实验二 低碳钢和铸铁的压缩实验

实验二    低碳钢和铸铁的压缩实验
实验二    低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验一、实验目的

(1)比较低碳钢和铸铁压缩变形和破坏现象。

(2)测定低碳钢的屈服极限σ

s 和铸铁的强度极限σ

b

(3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。

二、验仪器和设备

(1)万能材料试验机。

(2)游标卡尺。

三、试件介绍

根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。

四、实验原理及方法

压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。

压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。

低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增大时,其实际应力不随外载荷增加而增

加,故不可能得到最大载荷P b,因此也得不到强度极限

b

,所以在实验中是以变形来控制加载的。

铸铁试件压缩时,在达到最大载荷P b前出现较明显的变形然后破裂,此时试验机测力指针迅速倒退,从动针读取最大载荷P b值,铸铁试件最后略呈故形,断裂面与试件轴线大约呈450。

图2—2 低碳钢压缩图铸铁压缩图

五、实验步骤

(1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。

(2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。

(3)将试件放在试验机活动台球形支撑板中心处。

(4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停止加载。铸铁试件加压至试件破坏为止,记录最大载荷。(5)取出试件,将试验机恢复原状。观察试件。

试验后材料破坏情况

观察低碳钢铸铁两种材料的破坏变形情况,分析原因:

低碳钢:试样逐渐被压扁,形成圆鼓状。这种材料延展性很好,不会被压断,压缩时产生很大的变形,上下两端面受摩擦力的牵制变形小,而中间受其影响逐渐减弱。

铸铁:压缩时变形很小,承受很大的力之后在大约45度方向产生剪切断裂,说明铸铁材料受压时其抗剪能力小于抗压能力。

图2—3 低碳钢、铸铁压缩后变形图

六、实验结果的处理

(1)计算低碳钢的屈服极限

s

A P s

s =

σ (2.1) (2)计算铸铁的强度极限b σ

A P b

b =

σ (2.2) 其中2

004

1d A π=,0d 为试件实验前最小直径。

七、思考题

(1)为何低碳钢压缩测不出破坏载荷,而铸铁压缩测不出屈服载荷? (2)根据铸铁试件的压缩破坏形式分析其破坏原因,并与拉伸作比较?

(3)通过拉伸与压缩实验,比较低碳钢的屈服极限在拉伸和压缩时的差别? (4)通过拉伸与压缩实验,比较铸铁的强度极限在拉伸和压缩时的差别?

八、实验记录参考表格

表2-1 试件原始尺寸

材料 高度 (mm ) 直径(mm )

最小横截面面积A 0

(2m m )

横截面1

横截面2

横截面3

(1) (2) 平均 (1) (2) 平均 (1) (2) 平均 低碳钢

铸铁

表2-2 实验数据

材料

屈服载荷(kN )

屈服极限(Mpa )

最大载荷(kN )

强度极限(Mpa )

破坏形式简图 低碳钢

铸铁 低碳钢 铸铁

实验二金属材料的压缩试验1

实验二金属材料的压缩试验 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 材料 直径d o(mm)高度 l(mm) L d o 截面积A0 (mm 2 ) 屈服载荷 F s(K N) 最大载荷 F b(K N) 1 2 平均 低碳钢铸铁

载荷一变形曲线(F—△l曲线)及结果 材料低碳钢铸铁F—△l曲线 断口形状 实验结果屈服极限ós=屈服极限ób= 四、问题讨论 (1)观察铸铁试样的破坏断口,分析破坏原因; (2)公析比较两种材料拉伸和压缩性质的异同。

金属村翻盖的压缩试验 原始试验数据记录 实验指导老师: 200 年月日

实验四金属扭破坏实验、剪切弹性模量测定 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 弹性模量E= 泊松比μ= 实验前 材料标距 L0(mm) 直径d0(mm)平均极惯 性矩I p (mm4) 最小抗扭 截面模量 W T (mm3)截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢铸铁

低碳钢钢剪切弹性模量测定 扭矩T(K N)扭转角(rad)扭转角度增量(rad)△φT0= T1 T2 T0 T3 T4 T5 △T= 理论值相对误差 截荷-变形曲线(F-△l曲线及结果) 材料低碳钢铸铁 T—φ曲线 断口形状 实验记录屈服扭矩T s 破坏扭矩T b 破坏扭矩T b 实验结果屈服极限t s 强度极限t b

