美国材料基因组计划 简介

美国材料基因组计划  简介
美国材料基因组计划  简介

美国材料基因组计划简介

东北大学秦高梧

2012年11月1日

一、项目背景

自上个世纪八十年代起,技术的革新和经济的发展越来越依赖新材料的进步。目前,从新材料的最初发现到最终工业化应用一般需要10~20年的时间。例如,作为目前移动电子设备所用的Li电池,从上世纪70年代中期实验室原型到90年代晚期应用,前后花了近20年时间,但是至今还没能应用到电动汽车上,很明显,新材料的研发步伐严重滞后于产品的设计。

当前,面对竞争激励的制造业和快速的经济发展,材料科学家和工程师必须缩短新材料从发现到应用的研发周期,以期来解决21世纪的巨大挑战。然而,当前的新材料研发主要依据研究者的科学直觉和大量重复的“尝试法”实验。其实,有些实验是可以借助现有高效、准确的计算工具,然而,这种计算模拟的准确性依然很弱。制约材料研发周期(图1)的另一因素是从发现、发展、性能优化、系统设计与集成、产品论证及推广过程中涉及的研究团队间彼此独立,缺少合作和相互数据的共享以及材料设计的技术有待大幅度提升。

图1 新材料研发周期示意图

二、项目的目标

最近在工程领域出现的集成材料计算与计算机技术相结合范例表明,可以把现有的材料研发周期20~30年缩短到2~3年。《材料基因组计划》拟通过新材料研制周期内各个阶段的团队相互协作,加强“官产学研用”相结合,注重实验技术、计算技术和数据库之间的协作和共享(利益通过学习标识以解决知识产权问题),目标是把新材料研发周期减半,成本降低到现有的几分之一,以期加速美国在清洁能源、国家安全、人类健康与福祉以及下一代劳动力培养等方面的进步,加强美国的国际竞争力。《材料基因组计划》项目在2012年已投入1亿美元。整个目标和具体内容如图2所示。

图2 美国《材料基因组计划》的整个目标和具体内容

三、主要内容

3.1 材料计算手段

目前,从电子到宏观层面都有各自的材料计算软件,但是还不能做到高效跨尺度计算以达到材料性能预测的目的;各个软件之间彼此不兼容;由于知识产权问题,彼此不能共享计算工具的源代码。在这方面未来的工作主要集中在以下几个方面:

(1)建立准确的材料性能预测模型,并依据理论和经验数据修正模型预测;

(2)建立开放的平台实现所有源代码共享;

(3)开发的软件界面友好,以便进一步拓展到更多的用户团体。

3.2 实验手段

(1)实验为弥补理论计算模型的不足和构架不同尺度计算间的联系;

(2)补充非常基础的材料物理,化学和材料学的数据,涉及材料的电子,力学,光学等性能数据,构建材料性能相关的成分,组织和工艺间内在联系,并建立庞大的数据库;

(3)利用实验数据修正计算模型,加速新材料的筛选及高效确定。

3.3 数字化数据库建立

(1)构建不同材料的基础数据库、数据的标准化以及它们的共享系统;

(2)拓展云计算技术在材料研发中的作用,包括远程数据存储与共享;

(3)通过数字化数据库建设,联系科学家与工程师共同高效开发新材料。

四、研究重点

4.1 面向国家安全的新材料

(1)轻质防护材料

(2)电子材料

(3)能源存储

(4)生物替换材料

(5)密切注重与能源及电子行业相关的矿物(Pt,Te,RE等)

(6)积极开展能够替代稀少元素的相关新材料研发

4.2 面向人类健康与福祉新材料

(1)生物相容性材料(假肢,植入材料与器件,人工器官等);

(2)防护人体受伤的防护材料

例如,关于防护脑损伤材料,在伊拉克和阿富汗战争中有36万人游创伤性脑损伤,普通民众平时的运动及车祸等美国每年达170万人,相应的医疗费用达600亿美元/年。

4.3 面向清洁能源新材料

(1)生物质能源转化用催化剂

(2)人工光合作用材料

(3)光伏电池材料

(4)能源存储材料

(5)汽车轻量化材料(10%重量下降可以节省能耗6-8%的能耗)

(6)混合动力、电动汽车及氢能汽车

4.4下一代劳动力培养

(1)改变单兵作战,强化“官产学研用”之间的协作与共享机制

(2)在材料开发领域,强化实验学家、理论学家、计算机人才和工程师之间的密切合作(3)数字化数据的共享与计算平台的开放

(4)加强在高校的本科生和研究生中的交叉学科课程设置

(5)企业员工针对材料设计与模拟软件和相关程序的再教育

五、具体分工

计算材料与设计化学计划(美国能源部,美国国家自然科学基金委员会)1)高质量软件工具包,新算法、与已有工具包的兼容性

2)发展新的标征技术改善算法与软件

先进材料设计计划(美国标准化科学与技术研究所)

1)建立标准的基础设施、参考数据库和卓越计算中心

2)可靠的计算机建模与仿真材料的优化发展

3)密切协调与DOE和NSF的软件和设计的实验工具

能源效率和可再生能源下一代材料计划(美国能源部)

1)利用计算工具,以加速能源技术相关新材料的制造和表征。

2)制造过程中用新材料,具备新性能的复合材料系统和更低的制造成本,用于预测新材料空间和时间变化的建模和仿真工具

国家安全与防御能力提升的基础/应用计算材料研究(美国国防部)

下一代劳动力(美国国家自然科学基金委员会,美国国防部)

