电动机保护器和软启动、变频器有什么区别

电动机保护器和软启动、变频器有什么区别
电动机保护器和软启动、变频器有什么区别

电动机保护器和软启动、变频器有什么区别?电动机保护器:

装置集保护、测量、计量、控制于一体,可取代传统的热继电器、漏电保护器、欠电压保护器、时间继电器、中间继电器、电流互感器、仪表、控制开关、指示灯、可编程控制器、变送器等多种附加元件。控制功能可满足电动机正常启动、降压启动、正反转启动等多种启动要求,并可以简化回路和接线,具有较高的性价比。

变频器:

定义:把电压、频率固定不变的交流电变换成电压、频率可变的交流电的变换器称为变频器。

作用:降低电机启动时造成的冲击载荷,控制电机速度,把启动时间拉长,把电流变平缓,达到软启动的目的,同时还能提高电网及电动机的效率。实际上,变频器主要用在节能方面,通过调节,改变输出电压、电流、频率。一般调速算的电机使用变频器。

缺点:

1.造价高,价格要比微机保护贵很多。

2.由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制形式使得变频器运行时在电源侧产生高次谐波电流,并造成电压波形畸变,电力系统受到谐波污染后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。

3.过载使变频器跳动比较频繁,平时发生过载现象时,一般来讲马达由于过载能力较强,只要变频器参数表的电机参数设置得当,一般不大会出现马达过载.而变频器本身由于过载能力较差很容易出现过载报警。

软启动器:

定义及作用:串接于电源与被控电机之间,通过微电脑控制其内部的晶闸管触发导通角实现交流调压,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流。避免启动过流跳

闸。待电机达到额定转数时启动过程结束,为电机正常运行提供额定电压。

缺点:

1.不能调节电源频率,所以就不能从零压零频启动电机,不能实现零冲击启动。

2.不能调速。

3.软启动器在启动电机之后退出系统,失去保护功能。

怎样解决西门子变频器对电机的影响

怎样解决西门子变频器对电机的影响 变频器的英文译名是VFD(Variable-frequency Drive),这可能是现代科技由中文反向译为英文的为数不多实例之一。变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。 1、电动机的效率和温升的问题 变频器在中、韩等亚洲地区受日本厂商影响而曾被称作VVVF(Variable V oltage Variable Frequency Inverter)。在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u1(u为调制比)。 PWM即脉冲宽度调制,是一种利用微处理器的数字输出来控制模拟电路的控制技术。PWM以其控制简单、灵活、效率高和动态响应好等优点而被广泛应用在从测量、通信到功率控制与变换的许多领域中。PWM是开关型稳压电源中的术语。这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。如今的很多微型控制器中都有PWM控制器。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显着的是转子铜(铝)耗。因为异步电动机是各类电动机中应用最广、需要量最大的一种。异步电动机由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。作电动机运行的异步电机。因其转子绕组电流是感应产生的,又称感应电动机。 是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦条件下,其温升一般要增加10%--20%。 电源是向电子设备提供功率的装置,也称电源供应器,它提供计算机中所有部件所需要的电能。 2、谐波电磁噪声与震动

变频器的控制异步电动机的基本原理

一、变频器的控制异步电动机的基本原理: 1、异步电动机的结构: 定子 转子:绕线式鼠笼式 2、异步电动机旋转 (1)旋转磁场 在异步电动机的三相对称绕组通入三相对称电流后,它们共同的作用产生合成旋转磁场。 旋转磁场的转速(同步转速) 60f1(I频) n= (转/分) p- 相对数 (2)异步电动机的转速 三个电磁现象: 1、带电体周围产生磁场 2、导体在磁场中运动产生感应年电动势 3、带电导体在磁场中产生电磁力 no-n = s 转差率 no 60f1 异步电动机转速n = ( r/s) p 如no=n则转子不切割磁力线也就丢失了旋转运动。 4、异步电动机的调试方法 (1)变极调速 (2)改变转差率(s)——如滑差电机 (3)变频调速 变频器本质: 是一种输出电压和频率可以改变的电源。 二、变频器的基础知识 1、发展史与展望 电压与频率成正比的实现方法:PWM 但存在高次谐波:电机发热 干扰 电机振动 2、变频器的结构与原理