四、问题讨论 (1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成450螺旋断裂面? (2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

低碳钢和铸铁的拉伸实验

实验一 低碳钢和铸铁的拉伸实验 一、实验目的要求 1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极 限b σ。 2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ?-曲 线)。 3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。 二、实验设备和仪器 CMT5504/5105电子万能试验机、游标卡尺等 图1-1 CMT5504/5105电子万能试验机

三、拉伸试件 金属材料拉伸实验常用的试件形状如图所示。图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。 为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。 对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。 低碳钢拉伸 铸铁拉伸 图1-2 拉伸试件

四、实验原理和方法 1.低碳钢拉伸实验 低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。用准确的拉 σ-曲线。首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε 慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。 图1-3 低碳钢拉伸曲线 OA段,没有任何残留变形。在弹性阶段,载荷与变形 (1) 弹性阶段是指拉伸图上的' 是同时存在的,当载荷卸去后变形也就恢复。在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。 力为比例极限 p (2) 屈服阶段对应拉伸图上的BC段。金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。屈服阶段中一个重要的力学性能就是屈服点。低碳钢材料存在上屈服点和下屈服点,不加说明,一般都是指下 F,即试件发生屈服而力首次下降前的最屈服点。上屈服点对应拉伸图中的B点,记为 SU F,是指不计初始瞬时效应的屈服阶段中的最小力值,注意这里的大力值。下屈服点记为 SL 初始瞬时效应对于液压摆式万能试验机由于摆的回摆惯性尤其明显,而对于电子万能试验机或液压伺服试验机不明显。

低碳钢、铸铁的拉伸试验

工程力学实验报告 实验名称: 试验班级: 实验组号: 试验成员: 实验日期:

一、试验目的 1、测定低碳钢的屈服点 σ,强度极限bσ,延伸率δ,断面收缩率ψ。 s 2、测定铸铁的强度极限 σ。 b 3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。 4、熟悉试验机和其它有关仪器的使用。 二、实验设备 1.液压式万能实验机; 2.游标卡尺 三、设备简介 万能试验机简介 具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成; 1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。 2、测控部分:指示试件所受载荷大小及变形情况。 四、实验原理 低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。大致可分为四个阶段: σe

(1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现

金属材料的压缩实验

金属材料的压缩实验 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

金属材料压缩实验 一、预习要求 1、电子万能材料试验机在实验前需进行哪些调整如何操作 2、简述测定低碳钢弹性模量E 的方法和步骤。 3、实验时如何观察低碳钢压缩时的屈服极限 三、材料压缩时的力学性能测定 (一)实验目的 1、测定低碳钢压缩时的屈服极限σs 和铸铁压缩时的强度极限σb 。 2、观察比较两种材料压缩破坏现象。 (二)实验仪器及试样 1、万能材料试验机。 2、游标卡尺。 3、压缩试样。压缩试样通常为圆柱形,也分短、长两种(图4a 和b )。短试样用于测定材料抗压强度,通常规定310 ≤≤ d h ;长试样多用于测定钢、铜等材料的弹性 常数E 、μ等。 (三)实验原理 (四)实验步骤及数据处理 1、测量试样尺寸 测定试样的初始高度和直径,并记录到表3中。测定直径时,需在试样中部量取 互相垂直的两个方向的数据取平均值。 2、调整试验机 选择合适的摆锤和示力度盘,自动绘图装置上安装好纸和笔,开动油泵电机。 3、低碳钢压缩实验 安放试样到万能材料试验机活动平台上,注意应放在正中央。开动试验机送油阀,先使活动平台快速提升,当试样与上承压板将要接触时,应减少供油量,放缓提升速度以免压缩过程过快使测试失败。当外载荷加上后观察示力指针,当示力指针停顿并有回摆时说明进入屈服阶段,记录下指针回摆的最低点读数,此值即为对应于屈服极限的载荷值P s 。当示力指针继续上升时,此时进入强化阶段,试样出现明显的变形。变形到一定程度后关闭送油阀打开回油阀卸去载荷,观察试样变形情况。 4、铸铁的压缩实验 准备工作与低碳钢压缩相同。安装好试样后打开送油阀对试样进行压缩直到压断后卸去载荷,通过示力盘上从动指针位置读出最大载荷,此值即为对应于强度极限的载荷值P b 。 5、数据处理 根据测定的试样尺寸计算出试样的横截面积,得: 低碳钢的屈服极限 A P s s = σ 图4 压缩试样