协调“官产学研用”之间的合作,人员的培训与教育

材料基因工程

材料基因工程 ——为什么是一项“颠覆性前沿技术” 1.前言 材料基因组技术是近几年兴起来的材料研究新理念和新方法,是当今世界材料科学与工程领域的最前沿。材料基因工程借鉴人类基因组计划,探究材料结构与材料性质变化的关系。并通过调整材料的原子或配方、改变材料的堆积方式或搭配,结合不同的工艺制备,得到具有特定性能的新材料。但是材料基因组与人类基因组的又有很大的区别,材料的微观结构多样化,不但成分组成可以不同,微观形貌等结构也可能千差万别,其组成-结构-性能之间的关系更加复杂。 2.材料基因组技术 2.1材料基因组技术 材料基因组计划是通过“多学科融合”实现“高通量材料设计与试验”;其核心目标在于通过“高通量计算、实验和大数据分析”技术加速材料“发现-研发-生产-应用”全过程,缩短材料研发周期,降低材料研发成本,引发新材料领域的科技创新和商业模式变革。 材料基因组技术包括高通量材料计算方法、高通量材料实验方法和材料数据库三大组成要素。 2.1.1高通量材料计算方法 高通量计算是指利用超级计算平台与多尺度集成化、高通量并发式材料计算方法和软件结合,实现大体系材料模拟、快速计算、材料性质的精确预测和新材料的设计,提高新材料筛选效率和设计水平,为新材料的研发提供理论依据。其中并发式材料计算方法包括第一原理计算方法、计算热力学方法、动力学过程算法等,跨越原子模型、简约模型和工程模型等多个层次,并整合了从原子尺度至宏观尺度等多尺度的关联算法。 高通量材料集成计算技术利用第一性原理、分子动力学与位错动力学、合金相图计算、相场计算等方法,快速并行模拟实验室中成分与性能优化的传统试错式材料研发过程,并基于材料科学知识,迅速挑选有利于目标性能的合金成分与微观结构特征,从而加速新材料的研发进程并显著降低材料研发成本。 2.1.2高通量材料实验方法 传统材料研发模式依赖于成分与工艺的不断“试错”实验优化,结合对结构-性能关系的不断理解以获得满足性能指标的材料。但是,新型关键材料具有成分多元化、复杂化、微结构多级化等特点,传统的“试错”模式在实际材料开发中不仅耗费巨大,而且几乎难以取得成功。 高通量实验平台是发展材料基因组技术具备的条件之一。高通量实验平台可以为据库提供数据支撑;而就高通量集成计算而言,高通量实验技术为各种计算模拟工作提供计算目标。材料基因组概念中的高通量实验技术具有快速制备快速表征各类金属与非金属样品的能力,典型的高通量实验方法有扩散多元结与材料基因芯片 2.1.3材料数据库 数据可以看作是感兴趣参量的具体数值,这些参量在空间与时间上的一系列

材料基因组计划MGI专题学习报告

材料科学与工程前沿课程报告 第一部分:材料基因组计划(MGI)专题学习报告 学院:材料科学与工程学院 专业:材料科学与工程 :XXXXX 学号:XXXXX 班级:XXXXX 2012年11月19日

材料基因组计划(MGI)专题学习报告 摘要:在美国2012 年财政预算中,新增了1 亿美元用以支持一项名为“材料基因组”的创新计划。美国“材料基因组计划”试图创造一个材料创新框架,以期抓住材料发展中的机遇,这个试图揭示物质构成、不同元素排列与材料功能之间关系,进而实现有目的设计新材料的科学工程,有着更强烈的实用和需求背景,也是美国为保持其在先进材料及高端制造业领域领先地位的一大举措。十多年前的中国没有能抓住“人类基因组计划”的先机,面临比“人类基因组计划”更为重要和广泛的“材料基因组计划”,我们不能再次丧失历史机遇。本文主要介绍我对材料基因计划的认识和对我们国家如何能抓住这次历史机遇提出自己的认识并提出展望。 关键词:材料基因组计划历史机遇新材料材料数据库 引言: 2011 年6 月24 日,美国总统奥巴马宣布启动一项价值超过5亿美元的“先进制造业伙伴关系”(Advanced Manufacturing Partnership,AMP)计划,呼吁美国政府、高校及企业之间应加强合作,以强化美国制造业领先地位,而“材料基因组计划”(Materials Genome Initiative,MGI)作为AMP 计划中的重要组成部分,投资将超过1 亿美元。“材料基因组”计划是“先进制造业伙伴关系”计划的主要基础部分,新兴材料才是新型制造业的基础。MGI 的实施正是抓住了AMP计划实施的“牛鼻子”,是重中之重[1]。这是金融危机之后,美国政府意识到仅靠服务业已无法支撑美国经济走出泥潭,必须重振制造业。美国制造业的振兴不是传统制造业的复兴,而是新兴制造业的培育,其中建立在材料科学基础上的新材料产业是重点之一。 2011年9月16日,奥巴马签署了《美国发明法案》,对现行专利体制进行重大变革,并宣布了一系列旨在促进科研成果转化的重要政策措施。可以看出,美国当前的科技政策更加重视科技成果的商业化和开发新市场的改革,“材料基因组计划”也体现出了这一特点:该计划将大大加快材料投入市场的种类及速度,并可通过降低研发成本和周期降低失败风险。 回顾1999 年中国参与了“人类基因组”计划的研究,负责其中3号染色体

