(m mx x x f --=,则)(x f ( ) A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 x 1 2 3 4 5 6

函数)(x f 在区间]6,1[上的零点至少有( ) A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数???>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数 x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)(2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大 小不能确定 10. 若一次函数b ax x f +=)(有一个零点2,则二次函数ax bx x g -=2)(的 零点是 11. 根据下表,能够判断方程)()(x g x f =有实数解的区间 是 .

高中数学必修一 函数与方程教学设计(3)

函数与方程教学设计(3) 一、教学内容解析 本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。 函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如 对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。 二、教学目标解析 1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

中职数学基础模块上册指数函数、对数函数的应用word教案

第四单元 指数函数与对数函数 一 教学要求 1.理解有理数指数幂的概念,掌握幂的运算法则. 2.了解幂函数的概念,了解幂函数y =x ,y =x 2,y =x 3,y = x 21,y =x -1,y =x -2的图像. 3.理解指数函数的概念、图像和性质. 4.理解对数的概念(包括常用对数、自然对数),了解对数的运算法则. 5.了解对数函数的概念、图像和性质. 6.了解指数函数和对数函数的实际应用. 7.通过幂与对数的计算,培养学生计算工具使用技能;结合生活、生产实例,讲授指数函数、对数函数模型,培养学生数学思维能力和分析与解决问题能力. 二 教材分析和教学建议 (一) 编写思想 1.通过温故知新完成由正整数指数幂到实数指数幂及其运算的逐步推广.让学生体验推广的过程,培养学生的数学思维方式. 2.指数函数是中职数学学习中新引进的第一个基本初等函数,因此,教材先给出了指数函数的实际背景,然后对指数函数概念的建立、指数函数图像的绘制、指数函数的基本性质,作了完整的介绍. 3.教材从具体问题引进对数概念,由求指数的逆运算引入对数运算,并研究对数运算的性质. 4.对数函数同指数函数一样,是以对数概念和运算法则作为基础展开的.对数函数的研究过程也同指数函数的研究过程一样,目的是让学生对建立和研究一个具体函数的方法有较完整的认识. 5.专设一节研究指数函数、对数函数的应用. 本单元教学的重点是指数函数与对数函数的概念、图像及其单调性. 本单元教学的难点是分数指数幂的概念、对数的概念,以及指数函数、对数函数单调性的应用. (二) 课时分配 本单元教学约需12课时,分配如下(仅供参考):

高一数学《幂函数》公开课优秀教案(表格式,经典、完美)

高一数学《幂函数》公开课教案 ★课程标准:通过实例,了解幂函数的概念;结合函数12 1 3 2 ,,,,-=====x y x y x y x y x y 的图象, 了解它们的变化情况. 一、教学目标: 1.了解幂函数概念,会用描点法画幂函数图象,通过具体实例研究幂函数的图象和性质,并会简单应用. 2.通过对幂函数的学习,使学生进一步熟练掌握研究函数的一般思想方法. 3.通过引导学生主动参与作图、分析图象,培养学生的探索精神,并在研究函数变化的过程中体会事物的量变、质变规律,感受数学的对称美、和谐美. 二、教学重点:通过五个具体的幂函数认识概念,研究性质,体会图象的变化规律. 三、教学难点:画五个幂函数的图象并由图象概括幂函数的一般性质. 四、教学用具:实物投影仪等多媒体 五、教学过程: (一)创设情境 ①如果某人购买了每千克1 元的蔬菜w 千克,那么他需要付的钱数p (元)关于购 买的蔬菜量w (千克)的函数解析式为_____________. ②如果正方形的边长为a ,那么正方形的面积S 关于a 的函数解析式为___________. ③如果正方体的边长为a ,那么正方体的体积V 关于a 的函数解析式为___________. ④如果正方形场地面积为S ,那么正方形的边长a 关于s 的函数解析式为_________. ⑤如果某人t s 内骑车行进了1 km ,那么他骑车的速度v 关于t 的函数解析式为_________. 问题1.观察这些函数解析式,它们有什么共同的结构特征吗? 【设计意图】从特殊到一般,将实际问题转化为数学问题,经历一次发现之旅. (二)引入新知 幂函数的定义:一般地,函数α x y =叫做幂函数,其中x 是自变量,α是常数. 幂函数是一种特殊的基本初等函数. 问题2.请同学们举出一些具体的幂函数. 从引例和同学们刚才举的例子中,我们可以发现,幂指数α可以是正数、负数,也可以是0. (三)探究建构 2 1 21 2.(22)23m y m m x n m n -=+-+-若是幂函数,求、.