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告 摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理 一.拉伸实验 1. 低碳钢拉伸实验 拉伸实验试件 低碳钢拉伸图 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:

低碳钢拉伸应力-应变曲线 (1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。 (5)伸长率和断面收缩率 试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。用百分比表示的比值 δ=(L1-L)/L*100% 称为伸长率。试样的塑性变形越大,δ也越大。因此,伸长率是衡量材料塑性的指标。 原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值

实验3-金属材料的压缩实验

实验三 金属材料的压缩实验 一、实验目的 1.测定低碳钢(Q235 钢)的压缩屈服点sc σ和铸铁的抗压强度bc σ。 2.观察、分析、比较两种材料在压缩过程中的各种现象。 二、设备和仪器 1.WES-600S 型电液式万能试验机。 2.游标卡尺。 三、试样 采用1525??(名义尺寸)的圆柱形试样。 四、实验原理 低碳钢(Q235 钢)试样压缩图如图3-1b 所示。试样开始变形时,服从胡克定律,呈直线上升,此后变形增长很快,材料屈服。此时载荷暂时保持恒定或稍有减小,这暂时的恒定值或减小的最小值即为压缩屈服载荷F SC 。有时屈服阶段出现多个波峰波谷,则取第一个波谷之后的最低载荷为压缩屈服载荷F SC 。尔后图形呈曲线上升,随着塑性变形的增长,试样横截面相应增大,增大了的截面又能承受更大的载荷。试样愈压愈扁,甚至可以压成薄饼形状(如图3-1a 所示)而不破裂,因此测不出抗压强度。 铸铁试样压缩图如图3-2a 所示。载荷达最大值F bc 后稍有下降,然后破裂,能听到沉闷的破裂声。 铸铁试样破裂后呈鼓形,破裂面与轴线大约成45o ,这主要是由切应力造成的。 图3-1 低碳钢试样压缩图 图3-2 铸铁试样压缩图 五、实验步骤 1.测量试样尺寸 用游标卡尺在试样高度重点处两个相互垂直的方向上测量直径,取其平均值,记录数据。

2.开机 打开试验机及计算机系统电源。 3.实验参数设置 按实验要术,通过试验机操作软件设量试样尺寸等实验参数。 4.测试 通过试验机操作软件控制横梁移动对试样进行加载,开始实验。实验过程中注意曲线及数字显示窗口的变化。实验结束后,应及时记求并保存实验数据。 5.实验数据分析及输出 根据实验要求,对实验数据进行分析,通过打印机输出实验结果及曲线。 6.断后试样观察及测量 取下试样,注意观察试样的断口。根据实验要求测量试样的延伸率及断面收缩率 7.关机 关闭试验机和计算机系统电源。清理实验现场.将相关仪器还原。 六、实验结果处理 1. 参考表3-1记录实验原始数据。 表3-1 实验原始数据记录参考表 2. 实验数据处理 据低碳钢(Q235 钢)压缩实验所得到的屈服载荷sc F 计算低碳钢的压缩屈服点sc σ: sc sc 0 F A σ= (3-1) 据铸铁压缩实验所得到的最大载荷bc F 计算铸铁的抗压强度bc σ: bc bc 0 F A σ= (3-2) 七、实验报告要求 包括实验目的,设备名称、型号,实验原始数据记录(列表表示)与实验数据处理,试样破坏形状示意图,分析讨论。

低碳钢和铸铁在拉伸试验中的力学性能教学内容

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能 根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1、低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能: (1)弹性阶段 在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。当材料屈服时,如果用砂纸将试件表面 1 打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(ζb ),强度极限所对应的载荷为试件所能承受的最大载荷 Fb 。 (4)局部变形阶段 试样拉伸达到强度极限ζb 之前,在标距范围内的变形是均匀的。当应力增大至强度极限ζb 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲 2

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1.低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段 在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。(2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs)。当材料屈服时,如果用砂纸将试件表面

打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。 (4)局部变形阶段 试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