材料基因组工程

对“材料基因组工程”的认识及看法 学号:22011216 姓名:胡方方 “材料基因组工程”这是一个既熟悉而又陌生的名词,熟悉的是“材料”和“基因组工程”,然而两者的组合就是我们这些外行人所不能想象得到的,这对我们来说是一个新的领域,因而我对它产生了些许的好奇。带着好奇的心理,我聆听了邓伟侨教授的一场关于“材料基因组工程”的课外研学讲座。 要了解“材料基因组工程”,对它有一个清晰而又正确的认识。首先,要弄懂什么是“材料”,什么是“基因组工程”;再来进一步的认识什么是“材料基因组工程”,为什么会出现以及一些现状。 “材料”是人类用于制造物品、器件、构件、机器或其他产品的那些物质。“基因组工程”就是测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。物质的基本组成单元就是原子,而将材料与基因组工程联系在一起,不难得出这是将材料与人类做一个类比,基因之于人的性状如同原子之于材料。我们知道,原子结构决定了物质的性质,性质决定了物质的用途,反之,那么想要得到有着特定功能的物质材料,我们就能够得到组成物质的原子及其原子结构。材料显微组织及其中的原子排列决定了材料的性能,就像人体细胞里的基因排列决定了人体机能一样。材料基因工程就是寻找和建立材料从原子排列到相的形成到显微组织的形成到材料性能与使用寿命之间的相互关系,把成分-结构-性能关系的数据库与计算材料设计结合起来,可以大大加快材料研发速度、降低材料研发的成本、提高材料设计的成功率。 人类基因工程计划的实施和取得的进展和成果,以及现实生活中许许多多的的例子给了科学家和研究人员很大的启发。 一、“材料基因组工程”是在何种的时代背景下被提出的。 技术的革新和经济的发展越来越依赖于新材料的进步,就像身体是革命的本钱,良好的材料则是技术革新和经济发展的载体、基石,没有优良的材料作支撑,一切都只是空谈,都是虚无缥缈的,先进的科学技术也就不能够被充分的表达。目前,从新材料的最初发现到最终工业化应用一般需要10~20年的时间。例如,作为目前移动电子设备所使用的Li电池,从上世纪70年代中期的实验室原型到90年代晚期的应用,前后花了近20年的时间,但是至今还没能够应用到电动汽车上,很明显新材料的研发步伐严重滞后于产品的设计,也就是说先进的科学技术因为材料的落后而不能够付诸现实。而这一类事情带来的结果不仅仅局限在材料方面,他带来了跟多的能源的浪费以及环境的污染等等。当前,面临竞争激烈的制造业和快速的经济发展,材料科学家和工程师必须缩短新材料的发现到付诸应用的研发周期,只有这样才能解决在21世纪这个科学技术与经济呈爆炸式发展的时代对新型材料的大量需求的巨大挑战。然而,目前的新材料研发主要依据研究者的科学直觉和大量重复的尝试实验。其实很大一部分的实验是可以依靠高效、准确的计算工具模拟来实现就可以得到结果的,但是现实中我们所拥有的计算准确性不够,而浪费大量的时间和原料。另一方面,新材料从发现、发展、性能优化、系统设计和集成、产品论证及推广过程中所涉及的研究团队间彼此独立、缺少合作和相互间数据、技术的共享,使得研发周期再一次的延长。 二、“材料基因组工程”的主要目的是什么呢?

美国混凝土结构建筑规范和注释

这份文件的规范部分包括使用在建筑上的混凝土结构的设计和施工以及在非建筑结构上的适用部位。 其中包括:图纸和施工说明;检验;材料;耐久性要求;混凝土质量,搅拌和浇筑;模板;内置管道;施工缝; 配筋;分析和设计;强度和适用性;弯曲和轴向荷载;剪切和扭转;钢筋的锚固和连接;楼板系统;墙;基础;预制 混凝土;组合受弯构件;预应力混凝土;壳体和折板式构件;现有结构的强度评估;抗震设计;结构素混凝土;支撑 和联系模型(附录A);替代设计(附录B);反复荷载和强度折减系数(附录C);和混凝土的锚固(附录D)。 工程使用材料的质量和检验必须参照适当的美国材料与试验协会标准的规格。钢筋的焊接必须参照适当的美国国 家标准协会或美国焊接协会标准。 本规范作为一般建筑规范的参考,而且过去的版本已经在这一方面广泛的使用。本规范是以一种特定的格式写成 的,从而使得它参考的部分无须以规范的语言来描述。因此,这本规范没有包括任何背景的详细描述,执行规范要求 的建议以及规范的目的。而规范的注释部分则是为此目的而服务的。为了强调给出新的或者修订规定的解释,协会对 于规范的一些看法也在注释里有所讨论。而规范中引用的大多数研究数据则是为了广大使用者更详细的学习、参考之 用。同时,其他的一些关于执行规范要求的建议性文件也被引用到规范中。 关键字:外加剂;骨料;锚固(结构的);梁柱框架;横梁(支承);建筑规范 路径名/ 注释 大小压缩后压缩率日期时间属性CRC 方式版本 ------------------------------------------------------------------------------- 美国混凝土结构建筑规范和注释.pdf 3775745 3540989 93% 11-10-07 22:05 .....A 3512804F m3g 2.9 -------------------------------------------------------------------------------

浅谈美国规范标准中的钢结构设计

龙源期刊网 https://www.360docs.net/doc/954645011.html, 浅谈美国规范标准中的钢结构设计 作者:周正为 来源:《装饰装修天地》2018年第11期 摘要:精研美国规范标准,使用STAAD.Pro结构设计软件,结合具体项目,优化钢结构设计,提高设计市场竞争力。 关键词:钢结构;美国规范标准 1 前言 在以往的钢结构设计过程中,一般采用中国建筑科学研究院建筑工程软件研究所研发的PKPM系列CAD软件,包括SATWE计算软件和PMCAD建模软件,基本满足所承担的各类工业和民用建筑中各种规则和复杂类型的框架结构、框排架结构、排架结构、剪力墙、连续梁、拱形结构、桁架结构等。但该软件主要应用于国内市场(国内市场占有率90%以上)。随着近几年海外市场的不断拓展,同国际设计同行的交流不断增多,以美国规范为例,PKPM的模型数据并不能按美标检验杆件,因此急需我们在设计软件等方面实现同步。STAAD.Pro是 由美国世界著名的工程咨询和CAD软件开发公司—REI(Research Engineering International)从上世纪七十年代开始开发的通用有限元结构分析与设计软件,已经在国际上普遍使用,本文通过国外和国内两个具体工程实例,比较美国规范和中国规范中钢结构设计的不同,为今后的海外项目设计提供借鉴。 2 工程概述 国外项目为转接机房,使用STAAD.Pro软件按美国标准进行计算,该构筑物共两层,平面尺寸为15m×12m,高度为15m;开敞结构,多层钢结构厂房。结构按IBC2012设计。场地类别:SE类场地,重要性系数1.25;基本风压49m/s(3秒最大风速),S1=0.186, Ss=0.426, Fa=1.9368,Fv=3.242,反应修正系数(R值)x=2.5,z=2.5; 国内项目同样为转接机房,使用PKPM进行计算,平面尺寸为15.5m×13.5m,高度为14.6m,多层钢结构厂房。该项目的自然条件为抗震设防烈度为7度,基本地震加速度为 0.15g,设计地震分组为第二组;基本风压为0.45kN/m2,场地类别为三类,地面粗糙度为A 类。该工程按照国标进行设计,在该种抗震设防烈度下,钢结构房屋的抗震等级为四级。 3 计算及对比分析 3.1 地震作用