U V 等效电流 1、整流电路:整流成直流脉动电压 2、限流电路:由限流电阻及短路触点组成限止充电电流,保护整流器件。 3、滤波电路:平滑电压 4、制动电路:60f1 30秒n0= P 5秒 00 n>n0 发电机 作用:吸收原生电压,保护功率模块,增大制动转矩,使电动机快速停止。 5、逆变电路: 等效交流电:效果上是正弦波 实质上是PWM波 住回路容易坏(大多是驱动电路坏造成的) 3、变频器控制方式: U/f(国产)转差频率(在国内无)矢量(最先进、最好的) ①u/f 控制方式 忽略定子漏电阻 E=U=4.4f1w1k1¢m 设U不变

变频器控制电机转速的方法

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变?? 电机旋转速度单位:r/min ? 每分钟旋转次数,也可表示为rpm. ? 例如:2极电机50Hz 3000 [r/min] ? 4极电机50Hz 1500 [r/min] ? 结论:电机的旋转速度同频率成比例? 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适合通过改变该值来调整电机的速度。? 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。? 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。? n = 60f/p ? n: 同步速度? f: 电源频率? p: 电机极对数? 如果仅改变频率而不改变电压,频率降低时会使电机处于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。?

例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V。 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?? 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。? 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。? 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。? 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。? 3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低? 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速。(T=Te, P<=Pe) ? 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。? 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。? 举例:电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。? 因此在额定频率之上的调速称为恒功率调速。(P=Ue*Ie) ? 4. 变频器50Hz以上的应用情况?

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样。 1、矢量控制方式 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式 V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变

变频器载波频率对电动机运行的影响

电动机知识 变频器载波频率对电动机运行的影响 变频器大多是采用PWM调制的形式进行变频器的。也就是说变频器输出的电压其实是一系列的脉冲,脉冲的宽度和间隔均不相等。其大小就取决于调制波和载波的交点,也就是开关频率。开关频率越高,一个周期内脉冲的个数就越多,电流波形的平滑性就越好,但是对其它设备的干扰也越大。载波频率越低或者设臵的不好,电机就会发出难听的噪音。通过调节开关频率可以实现系统的噪音最小,波形的平滑型最好,同时干扰也是最小的。1低压变频器概述对电压≤500V的变频器,当今几乎都采用交—直—交的主电路,其控制方式亦选用正弦脉宽调制即SPWM,它的载波频率是可调的,一般从1-15kHz,可方便地进行人为选用。但在实际使用中不少用户只是按照变频器制造单位原有的设定值,并没有根据现场的实际情况进行调整,因而造成因载波频率值选择不当,而影响正确,感觉的有效工作状态,因此在变频器使用过程中如何来正确选择变频器的载波频率值亦是重要的事。本文就此提供应该从以下诸方面来考虑,并正确选择载波频率值的依据。2 载波频率与功率损耗功率模块IGBT的功率损耗与载波频率有关,且随载波频率的提高、功率损耗增大,这样一则使效率下降,二则是功率模块发热增加,对运行是不利的,当然变频器的工作电压越高,影响功率损耗亦加大。对3 载波频率与环境温度当变频器在使用时载波频率要求较高,而且环境温度亦较高的情况下,对功率模块是非常不利的,这时对不同功率的变频器随着使用的载波频率的高低及环境温度的大小,对变频器的允许恒输出电流要适当的降低,以确保功率模块IGBT安全、可靠、长期地运行。4 载波频率与电动机功率电动机功率大的,相对选用载波频率要