低碳钢和铸铁扭转实验

实验编号3 低碳钢和铸铁扭转实验 低碳钢和铸铁扭转破坏试验 一、概述 工程中有许多承受扭转变形的构件,了解材料在扭转变形时的力学性能,对于构件的合理设计和选材是十分重要的。材料在扭转变形下的力学性能只能通过试验来测定;扭转变形是构件的基本变形之一。因此扭转试验也是材料力学基本实验之一。 二、实验目的 1、测定低碳钢的剪切屈服极限τs,及低碳钢铸铁的剪切强度极限τ b 2、铸铁的抗扭强度极限τb 3、观察、比较分析两种材料在扭转过程中变形和破坏形式。 4、学习自动绘制T-υ曲线及微机控制电子扭转实验机、扭角仪的操作 三、实验设备和仪器 1、微机控制电子扭转实验机 2、游标卡尺 3、低碳钢和铸铁圆形扭转试件 四、试件 扭转试验所用试件与拉伸试件的标准相同,一般使用圆形试件,d0=10mm,标距l0=50mm或100mm,平行长度l为70mm或120mm。其它直径的试样,其平行长度为标距长度加上两倍直径。为防止打滑,扭转试样的夹持段宜为类矩形,如图3-1所示。 图3-1 五、实验原理 扭转试验是材料力学试验最基本、最典型的试验之一。进行扭转试验时,把试件两夹持端分别安装于扭转试验机的固定夹头和活动夹头中,开启试验机,试件便受到了扭转荷载,试件本身也随之产生扭转变形。扭转试验机上可以直接读出扭矩M和扭转角υ,同时试验机也自动绘出了M—υ曲线图,一般υ是试验机两夹头之间的相对扭转角。扭转试验的标准是GB/T10128-1988。

因材料本身的差异,低碳钢扭转曲线有两种类型,如图3-2所示。扭转曲线表现为弹性、屈服和强化三个阶段,与低碳钢的拉伸曲线不尽相同,它的屈服过程是由表面逐渐向圆心扩展,形成环形塑性区。当横截面的应力全部屈服后,试件才会全面进入塑性。在屈服阶段,扭矩基本不动或呈下降趋势的轻微波动,而扭转变形继续增加。当首次扭转角增加而扭矩不增加(或保持恒定)时的扭矩为屈服扭矩,记为M s;首次下降前的最大扭矩为上屈服扭矩,记为M su;屈服阶段中最小的扭矩为下屈服扭矩,记为M sL(不加说明时指下屈服扭矩)。对试件连续施加扭矩直至扭断,从试验机扭矩标识上读得最大值。考虑到整体屈服后塑性变形对应力分布的影响,低碳钢扭转屈服点和抗扭强度理论上应按下式计算。 τs=M s/Wρτb=M b/Wρ 图3-2低碳钢图3-3铸铁 铸铁试件扭转时,其扭转曲线不同于拉伸曲线,它有比较明显的非线性偏离,见图(3-3)。但由于变形很小就突然断裂,一般仍按弹性公式计算铸铁的抗扭强度,即 τb=M b/Wρ 圆形试件受扭时,横截面上的应力应变分布如图3-4b、c所示。在试件表面任一点,横截面上有最大切应力τ,在与轴线成±45的截面上存在主应力σ1=τ,σ3=-τ(见图3-4a)。低碳钢的抗剪能力弱于抗拉能力,试件沿横截面被剪断。铸铁的抗拉能力弱于抗剪能力,试件沿与σ1正交的方向被拉断。 图3-4 六、实验步骤 1.开机:试验机——>打印机——>计算机 注意:每次开机后,最好要预热10分钟,待系统稳定后,再进行试验