材料基因组

彭贤文材料1201 41230029 材料基因组计划 自从十九世纪八十年代以来,技术变革和经济的发展越来越依赖新材料的发展。正如硅在十九世纪七十年代引起现代信息技术产业的崛起,先进材料可能推进新兴的旨在解决能源、国家安全以及人类福利等问题的价值数十亿美元的产业的发展。随着先进材料不断应用于解决清洁能源、国家安全以及人类福利等问题,它对经济安全以及人类的幸福生活越来越重要。加速先进材料的发现和发展对提升全球竞争力也是至关重要。材料基因组计划将创建一个新的材料创新的时代。 目前,一种材料从发现到第一次投入使用的时间范围大约是10到20年,这使得新材料的发展速度远远落后与产品的开发速度。这是因为长久以来材料的发展和研究依赖科学的直觉的反复的实验。而且,当前大多数的材料设计和测试是通过旷日持久的反复试验以及表征循环来执行的。同时,一种新材料发展的各个阶段可能由不同的工程师或科研团队在不同的研究机构完成,各个阶段间缺乏促进整体快速发展的信息反馈。为实现材料的快速发展,必须加速计算模型、数据交换以及模拟材料行为的高级算法的发展来补充物理实验。改善的数据分享系统以及更加综合的工程团队将使设计、系统工程以及生产活动交互重叠。用数学模型和计算仿真来取代冗长昂贵的经验研究将显著加速材料的发展和配置。 为此,材料基因组计划将创建一个材料创新框架,首先,打造材料创新基础。材料基因组计划将研发新的综合计算、实验和数据信息学的工具。这些软件和集成工具将跨越整个材料发展过程,并以一种开放平台进行开发,提高预测能力,并按最新标准快速整合整个材料创新基础数字化信息。这一基础设施将与现有的产品设计框架无缝结合,推动材料工程设计快速、全面的发展。然后,开发数据共享平台。材料基因组计划将设置数据共享平台让研究人员能够轻松地将自己的数据导入模型,同时使研究和工程人员能够彼此整合数据,促进处于不同材料开发阶段的科学家和工程师的跨学科交流。 此外,材料基因组计划将用研发的新材料来实现国家的目标。美国目前面临的清洁能源、国家安全和人类福祉等问题的求解都有赖于先进材料的发展。对于国家安全相关材料,美国国防部和国防实验室都在材料研究方面投入巨资。研究实验室忙于轻质保护材料、电子材料、储能材料、生物替代材料等的研究。军方则使用先进材料来保护和武装军队。对于人类健康和福利相关材料,先进材料的许多应用可解决人类健康和福利面临的挑战,从生物相容性材料,如假肢或人工器官,到用于设计防止受伤的保护材料。对于清洁能源系统相关材料,众所周知开发清洁能源、减少对于石油的依赖是美国明确优先发展的项目。材料研究可以帮助找到新技术,如为生物燃料生产更好的催化剂、直接从阳光产生能量的人工光合作用、新颖高效的太阳能光伏、便携式能源存储设备等。 最后,在政府、学术界和产业界的利益相关者要接受并不断扩大材料创新基础设施的范围和内容,以给我们的下一代生产力必要的工具和方法来实现我们国家的目标。

材料基因组

材料基因组计划(MGI) 专题学习报告 材料基因组计划是人类经过信息技术革命后,充分认识到材料革新对技术进步和产业发展的重要作用,以及在复兴制造业的战略背景下提出来的。其主要目的是试图把新材料的开发周期缩短一半,打造全新环形开发流程,推动材料科学家重视制造环节,并通过搜集众多实验团队以及企业有关新材料的数据,代码,计算工具等,构建专门的数据库实现共享,致力于攻克新材料从实验室到工厂这个放大过程中的问题。材料基因组计划主要包括四大系统:材料超级计算系统,材料性能扫描测试技术系统和材料设计性能数据库与信息平台系统。[1] 图1材料连续发展示意图 一,国外研究进展 2011年6月24日,美国总统奥巴马宣布了一项超过5亿美元的先进制造业伙伴关系—计划(AMP),希望通过政府高校科研院所和企业合作来振兴强化美国的制造业先进制造业伙伴关系计划包括四个子计划:(1)用于提高美国国家安全相关行业的制造业水平投入3亿美元包括小型大功率电池先进复合材料金属加工生物制造和替代电池等新型技术产业(2)材料基因组(Materials Genome Initiative,MGI)计划通过在研究培训和基础设施方面超过1亿美元的投资,使发现开发和应用先进材料的速度提高到目前的2倍先进材料又将推动数十亿美元的新兴先进制造清洁能源和国家安全等领域的相关技术,简言之,MGI 是AMP 的基础,缩短了先进材料的开发和应用周期,才有可能掀起制造业的又一次伟大革命新型高端材料与信息技术的结合,才是第三次工业革命产业范式转变的坚实基础(3)投资7000 万美元研制下一代机器人技术(4)开发创新的高效的能源制造工艺,将耗资1.2亿美元开发创新的制造工艺和材料,使企业降低成本,减少能源消耗材料基因组计划是先进制造业伙伴关系计划的主要基础部分,新兴材料才是新型制造业的基础MGI 的实施正是抓住了AMP 计划实施的关键,是重中之重。 2011年6月底,白宫发布了美国国家科学技术委员会起草的“材料基因组计划”白皮书(Materials Genome Initiative,MGI)。白皮书提出,要实现材料领域发展模式的转变,把新材料研发和应用的速度从目前的10~20年缩短为5~10年。[2] 白宫自去年6月底推出材料基因组计划的白皮书后,目前正向相关国家实验室、大学等机构征求政策建议。

材料基因工程发展的重点和难点

材料基因工程发展的重点和难点 材料基因组计划(又名Materials Genome Initiative),简称MGI。2011年6月,时任美国总统奥巴马宣布启动材料基因组计划,意在改革传统材料研究的封闭型工作方式,培育开放、协作的新型“大科学”研发模式,从而实现将材料从发现到应用的速度至少提高1倍,成本减半的目标。 欧美发达国家的“材料基因组”正迅猛地发展起来,而国内材料科技工业与国际先进水平尚存在一定的差距,“材料基因组计划”为材料科技工业快速追赶国际先进水平提供了机遇。为避免我国在未来的新材料技术及其他高科技领域的国际竞争中处于被动地位,国务院、科技部、中国科学院、中国工程院、发展改革委、教育部、工业和信息化部、食品药品监管总局等一起合力发起国家重点研发计划《材料基因工程关键技术与支撑平台重点专项实施方案》工作,启动“材料基因工程关键技术与支撑平台”重点专项发展计划。 在欧美的材料基因组计划中,数据共享与计算工具开发至关重要。在国内,数据+人工智能是材料基因工程的核心。 在计算工具的配备上,国内现在基本可以买到高端的服务器硬件。但数据也尤为重要,尤其是大数据和数据库的建立。但在大量数据获取方面,国内仍然落后于美国和日本。 从常温的光学显微镜,电子扫描显微镜,真实色共聚焦显微镜(Hybrid),到高温激光共聚焦显微镜,材料二维的图像获取手段上,国内的现已基本满足,不足的是,高端仪器的密度比发达国家尚有差