识别变频器电机的方法

做快速调试时,一定要遵循手册给出的引导流程进行,特别是电机铭牌数据必须要正确输进。假如电机的铭牌数据输进有误,电机建模就不会精确,控制起来也不会有好的运行效果。电机的铭牌数据包括:额定电压、额定电流、额定功率、额定转速、额定功率因数。假如是矢量控制,还有一个额定励磁电流需要确定。 其中额定转速,我国的电机标准中规定铭牌数据不包含此项,所以这个参数必须向电机制造商索取,要正确的滑差或者额定转速值,功率因数这个参数,一旦电机确定,根据铭牌数据可以计算,或者向电机制造商索取正确数值。额定励磁电流,可以通过快速调试自动计算,在r0331中显示,但是一般这个内部计算的参数并不正确,实测的要更接近电机的真实数据。具体怎么确定,比较罗索,还是自己仔细的解读说明说的相关论述。 总之,正确地确定电机名牌数据,比较麻烦的就是矢量控制以及磁化电流的测取。假如是V/F控制、抛物线控制,就很简单了。不论是简单的还是复杂的,正确设置电机铭牌数据至关重要。这是装置辨识电机的基础。在手册里,有一个电机的等效电路,实在,装置对电机的辨识,就是为了确定那个等效电路里的参数,这就是所谓的建模。 对于V/F、抛物线控制而言,快速调试中的P3900=1/2/3必须要真正的PASS,然后紧接着 P1910=1,ON合闸命令以后,自动地完成识别,其间没有故障P0041发生。就可以以为顺利地通过了识别。而对于矢量控制P1300=20/21 /22/23,不仅要P1910=1必须自动得PASS,P1910=3也必须自动得PASS,还必须P1960=1自动得PASS。才算顺利地通过了自识别工作。 检验自识别的效果,就是将电机在整个的转速范围内空载运行,用手、用耳朵判别电机运行过程中是不是没有明显的电磁噪声、振动。一般在正确地完成上述所说的两项辨识工作以后,电机运行是很平滑稳定的,除非机械上有题目,或者电机的动平衡不好,造成机械振动和机械噪声。区分机械噪声与电磁噪声的办法,自己往解析吧,这里不累述。 若矢量控制时,对于大惯性滚筒同轴连接,MM4还可以做惯性补偿,具体的设置与调试参见说明的有关功能图和参数表说明,这里省略。一句话,电机实际运行效果,是对调试工作优劣的最好检验。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以

变频器常用的几种控制方式

变频器常用的几种控制方式 变频调速技术就是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也就是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 1、1 变频器的基本结构 变频器就是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1、2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器与电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器与高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器与矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器与三相变频器等。 2、变频器中常用的控制方式 2、1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制就是为了得到理想的转矩-速度特性,基于在改变电源频率进 行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但就是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制就是一种直接控制转矩的控制方式,它就是在V/f控制的基础上,按照知道异 步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率与电流进行控制,因此,这就是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速与负载变动有良好的响应特性。 (3) 矢量控制 矢量控制就是通过矢量坐标电路控制电动机定子电流的大小与相位,以达到对电动机在d、q、0坐标轴系中的励磁电流与转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序与时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的

变频器对电机的影响

变频器对电机的影响 一、一般异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以日前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍右左的高次谐波重量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将一般三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 日前中小型变频器,不少是采纳PWM的操纵方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。别的,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动

一般异步电动机采纳变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波彼此干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率同意或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采纳变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动制造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲惫和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,一般异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点 1、电磁设计对一般异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的要害问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻。减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增 2)为按捺电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,

变频器和电机的距离确定电缆和布线方法

变频器和电机的距离确定电缆和布线方法; I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 变频器控制柜设计: 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电 2) 电磁干扰问题: I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其

变频器控制电机转速

变频器是怎样控制电机转速 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变? *1: r/min 电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 例如:2极电机 50Hz 3000 [r/min] 4极电机 50Hz 1500 [r/min] 结论:电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 结论:改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?

*1: 工频电源 由电网提供的动力电源(商用电源) *2: 起动电流 当电机开始运转时,变频器的输出电流 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。 因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie) 4. 变频器50Hz以上的应用情况 大家知道, 对一个特定的电机来说, 其额定电压和额定电流是不变的。 如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上。 当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60H z, 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速. 这时的转矩情况怎样呢?