数学必修1—9.函数与方程

第9讲 函数与方程(2) 考点1函数的零点 考法1函数零点的概念 1.把函数()y f x =的图像与横轴的交点的横坐标称为这个函数的零点.也可说成是使函数值为零的自变量的值. 函数的零点是一个实数,而不是点,例如函数1y x =+的零点为1-,不是(1,0)-. 因此,函数()y f x =的零点就是方程()0f x =实数根.2()23f x x x =--的零点就是方程2230x x --=的两个实根. 2.并不是每一个函数都有零点,如函数2()1f x x =+没有零点. 3.若函数有零点,零点一定在定义域内. 考法2存在性定理 如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()f a ()0f b ?<,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使 ()0f c =,这个c 也就是方程()0f x =的根. 函数在区间[,]a b 上有零点必须满足两个条件:①连续;②()()0f a f b ?<. 1.函数1()f x x =,易知(1)(1)0f f -?<,但1()f x x =在(1,1)-内没有零点. 2.函数()y f x =在区间(2,2)-内没有零点. 1.(2011·全国课标卷·文科)在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为 C A.1(,0)4- B.1(0,)4 C.11(,)42 D.13(,)24 考法3唯一性定理

如果函数()y f x =在区间[,]a b 上连续且单调,如果有()()0f a f b ?<,那么函数()y f x =在区间(,)a b 内有且仅有一个零点. 1.(2014·北京卷·文科)已知函数26()log f x x x = -,在下列区间中,包含()f x 零点的区间是 A.(0,1) B.(1,2) C.(2,4) D.(4,)+∞ 考点2判断函数的零点方法 考法1解对应的方程 1.求函数)1lg()(-=x x f 的零点. 2.求函数32()89f x x x x =--的零点. 考法2图像法 1.(2013·江西卷·理科)若a b c <<,则函数()()()()()f x x a x b x b x c =--+--+ ()()x c x a --两个零点分别位于区间 A A.(,)a b 和(,)b c 内 B.(,)a -∞和(,)a b 内 C.(,)b c 和(,)c +∞内 D.(,)a -∞和(,)c +∞内 2.(2010·天津卷·理科)函数()23x f x x =+的零点所在的一个区间是 B A.(2,1)-- B.(1,0)- C.(0,1) D.(1,2) 3.(2010·浙江卷·文科)已知0x 是函数1()21f x x =+-的一个零点,若10(1,)x x ∈ ,20(,)x x ∈+∞,则 B A.1()0f x <,2()0f x < B.1()0f x <,2()0f x > C.1()0f x >,2()0f x < D.1()0f x >,2()0f x > 4.设0x 是函数21()()log 3 x f x x =-的零点,若00a x <<,则()f a 的值满足 A.()0f a = B.()0f a < C.()0f a > D.符号不确定 考点3函数零点的应用 考法1判断函数零点的个数及所在的区间

中职数学:幂函数教学教案

2.3幂函数 一.教学目标: 1.知识技能 (1)理解幂函数的概念; (2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用. 2.过程与方法 类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质. 3.情感、态度、价值观 (1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性. 二.重点、难点 重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质 5.学法与教具 (1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质; (2)教学用具:多媒体 三.教学过程: 引入新知 阅读教材P90的具体实例(1)~(5),思考下列问题. (1)它们的对应法则分别是什么? (2)以上问题中的函数有什么共同特征? 让学生独立思考后交流,引导学生概括出结论 答:1、(1)乘以1 (2)求平方(3)求立方 (4)求算术平方根(5)求-1次方 =,其中x是自变量,α是 2、上述的问题涉及到的函数,都是形如:y xα 常数. 探究新知 1.幂函数的定义 =(x∈R)的函数称为幂孙函数,其中x是自变量,α是常一般地,形如y xα 数.

如112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都 是基本初等函数. 2.研究函数的图像 (1)y x = (2)12 y x = (3)2 y x = (4)1 y x -= (5)3 y x = 一.提问:如何画出以上五个函数图像 引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像. . 2

高一数学必修1函数与方程知识点总结

高一数学必修1函数与方程知识点总结 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根?函数()yfx的图像与x轴有交点?函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(

0)(xfy无零点?0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度e; ②求区间(,)ab的中点c;③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb); ④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步. 看过"高一数学必修1函数与方程知识点总结"的还看了:

人教版高一数学对数函数教案

有关高一数学对数函数的概念以及一些常见的解题方法和延伸,基本的知识点及简单的例题,希望对高中生们有帮助。 1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaM/N=logaM-logaN. (3)logaM^n=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下:

①若a<0,则N的某些值不存在,例如log- ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④ (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:aN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:①12-4=16. ②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

人教版高一数学必修一教案:幂函数

2.3.幂函数教学设计 【教学分析】 幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究2 11 32,,,,x y x y x y x y x y =====-等函数的性质和图象,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数0>α时,幂函数的图象都经过点()0,0和()1,1,且在第一象限内函数单调递增;当幂指数0<α时,幂函数的图象都经过点()1,1,且在第一象限单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习. 将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了1 2 ,,-===x y x y x y 等三个简单的幂函数,对它们的图像和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径. 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 【课前准备】 1.教师准备:PPT 课件,几何画板《幂函数》导学案. 2.学生准备:课前预习幂函数定义,完成导学案1,2,并画出1 2 ,,x y x y x y ===的图象. 【教学目标】 1.知识与技能 (1)通过实例,了解幂函数的概念. (2)通过具体实例了解几个常见幂函数的图象和性质,并能进行初步的应用. (3)学会研究函数图象和性质的一般方法和思想.

高中数学 函数与方程教案 苏教版必修1

函数与方程 教学目标: 使学生掌握二次函数与二次方程这二者之间的相互联系,能运用数形结合、等价转化等数学思想. 教学重点: 利用函数的图象研究二次方程的根的分布问题. 教学难点: 利用函数的图象研究二次方程的根的分布问题. 教学过程: Ⅰ.复习引入 初中二次函数的图象及有关的问题 Ⅱ.讲授新课 问题:二次函数y=ax2+bx+c(a>0)与一元二次方程ax2+bx+c=0(a>0)之间有怎样的关系? 我的思路:(1)当△=b2-4ac>0时,二次函数y=ax2+bx+c(a>0)与x轴有两个交点(x1,0)、(x2,0),(不妨设x1<x2)对应的一元二次方程ax2+bx+c=0(a>0)有两个不等实根x1、x2; (2)当△=b2-4ac=0时,二次函数y=ax2+bx+c(a>0)与x轴有且只有一个交点(x0,0),对应的一元二次方程ax2+bx+c=0(a>0)有两个相等实根x0; (3)当△=b2-4ac<0时,二次函数y=ax2+bx+c(a>0)与x轴没有公共点,对应的一元二次方程ax2+bx+c=0(a>0)没有实根. [例1]已知集合A={x|x2-5x+4≤0}与B={x|x2-2ax+a+2≤0,a∈R},若A∪B =A,求a的取值范围. 解析:本例主要考查学生对于二次方程的根的分布解决能力和灵活转化意识. ∵A=[1,4],A∪B=A,∴B?A. 若B=φ,即x2-2ax+a+2>0恒成立,则△=4a2-4(a+2)<0, ∴-1<a<2; 若B≠φ,解法一:△=4a2-4(a+2)≥0,∴a≥2或a≤-1. ∵方程x2-2ax+a+2=0的两根为x1,2=a±a2―a―2. 则B={x|a-a2―a―2 ≤x≤a+a2―a―2 },由题意知

【新教材】新人教A版必修一 函数与方程 教案

一、2019-2020学年新人教A版必修一函数与方程教案 二、知识梳理:(阅读教材必修1第85页—第94页) 1、方程的根与函数的零点 (1)零点:对于函数,我们把使0的实数x叫做函数的零点。这样,函数的零点就是方程0的 实数根,也就是函数的图象与x轴交点的横坐标,所以方程0有实根。 (2)、函数的零点存在性定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在c,使得=0,这个C 也就是方程0的实数根. (3)、零点存在唯一性定理:如果单调函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在唯一c,使得=0,这个C 也就是方程0的实数根. (4)、零点的存在定理说明: ①求在闭间内连续,满足条件时,在开区间内函数有零点; ②条件的函数在区间(a,b)内的零点至少一个; ③间[a,b]上连续函数,不满足,这个函数在(a,b)内也有可能有零点,因此在区间[a,b]上连续函数,是函数在(a,b)内有零点的充分不必要条件。 2、用二分法求方程的近似解 (1)、二分法定义:对于区间[a,b]连续不断且的函数通过不断把区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。 (2)、给定精确度()用二分法求函数的零点近似值步骤如下: ①确定区间[a,b],验证给定精确度(); ②求区间(a,b)的中点c; ③计算 (I)若=0,则c就是函数的零点; (II)若则令b=c,(此时零点); (III)若则令a=c,(此时零点); ④判断是否达到精确度,若|a—b|,则得到零点的近似值a(或b),否则重复②—-④步骤. 函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解,由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的程序,借助计算器或者计算机来完成计算.

相关文档
最新文档