距。 材料真实内部三维数据的获取上,国内仍多采用人工研磨拍照的方式获取,一个试样的数据获取,短则一个月,长则半年,数据的可靠性暂且不说,这样的数据获取速度,严重影响材料基因组计划的进展速度。“我国材料基因工程有望2025年进入世界并跑或领跑”则困难重重。 在自动化技术高度发达的日本和美国,都有全自动的材料内部数据获取技术。例如,全自动逐层切片成像系统(Genus_3D),可在一两天内完成一个试样数据的获取,已经助力名古屋大学等单位和研究所高效、高质量的获取材料内部的三维数据。而国内拥有类似设备的单位,寥寥无几。在材料内部数据的获取上,差距正在逐步加大。 因此,我国材料基因工程发展,大量数据的获取技术需尽早解决。

最新 美欧材料基因工程计划研究现状及启示-精品

美欧材料基因工程计划研究现状及启示 材料基因工程的研究受到了包括美国、欧洲、日本等在内的世界主要发达国家地区的重视,以下是想备搜集整理的一篇探究美欧材料基因工程计划研究内容的,欢迎阅读查看。 1研究背景 新材料的发展长期以来采用的是通过以经验、半经验为基础的传统“炒菜”式实验来摸索,并给予确认的研究模式。这种模式的效率很低,已经难以适应当前世界各国经济快速发展的需求,而且需耗费大量的资源、能源和人力,非常不经济。材料科学家一直在寻求研究和发展新材料的更快速、更经济、更有效的新途径。凝聚态物理的多体相互作用模型及理论的重大进展、计算物科和方法体系的建立、科学和技术的飞速进步等,使得对材料的结构进行计算预测及其性能模拟计算日益成为必要和可能。 美国、欧盟、日本、新加坡、中国等世界主要国家/地区都非常注重材料计算与模拟的发展,组织实施了一系列相关的研究计划和项目。始于2001年的美国能源部“高级计算科学发现项目”是开发新一代科学模拟计算机的综合计划[1].早在2003年,美国国家研究委员会针对美国国防部对材料与制造研究的需求进行了研究,并推荐将计算材料设计研究作为投资的主要方向。欧洲科学基金会的“材料的从头算模拟先进概念”计划(AB-initioSimula-tionsofMaterials,Psi-k2)致力于开发凝聚态材料在原子层级的“从头算”计算方法[2],“生物系统与材料科学的分子模拟”则关注开发计算工具,用于了解生物系统以及人工纳米材料的介观结构。 2002年,日本文部科学省启动纳米生物技术、能源和环境领域“生产技术先进仿真软件”的开发;2009年,开始“间隙控制材料设计和利用技术”;同年,文部科学省和经济产业省联合推行“分子技术战略”[3].新加坡高性能计算研究院开发的APEX(AdvancedProcessExpert)数据挖掘技术已被用于解决工业问题,研究内容包括计算化学、多尺度建模、固态电子学和纳米结构等。 2011年6月24日,美国总统奥巴马宣布了一项超过5亿美元的“先进制造业伙伴关系”计划,其中一项举措就是实施“材料基因组计 划”(MaterialsGenomeInitiative,MGI);几乎是同时,欧洲也启动了“加速冶金”(AcceleratedMetallurgy,AccMet)计划。这两项大型的研究计划都意在加速材料研发和应用的速度,并通过降低研发成本和周期降低失败风险。美国试图打造全新“环形”开发流程,推动材料科学家重视制造环节,并通过搜集众多实验团队以及企业有关新材料的数据、代码、计算工具等,构建专门的数据库实现共享,致力于攻克新材料从实验室到工厂这个放大过程中的问;欧洲则认为,在过去一万年,对人类的技术进步,相比其他材料,金属和合金贡献最大,加之欧盟历来重视防范原材料的风险,因而此次专注于高性能合金的开发。表1所示是美国、欧洲正在开展的材料基因组相关研究的概况对比。【1】

美国材料基因组计划 简介

美国材料基因组计划简介 东北大学秦高梧 2012年11月1日 一、项目背景 自上个世纪八十年代起,技术的革新和经济的发展越来越依赖新材料的进步。目前,从新材料的最初发现到最终工业化应用一般需要10~20年的时间。例如,作为目前移动电子设备所用的Li电池,从上世纪70年代中期实验室原型到90年代晚期应用,前后花了近20年时间,但是至今还没能应用到电动汽车上,很明显,新材料的研发步伐严重滞后于产品的设计。 当前,面对竞争激励的制造业和快速的经济发展,材料科学家和工程师必须缩短新材料从发现到应用的研发周期,以期来解决21世纪的巨大挑战。然而,当前的新材料研发主要依据研究者的科学直觉和大量重复的“尝试法”实验。其实,有些实验是可以借助现有高效、准确的计算工具,然而,这种计算模拟的准确性依然很弱。制约材料研发周期(图1)的另一因素是从发现、发展、性能优化、系统设计与集成、产品论证及推广过程中涉及的研究团队间彼此独立,缺少合作和相互数据的共享以及材料设计的技术有待大幅度提升。 图1 新材料研发周期示意图 二、项目的目标 最近在工程领域出现的集成材料计算与计算机技术相结合范例表明,可以把现有的材料研发周期20~30年缩短到2~3年。《材料基因组计划》拟通过新材料研制周期内各个阶段的团队相互协作,加强“官产学研用”相结合,注重实验技术、计算技术和数据库之间的协作和共享(利益通过学习标识以解决知识产权问题),目标是把新材料研发周期减半,成本降低到现有的几分之一,以期加速美国在清洁能源、国家安全、人类健康与福祉以及下一代劳动力培养等方面的进步,加强美国的国际竞争力。《材料基因组计划》项目在2012年已投入1亿美元。整个目标和具体内容如图2所示。 图2 美国《材料基因组计划》的整个目标和具体内容 三、主要内容 3.1 材料计算手段 目前,从电子到宏观层面都有各自的材料计算软件,但是还不能做到高效跨尺度计算以达到材料性能预测的目的;各个软件之间彼此不兼容;由于知识产权问题,彼此不能共享计算工具的源代码。在这方面未来的工作主要集中在以下几个方面: (1)建立准确的材料性能预测模型,并依据理论和经验数据修正模型预测; (2)建立开放的平台实现所有源代码共享; (3)开发的软件界面友好,以便进一步拓展到更多的用户团体。 3.2 实验手段 (1)实验为弥补理论计算模型的不足和构架不同尺度计算间的联系; (2)补充非常基础的材料物理,化学和材料学的数据,涉及材料的电子,力学,光学等性能数据,构建材料性能相关的成分,组织和工艺间内在联系,并建立庞大的数据库;