金属材料的压缩实验

金属材料压缩实验 一、预习要求 1、电子万能材料试验机在实验前需进行哪些调整?如何操作? 2、简述测定低碳钢弹性模量E的方法和步骤。 3、实验时如何观察低碳钢压缩时的屈服极限? 三、材料压缩时的力学性能测定 (一)实验目的 1、测定低碳钢压缩时的屈服极限os和铸铁压缩时的强度极限Ob。 2、观察比较两种材料压缩破坏现象。 (二)实验仪器及试样 1、万能材料试验机。 2、游标卡尺。 3、压缩试样。压缩试样通常为圆柱形,也分短、长两种 (图4a和b)。短试样用于测定材料抗压强度, 通常规定1乞加 _3 ;长试样多用于测定钢、铜等材 d o 料的弹性常数E、卩等。 图4压缩试样 (三)实验原理 1x低碳钢压缩试验 低碳钢在压缩时的F■川曲线见图1-1。在屈服之前,曲线与拉忡时相同. 在屈服之后的曲线,就与拉伸不同了。在弹性范由内,加裁速率应控制在1?10M^a/s.在 明显與性变Jg范围内.加載的应变速率应控制在(100-500) X 10-6/s之间.材料受压 屈眼时,变形继续增大,载荷保持不变或者岀现波动,如图所示。从图中读出压缩屈服荷载P Q然后计算压缩屈服点。 % =瓷<1-1> 耳试件轴线成45°斜截而卜的剪阖力是便材料发生滑移.即屈服的原因a 由林料力学知道”无论试件截面上的正应力是拉应力还是压应力*只要大小相同,则在45°斜 載面上产生的剪应力大小都是相同的,因此%与q应是相等或相近的* 屈服过后,试件变短,横橡面积变大,F-小曲线继续上升,宜至试件被压威饼状。因此低碳钢压缩试验不能测岀其强度极限. 2.错铁压编试验 铸扶压縮时的P-AI曲线呈非线性,见图1-2. 脆性材料受压试件的破坏是个复朵的外部施力、内部损伤破坏的力学过程。国内外都在研讨、争论这节问题。试件端部的受力状态与试件的破坏形式冇首密切关 系°不加任何垫片时.铸铁试件沿着与轴线成45。-55。方向破坏.破坏时斜面卜的剪 应力■同样的材料在剪切试验中所测得的剪切破坏极限%相当接近。试件两端面加垫薄片(三合板〉时”其受压破坏形式和前者冇较大差舁口 抗压强度按下式计算’ (1-2)

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

测定低碳钢和铸铁

以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。它是力学性能试验中 最基本最常用的一个。一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。试验提供的 E ,R eL ,R m ,A 和Z 等指标,是评定材质和进行强度、刚度计算的重要依据。本试验具体要求为: 1.了解材料拉伸时力与变形的关系,观察试件破坏现象。 2.测定强度数据,如屈服点R eL ,抗拉强度R m 。 3.测定塑性材料的塑性指标:拉伸时的伸长率A ,截面收缩率Z 。 4.比较塑性材料与脆性材料在拉伸时的机械性质。 二、原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。但是F-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示: F R S = ——试样的名义应力 0 L L ?= ε——试样的名义应变 S 0和L 0分别代表初始条件下的面积和标距。R-ε曲线与F-ΔL 曲线相似,但消除了几何尺寸的影响。因此,能代表材料的属性。单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。 不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 R E ε= (1-1) 比例系数E 代表直线OA 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(B ˊ)作为材料屈服极限R eL 。R eL 是材料开始进入塑性的标志。结构、零件的应力一旦超过R eL ,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限R eL 作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

低碳钢和铸铁扭转试验

低碳钢和铸铁扭转实验 一、实验目的 1.观察比较低碳钢和铸铁在扭转过程中的变形现象、破坏形式。  2.测定低碳钢扭转时的屈服点τs 和抗扭强度τb 。  3.测定铸铁扭转的抗扭强度τb 。  二、实验设备与试件 1.扭转试验机。  2.游标卡尺。  3.扭转试件参照国家标准GB10128–88采用圆形截面试件(如图2–13所示),为中间段试件直径;0d L0为试件原始标距;Lc 为试件平行长度;d 0=10 mm,L0=100 mm或50 mm,Lc =120 mm或70 mm,如果采用其他直径的试件,其平行长度为标距加上两倍直径。试件两头为夹持端,因为试件受扭,在两头夹持部分对称加工两个相互平行的平面,以便于安装夹紧。  图2–13 扭转试件图 三、实验原理和方法 试件受扭时将产生扭转变形,扭矩T和扭角?相应增加,试验机将自动记录数据大小并在电脑显示屏上自动绘出??T曲线图,如图2–14所示。从图2–14(a)可以看出,低碳钢扭转试验开始为弹性变形阶段,T与?成正比,横截面上剪应力呈线性分布,横截面周边处的剪应力最大,圆心为零。当扭矩T增大,试件开始产生屈服,横截面周边处的剪应力首先达到屈服极限,随着扭转变形的增加,剪应力由横截面周边处开始向圆心扩展逐步达到屈服极限,即塑性区由圆周向圆心扩展,直到整个截面达到屈服。在屈服过程中??T曲线显示为屈服平台,这时扭矩为屈服扭矩Ts 。屈服过后为强化阶段,扭矩又开始缓慢上升,试件扭角迅速增加,当扭矩达到最大值Tb 时试件断裂。考虑到整体屈服后塑 性变形对应力分布的影响,低碳钢扭转屈服点理论上应按式τs =w T s 43计算,抗扭强度理论上应按τb =w T b 43计算,但是为了试验结果的可比性,根据国标GB/T10128–88,