变频器控制方式选型(精)

变频器控制方式选型 概述:本文介绍了通用变频器的控制方式,以及在实际应用中如何选择合理的型号。 关键词:控制方式选型 1引言 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 2变频器控制方式 低压通用变频输出电压为380~690V,输出功率为0.75~560kW,工作频率为0~500Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁

变频器对电机与电网的影响

1 引言 变频器的调速性能能够满足各种生产工艺机械设备的要求,对风机水泵调速调节流量的节能效果很明显,故变频调速已获得广泛应用,但也带来一些特殊问题,不可掉以轻心。 2 采用普通鼠笼电动机 变频调速专用电动机为变频调速而设计,在电机设计中,已考虑了一定的必要的对策措施,问题是原为电网电源供电设计的电机(以下简称普通电机),现在欲用于变频器供电,这就有一些特殊的问题要探讨。 为变频调速而采用普通电动机,可能见之于下列场合:技术改造工程,例如为了节能而对水泵风机调速,电机早已有了。即使是新建工程,如果采取某些措施,也不是非用变频电机不可,何况普通电机价格相对较低,也易于获得需要的一般机械电气性能参数和机械结构型式,最常见的是风机水泵应用。 采用的变频器最常见的是电压源型变频器,其逆变器输出通常都是正弦波脉宽调制(spwm)方式,输出电压除了正弦形基波外,还有khz数量级(可达几十khz)的高频成分,这类变频器是讨论的重点。偶而可以遇到电流源型变频器,其输出电流是阶梯形波,谐波次数为5,7,11,13……等,本文不多讨论,讨论的内容也不涉及电机的启动和瞬变现象,但内容覆盖了调速范围内各种速度下的性能。

3 电机转矩的降低 普通电机由电压源型变频器供电时,转矩要有所降低。这里的电机转矩降低不是指电机在调速运行时不能够产生原有的额定转矩,因为现代的变频器技术可以克服各种障碍以得到足够的转矩,而是由于谐波引起电机的铁损和铜损增加,若维持额定转矩运行可能就会因温升过高而缩短绝缘寿命。考虑上述各种因素,转矩降低系数的典型值为0.8~1.0。对于恒转矩特性负载(负载要求的转矩不随速度而变)且电机是共轴自冷却风扇时,由于低速时冷却能力明显降低而恒转矩运行表明电流不变,若较长时间运行是肯定不行的(温升过高)。由于离心式风机水泵消耗的功率随转速降低而急骤(约为三次方关系)降低,且所配套的电机功率一般都有一定的裕度,因而电机转矩的降低对风机水泵负载来说一般都不会有问题。 对于恒转矩负载,电机不是共轴的自冷却风扇,而是独立的通风冷却例如强迫通风冷却,这种场合,普通电机是否可行,要看电机功率的原选配是否有约20%的富裕能力,以克服铁损铜损的增加而导致的过高温升问题。 4 电机的绝缘寿命 电压源型变频器的逆变部分通常用快速电力电子半导体器件如igbt,因而电压上升速度很高,使电机的匝间绝缘承受很大的电压应力,特别是首端线卷的匝间。其所承受的电压应力的强度大小决定于电压脉冲的峰值、电压的上升速度和调制频率、变频器和电动机之间的电缆特性和长度、电机绕组的设计以及其它的系统参数。