美国建筑结构设计规范发展概况_上_

第1期建 筑 科 学 BU ILDING SCIENCE1997年 美国建筑结构设计规范发展概况(上) 黄成若 胡德斫 (中国建筑科学研究院建筑结构研究所) 近十多年,随着科学与技术进步,建筑结构设计理论和设计方法有了很大发展,从80年代至90年代,美国和欧洲共同体的规范每隔三至五年就修订一次。90年代的规范汇集了建筑结构的最新成果。本文侧重介绍和分析美国荷载规范、混凝土规范的主要特点,以及我国规范与国际规范存在的差异。同时,对美国的钢、砌体、木结构规范也作了简要介绍。 1 美国荷载规范 房屋建筑及其它结构最小设计荷载(Minimum Design Loads for Building s and Other Structures ASCE7-93),1993年版。 美国荷载规范以往由美国国家标准协会负责,80年代初期的编号为ANSI A58.1-1982; 80年代后期由美国国家标准协会和美国土木工程师协会共同负责,此时的编号为ANSI/ ASCE7-88;进入90年代后由美国土木工程师协会负责,编号改为ASCE7-93。 1.1 荷载分类 美国荷载规范将荷载分为7类,即(1)恒荷载;(2)活荷载(指房屋建筑或其它结构由于使用或居住产生的荷载,不包括风、雪、雨、地震等自然荷载);(3)土及静水压力;(4)风荷载;(5)雪荷载;(6)雨荷载;(7)地震荷载。 1.2 荷载组合 结构的设计强度应大于下列6种组合中的最大者: (1) 1.4D (2) 1.2D+1.6L+0.5(L r或S或R); (3) 1.2D+1.6(L r或S或R)+(0.5R或0.8W); (4) 1.2D+1.3W+0.5L+0.5(L r或S 或R); (5) 1.2D+1.0E+0.5L+0.2S; (6)0.9D-1.3W或+1.0E。 式中,D=恒荷载;L=活荷载;L r=屋面活荷载;S=雪荷载;R=雨荷载;W=风荷载;E=地震荷载。 上述6种荷载组合及其荷载系数是根据概率理论按结构可靠指标 校正后得出的。 美国荷载规范与我国荷载规范最根本的区别在于,我国荷载规范有充分的法定效力,而美国荷载规范没有法定效力。具体来讲,我国材料规范(混凝土结构、钢结构等设计规范)及设计工作中有关荷载组合及荷载系数必须严格按我国荷载规范执行,而美国材料规范及设计工作中有关荷载组合及荷载系数不一定按美国荷载规范执行。例如美国钢结构规范接受了上述6种组合及相应的荷载系数,美国混凝土结构规范就不接受上述6种组合,美国混凝土规范A CI318-89,以及最近新颁布的规范A CI318-95基本上都不接受上述组合。希望我国工程设计人员能注意到这一点。 1.3 地震荷载 美国荷载规范1993年版与1988年版相比, 49

华大基因简介

华大基因简介 1999年9月9日,随着"国际人类基因组计划 1% 项目"的正式启动,北京华大基因研究中心在北京正式成立。华大基因坚持“以任务带学科、带产业、带人才”,先后完成了国际人类基因组计划“中国部分”(1%)、国际人类单体型图计划(10%)、水稻基因组计划、家蚕基因组计划、家鸡基因组计划、抗SARS 研究、炎黄一号等多项具有国际先进水平的科研工作,在《Nature》和《Science》等国际一流的杂志上发表多篇论文,为中国和世界基因组科学的发展做出了突出贡献,奠定了中国基因组科学在国际上的领先地位;同时建立了大规模测序、生物信息、克隆、健康、农业基因组等技术平台,其测序能力及基因组分析能力位居亚洲第一、世界第三;开创了科学、技术、产业相互推动的发展模式;开展了广泛的国际国内科技合作与交流;建设了一支具有世界一流水平、年轻的产学研队伍;再现了基因组科学和产业发展的深圳速度和深圳奇迹。 抓住新技术突破的机遇,华大基因主力于2007年南下深圳,成立了致力于公益性研究的事业单位深圳华大基因研究院,并于当年10月完成了第一个中国人的基因组序列图谱,又在2008年1月与英美科学家一起启动了“国际千人基因组计划”、2008年3月启动了“大熊猫基因组计划”,2008年10月完成了大熊猫基因组框架图和手工克隆猪的研制,2009年4月启动了“世界三极动物基因组计划”,2009年8月启动了“万种微生物基因组计划”。在国际合作方面,华大基因已启动了“中丹合作糖尿病项目”、“中国欧盟合作肠道微生物项目”,并与丹麦科学家成立了“中丹癌症研究中心”、与香港中文大学成立了“中?华?基因组研究中心”。 在国家领导和有关部门、地方领导及有关部门的支持和鼓励下,华大基因坚持“科学发展才是硬道理”的信念,探索发展一种以技术发展为支撑、以科学发展为导向的全新的推动社会前进和引领未来的发展模式。在科学、技术、产业三位一体的前提下,华大基因致力于开展知识产权密集型的人类健康、规模化重要物种、重要经济动植物等基因组研究,大力发展我国的医学健康产业和现代农业产业。目前,华大基因已形成了科学、技术、产业相互促进的发展模式,建立了