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 比例系数E代表直线(OA) 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(Bˊ)作为材料屈服极限ReL。ReL是材料开始进入塑性的标志。结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限ReL作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。 强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。这种现象称作为形变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形和形变强化二者联合,是强化金属材料的重要手段。例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

金属材料压缩实验

金属材料压缩实验一、实验目的 1.测定低碳钢压缩时的下屈服强度R(或屈服极限σ);seL;)R(或抗压强度极限σ2.测定铸铁压缩时的抗压强度bm 3.观察并比较低碳钢和铸铁在压缩时的缩短变形和破坏现象。二、预习思考要点1.用短圆柱状低碳钢和铸铁试样做压缩实验时,怎样才能做到使其轴向(心)受压?放置压缩试样的支承垫板底部为什么制作成球形? 2.圆柱状低碳钢试样被压缩成饼状而不破碎,而圆柱状铸铁试样被压破裂面常发生在与轴线大致成45°~55°方向上,二者的变形特征与破坏形式为什么不同? 三、实验仪器和设备 1.万能材料试验机;2.游标卡尺。 四、实验试样对于低碳钢和铸铁类金属材料,按照GB 7314—1987《金属压缩试验方法》的规定,金属材料的压缩试样多采用圆柱体如图1-9所示。试样的长度L一般为直径d的2.5~3.5倍,其直径d = 10mm~20mm。也可采用正方形柱体试样如图1-10所示。要求试样端面应尽量光滑,以减小摩阻力对横向变形的影响。 正方形柱体试样1-10 圆柱体试样1-9 图图 五、实验原理 Ⅰ低碳钢:以低碳钢为代表的塑性材料,轴向压缩时会产生很大的横向变形,但由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样出现显著的鼓胀效应如图1-11所示。为了减小鼓胀效应的影响,通常的做法是除了将试样端面制作得光滑以外,还可在端面涂上润滑剂以利最大限度地减小摩擦力。低碳钢试样的压缩曲线如图1-12所示,由于试样越压越扁,则横截面面积不断增大,试样抗压能力也随之提高,故曲线是持续上升为很陡的曲线。从压缩曲线上可看出,塑性材料受压时在弹性阶段的比例极限、弹性模量和屈服阶段的屈服点(下屈服强度)同拉伸时是相同的。但压缩试验过程中到达屈服阶段时不像拉伸试验时那样明显,因此要认真仔细观察才能确定屈服荷载F,从而得到