材料基因工程

材料基因工程——为什么是一项“颠覆性前沿技术” 1.前言 材料基因组技术是近几年兴起来的材料研究新理念和新方法,是当今世界材料科学与工程领域的最前沿。材料基因工程借鉴人类基因组计划,探究材料结构与材料性质变化的关系。并通过调整材料的原子或配方、改变材料的堆积方式或搭配,结合不同的工艺制备,得到具有特定性能的新材料。但是材料基因组与人类基因组的又有很大的区别,材料的微观结构多样化,不但成分组成可以不同,微观形貌等结构也可能千差万别,其组成-结构-性能之间的关系更加复杂。 2.材料基因组技术 2.1材料基因组技术 材料基因组计划是通过“多学科融合”实现“高通量材料设计与试验”;其核心目标在于通过“高通量计算、实验和大数据分析”技术加速材料“发现-研发-生产-应用”全过程,缩短材料研发周期,降低材料研发成本,引发新材料领域的科技创新和商业模式变革。 材料基因组技术包括高通量材料计算方法、高通量材料实验方法和材料数据库三大组成要素。 2.1.1高通量材料计算方法 高通量计算是指利用超级计算平台与多尺度集成化、高通量并发式材料计算方法和软件结合,实现大体系材料模拟、快速计算、材料性质的精确预测和新材料的设计,提高新材料筛选效率和设计水平,为新材料的研发提供理论依据。其中并发式材料计算方法包括第一原理计算方法、计算热力学方法、动力学过程算法等,跨越原子模型、简约模型和工程模型等多个层次,并整合了从原子尺度至宏观尺度等多尺度的关联算法。 高通量材料集成计算技术利用第一性原理、分子动力学与位错动力学、合金相图计算、相场计算等方法,快速并行模拟实验室中成分与性能优化的传统试错式材料研发过程,并基于材料科学知识,迅速挑选有利于目标性能的合金成分与微观结构特征,从而加速新材料的研发进程并显着降低材料研发成本。 2.1.2高通量材料实验方法 传统材料研发模式依赖于成分与工艺的不断“试错”实验优化,结合对结构-性能关系的不断理解以获得满足性能指标的材料。但是,新型关键材料具有成分多元化、复杂化、微结构多级化等特点,传统的“试错”模式在实际材料开发中不仅耗费巨大,而且几乎难以取得成功。 高通量实验平台是发展材料基因组技术具备的条件之一。高通量实验平台可以为据库提供数据支撑;而就高通量集成计算而言,高通量实验技术为各种计算模拟工作提供计算目标。材料基因组概念中的高通量实验技术具有快速制备快速表征各类金属与非金属样品的能力,典型的高通量实验方法有扩散多元结与材料基因芯片

美国钢结构建筑设计规范(ANSI-AISC-360-05)

关于钢结构建筑设计规范的条文说明 (本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。) 序言 本设计规范旨在提供完善的标准设计之用。 本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。 本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。

术语表 本条文说明使用的下列术语不包含在设计规范的词汇表中。在本条文说明文本中首次出现的术语使用了斜体。 准线图。用于决定某些柱体计算长度系数K的列线图解。 双轴弯曲。某一构件在两垂直轴同时弯曲。 脆性断裂。在没有或是只有轻微柔性变形的情况下突然断裂。 柱体弧线。表达砥柱强度和直径长度比之间关系的弧线。 临界负荷。根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。 循环负荷。重复地使用可以让结构体变得脆弱的额外负荷。 位移残损索引。用于测量由内部位移引起的潜性损坏的参变量。

有效惯性矩。构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力 和外加应力共同作用下),仍然保持其弹性。同理,基于局部歪曲构件的有效宽度的惯性矩。同理,用于设计部分组合构件的惯性矩。 有效劲度。通过构件横截面有效惯性矩计算而得的构件劲度。 疲劳界限。不计载荷循环次数,不发生疲劳断裂的压力范围。 一阶逆性分析。基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此 分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。柔性连接。连接中,允许构件末端简支梁的一部分发生旋转,而非全部。 挠曲。受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。 非弹性作用。移除促生作用力后,材料变形仍然不消退的现象。 非弹性强度。当材料充分达到屈服应力时,结构体或是构件所具有的强度。此时,也达到 其强度极限状态。 层间位移。底盘侧挠度及与其关联的毗邻底盘侧挠度,为两底盘间的间隔所分,(δ -δn-1)/h。 n 永久负荷。超时变动极少或是微少的负荷。其他所有负荷均为变动负荷。

中国和美国现行混凝土结构设计规范的差异比较

中国混凝土结构设计规范[code for design of concrete structure](GB 50010-2002)和美国房屋建筑混凝土结构规范(ACI 318-05)及条文说明(ACI 318R-05)[Building Code Requirements for Structural Concrete(ACI 318-05) and Commentary(ACI 318R-05)]之间存在比较大的差异。我国规范采用以概率理论为基础的极限状态设计法,以可靠指标度量结构构件的可靠度,采用分项系数的设计表达式进行设计。而美国规范是以可靠度理论为基础,采用的设计表达式也没有分项系数。从整体上说美国的结构混凝土设计所用的可靠度表达方式与我国规范有一定的相似之处,但在设计用荷载和设计用材料强度的取值水准上以及可靠度的表达方式上与我国规范有不可忽视的区别。 希望大家能够提出更多的有关中美两国规范差异的比较。 1.在美国的房屋建筑工程中,“通用建筑规范”指的是分别由美国各州或相关行政辖区以该州法律形式接受的规范。在这些规范中,全面规定了与房屋的设计、施工、检测有关的偏原则性的基本要求。然后,再由这些通用建筑规范在相应条文中指出各有关结构规范为其可以引用的组成部分。所以,美ACI 318-05规范称自己为通用建筑规范的一个组成部分。在2000年以前,一般认为美国的通用建筑规范共有以下四本:(1)以建筑官员与规范管理人联合会(Building Officials and Code Administrators,简称BOCA)的名义发布的“全国建筑规范”(National Building Code,简称NBC);(2)以南方建筑规范国际委员会(Southern Building Code Congress International,简称SBCCI)的名义发布的“标准建筑规范”(Standard Building Code,简称SBC);(3)以国际建筑官员会议(International Conference of Building Officials,简称ICBO)的名义发布的“统一建筑规范”(Uniform Building Code,简称UBC);(4)由国际规范委员会(International Code Council ,简称ICC)制定的“国际建筑规范”(International Building Code ,简称IBC)。由美国各州通过法律分别选择这四本通用建筑规范中的一本在该州作为有法律效力的规范使用。到2000年,经美国各有关方面协商,决定在美国全国统一用IBC规范来取代其它三本通用建筑规范,即以IBC(2003)作为美国全国唯一的“通用建筑规范”使用。但由于改用IBC规范需要各州法律的认可,故其它三本通用建筑规范仍有一个使用搭接期,但不再作新一轮修订。根据以上情况可知,ACI318-05规范译文中所说的“法律上被采纳的通用建筑规范”在目前即仍