实验二 低碳钢、铸铁压缩试验

实验二 低碳钢、铸铁压缩试验 一、试验目的 了解塑性材料和脆性材料在压缩时的破坏现象,测定其机械性能,并与它们在简单拉伸时的机械性能作比较。 二、实验原理 压缩试验是在万能试验机或压力机上进行。试验机附有球形承垫图2-1,球形承垫位于试件下端。当试件端面略有不平行时,球形承垫可以自动调节,使压力趋于均匀分布。为了减少试件两端面与支承座之间的摩擦力,可在试件端面涂上石墨、润滑油等。但仍不可避免地存在摩擦力而阻止试件的横向变形,以 致试件被压成鼓形 图2-2。具体要求可参阅《金属压缩试验方法》GB7314-84。 图2-1压缩球形承垫 图2-2 低碳钢压缩后试件的形状图 低碳钢试件压缩时,在屈服前F-ΔL 关系曲线与拉伸时相似,由自动绘图仪可得到压缩图2-3。图中OA 为弹性阶段,B 点为屈服点,无明显的屈服阶段,F s 需仔细观察。在缓慢均匀加载时,测力指针作等速转动,当指针转动暂停或稍有退回时的载荷即为屈服载荷。由于这些现象不明显,常需要借助压缩图来判断F s 。此后,由于塑性变形试件面积随载荷增加而逐渐增大,最后试件被压成饼状而不破裂,故无法求得最大载荷及强度极限,只要测取屈服点R eL 即可: ;eL eL F R S 式中:F s ——屈服时的载荷; S 0----试件原来的横截面面积。 L 图2-3 低碳钢压缩图 图2-4铸铁压缩图 铸铁受压时,在很小的塑性变形下发生了破坏,图2-4,因此只能测出它的破坏抗力F m 由R m =F m /S 0。可得铸铁的强度极限。铸铁受压呈微鼓形破坏,试件表面将出现与试件横截面成45°~ 50°的倾斜裂纹,这是因为铸铁受压时,实际上是先达到剪力极限而破坏。 FeL 承垫 试件 球形承垫

金属的压缩实验

金属的压缩实验 一、概述 实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。 二、实验目的 1、观测低碳钢压缩时的屈服荷载F SC 2、测定铸铁压缩时的抗压强度σbC 3、观察并比较低碳钢和铸铁在压缩时的变形和破坏现象。 三、实验设备 1、液压式万能材料试验机 2、游标卡尺 四、试样的制备 按照国标GB7314-87《金属压缩试验方法》,金属材料的压缩试样多采用圆柱体,如图2-16所示。试样长度L=(2.5~3.5)d0的试样适用于测定σpc、σtc、σsc、σbc;L=(5~8)d0的试样适用于测定σpc0.01、E e;L=(1~2)d0的试样适用于测定σbc、。为了尽量使试样受轴向压力,加工试样时,必须有合理的加工工艺,以保证两端面平行,并与轴线垂直。 σpc-规定非比例压缩应力 σtc-规定总压缩应力 σsc-压缩屈服点 σbc-抗压强度 σpc0.01-规定非比例压缩应变为0.01%时的应力 E e-压缩弹性模量 五、实验原理 以低碳钢为代表的塑性材料,轴向压缩时会产生很大的横向变形,但由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样中间部分出现显著的鼓胀,如图2-17所示。

塑性材料在压缩过程中的弹性模量、屈服点与拉伸时相同,但在到达屈服阶段时不像拉伸试验时那样明显,因此要仔细观察才能确定屈服载荷F sC。当继续加载时,试样越压越扁,由于横截面面积不断增大,试样抗压能力也随之提高,曲线持续上升,如图2-18所示。除非试样过分鼓出变形,导致柱体表面开裂,否则塑性材料将不会发生压缩破坏。因此,一般不测塑性材料的抗压强度,而通常认为抗压强度等于抗拉强度。 以铸铁为代表的脆性金属材料,由于塑性变形很小,所以尽管有端面摩擦,鼓胀效应却并不明显,而是当应力达到一定值后,试样在与轴线大约成450~550的方向上发生破裂,如图2-20所示。这是由于脆性材料的抗剪强度低于抗压强度,从而使试样被剪 断 六、实验步骤 1、用游标卡尺测量试样直径,方法是在试样原始标距中点处两个相互垂直的方向上测量直径,并取其算术平均值。 2、根据低碳钢屈服载荷和铸铁抗压强度的估计值, 选择试验机的示力盘,并调整其指针对零。 3、调整好自动绘图器。 4、准确地将试样置于试验机活动平台的支承垫板中心处。 5、调整试验机夹头间距,当试样接近上支承板时,开始缓慢、均匀加载。 6、对于低碳钢试样,将试样压成鼓形即可停止试验。对于铸铁试样,加载到试样破坏时(主针回摆150左右)立即停止试验,以免试样进一步被压碎。 金属的拉伸实验指导书 一、概述 常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。 二、实验目的 1、测定低碳钢的屈服强度R el、抗拉强度R m、断后延伸率A11.3和断面收缩率Z 2、测定铸铁的抗拉强度R m 3、观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线) 4、分析比较低碳钢和铸铁的力学性能特点与试样破坏特征

相关文档
最新文档