新时代对我国材料基因组计划科技创新应用基础研究的一些思考

新时代对我国材料基因组计划科技创新应用基础研究的一些思考 文章首先描述了应用基础研究为世界工程技术的发展所带来的巨大影响。通过分析美、欧盟、英等发达国家所布局的基于国家战略需求的材料基因组工程方面的基础性应用研究计划,总结了我国材料基因组计划应用基础研究目前面临的主要问题,根据我国材料行业基础性应用研究的发展现状,提出了自己的一些思考。 标签:材料基因组计划;应用基础研究;工程技术 Abstract:This paper first describes the great influence of applied basic research on the development of engineering technology in the world. Through the analysis of the United States,the European Union,the United Kingdom and other developed countries based on the national strategic needs of the basic application of material genome engineering research program,this paper sums up the main problems in the applied basic research of material genome planning in China. According to the development situation of the basic applied research in the material industry in China,some thoughts are put forward. Keywords:Materials Genome Initiative (MGI);applied basic research;engineering technology 1 应用基础研究对工程技术的影响 应用基础研究一般为解决某领域实际需求,达到特定目的的应用研究或者技术研究,工程技术亦称生产技术,一般为基础应用研究所研发成果或研发技术在工业生产中实际应用到的技术。就是说人们将基础研究成果应用于工业生产过程从而达到改造自然的手段和方法。 随着社会不断的进步,人类改造自然界的方式、方法也在不断改进,进而形成了工程技术的各种形态。人类社会的发展越来越依赖于工程技术的创新,如:互联网经济、智能机器人制造、纳米材料的利用,干细胞再生等等。 2 世界主要国家新材料领域应用基础研究战略规划 2.1 美国材料基因组计划 上世纪八九十年代,技术的革新和经济社会的发展越来越依赖新材料的进步[1,2],从新材料的发现到最终工业化应用一般需要10~20年的时间,比如作为目前应用在移动设备领域的锂离子电池,从上世纪70年代实验室研发到90年代[3]晚期应用,历经20余年,至今仍没有克服在电动汽车上完全应用的障碍。归根结底新材料研发速度太慢。面对经济的飞速发展,材料科学家们必须缩短新材料研发到应用的周期以应对21世纪面临的挑战。于是美国在2011年6月24

2005版美国钢结构设计规范

2005版美国钢结构设计规范 摘要美国钢结构协会成立于1921年,在1923年发行了第一版美国钢结构建筑设计规范.这本规范基于容许应力设计原则,长达十页,后来又发行了其他版本,一直到1989年的第九版本,但自从第八版本(1978)以后就没什么实质性的变化了。极限状态设计,在美国又被称为荷载和抗力分项系数设计(LRFD),在第一版本的LRFD规范中被正式介绍,它基于超过15年的大量研究和改进,又被修改过两次,现在使用的是第三版本(1999)。 两本规范的同时存在对美国的设计人员和工业发展都带来了麻烦,AISC因此同意制定一部唯一并且标准统一的钢结构设计规范。这部规范直到2005年8月13日才被审核通过,介绍了很多重要的概念,包括名义强度准则的使用与适当措施结合以提高可靠性的方法。在许多其他方面的改进中,框架体系稳定性和支护设计有重大的进步,包括采用塑性准则的新设计方法。 关键词规范可靠性名义强度稳定性标准塑性连接设计组合设计论文纲要 1.介绍 2.基本设计理念 容许应力设计 荷载与阻力因素设计 2.2.1强度不足和超载 3. 2005年AISC说明书 3.1 背景 3.2 格式规范 3.3 基本设计要求 4 新规范内容布置 4.1内容概述 4.2总则 4.3设计要求 B1 总则 B3.6连接点

B3.6.1简单连接 B3.6.2弯矩连接 4.4稳定性设计分析 4.4.1稳定性设计要求 4.4.2需求强度计算 4.5 构件抗拉设计 4.6 构件抗压设计 4.7 构件抗弯设计 4.8 构件抗剪设计 4.9 构件组合受力设计和抗扭设计 4.10 组合构件设计 4.11 连接设计 4.12高速钢和箱形构件连接设计 5 注释 6 摘要 参考文献 1.介绍 1923版美国钢结构设计规范制定的目的是解决那个时候设计人员所面临的一系列问题。虽然美国材料试验协会(ASTM)制定的钢材和其他材料性能标准是可用的,但仍然没有全国统一的建筑设计规范。因此,个别州或城市有自己的要求,并且有时候设计特定的建筑甚至有多种规则可以使用,比如,那时候建造的一些桥梁必须遵守由桥梁当局制定的详细的规定,而当局又常常和杰出的设计者或制造商勾结。总之,当时的情况是非常混乱的,有时出现问题常常引发重大的经济甚至社会稳定问题。 美国钢结构协会(AISC)成立于1921年,目标明确,统一并且领导钢结构行业,同样重要的是制定一套用于全国钢框架建筑设计的准则。这个目的达到了,建筑设计院和设计公司都很快采用了这一规范。 最初的发展中,在一些强度和性能要求上,同样在设计原理上规范都经历了很多重大的改进。从钢材的种类和数量,关于构件的知识,建筑的性能,计算的可用性和其他设计工具上,现行规范都反映了这些年取得的巨大进步。

相关文档
最新文档