三菱变频器对异步电动机调速控制-三相异步电动机调速控制系统毕业设计

摘要 随着变频调速异步电动机在国内外市场上日益扩大应用,自90年代中期以来,我国有众多电动机生产企业设计、研制和生产适用于不同应用的各种系列变频调速三相异步电动机,例如:通用变频调速电动机系列、起重冶金变频调速电动机系列、隔爆变频调速电动机系列、电梯变频调速电动机系列、辊道变频调速电动机系列、牵引变频调速电动机系列等。从目前情况看,这些系列电动机能基本满足国内市场的需求原理是当定子三绕组通三相对称电流后,定转子产生旋转磁场,根据右手定则,转子绕组产生感应电动势,由于绕组是闭合的,所以产生感应电流,根据左手定则,转子绕组相当于空间绕组,进而产生电磁转距,合成磁转距大于阻转距时,电机起动,重点是三相异步电动机变频调速,一方面当f1<fN时,为恒转矩调速,转矩不变,额定转速降低,增大起动转矩Tst,另一方面当f1>fN时,为恒功率调速,调速前后功率不变,额定转速升高,减小启动转矩Tst。变频调速可以实现宽范围内的平滑调速,变频调速电机以简单的结构、优良的调速性能、较高的调速比,应用越来越广泛。本论文的主要就是利用三菱变频器,对三相异步电动机进行变频的调速。 关键词:三相异步电动机;三菱变频器;变频调速

Abstract With the increasing application of VVVF asynchronous motors in the domestic and foreign markets, since the middle of 90's, China's motor manufacturers design, development and production is suitable for various series of Variable-Frequency Adjustable-Speed Three-Phase Asynchronous Motor, different applications such as: General VVVF motor series, crane and metallurgical VVVF motor series, flameproof inverter motor series, VVVF elevator motor series, roller VVVF motor series, inverter-fed motor series. Judging from the current situation, these series motors can basically meet the needs of the domestic market is the principle when the stator winding through three symmetrical three-phase current, stator and rotor rotating magnetic field is generated, according to the right-hand rule, the rotor winding induced electromotive force, the winding is closed, so generate induction current, according to the left, the rotor winding is equivalent to space winding, and electromagnetic torque, starting motor magnetic torque is greater than the resistance of synthesis of torque,, the focus is variable frequency speed control of three-phase asynchronous motor, hand when F1 < fN, for constant torque speed, torque is not changed, the rated speed is reduced, increase the starting torque of Tst, on the other hand, when F1 > fN, for constant power speed, speed regulation and constant power, rated speed increased, reduce the starting torque Tst. VVVF can achieve smooth speed wide range, frequency conversion motor with simple structure, good performance of speed regulation, high speed adjustment, more and more extensive application. The main of this paper is to utilize Mitsubishi inverter frequency, speed control of three-phase asynchronous motor. Key words: threephase asynchronous motor ;Mitsubishi inverter ;frequency control

变频器对电机的要求及影响

变频器对电机的要求及影响 1 应用于标准电机 变频器驱动标准电机时,和工频电源比较,损耗将有所增加,低速冷却效果变差,电机温升将增加,因此低速时应降低电机的负载。普通电机的容许负载特性是在额定转速时可100%负载连续运行,在低速100%负载连续运行的场合应考虑使用变频电机。 冲击电压的影响:配线的LC共振等引起的冲击电压将会加在电机的定子绕组上,冲击电压较大时可能会发生损坏电机绝缘的情况。单相变频器驱动时,直流电压约311V,冲击电压在电机端子上的最高值为直流电压的2倍,在绝缘强度上没有问题。但是三相变频器驱动的场合,直流电压约为537V,随着配线长度增加,冲击电压会增大,有可能因为电机绝缘耐压不够而发生损坏绝缘的情况,此时应考虑在变频器输出侧加装输出电抗器。 高速运行:普通电机50Hz以上高死运行时电动势平衡及轴承特性等会改变,请谨慎使用。同时超过电机额定频率运行,电机力矩会下降,此时电机处在恒功率调节状态。 力矩特性:变频器驱动时,力矩特性和工频电源驱动时的特性有所不同,机械负载的力矩特性必须加以确认。 机械震动:西林全系列采用了高载波方式PWM控制,电机震动小,基本上和工频电源相同。但在以下场合会有一定的增大: A、和机械固有震动频率的共振:特别是原来恒速运行的机械改为调速运行时,可 能会发生共振,在电机端设防震橡胶或跳跃频率控制可有效解决此问题。 B、旋转体自身残留的不平衡:50.00Hz以上高速时,要特别注意。 噪音:基本上同工频电源驱动时相同,在低载波运行时可听到电磁声,属于正常现象;但转速高于电机额定转速时,机械噪音、电机风扇噪音较明显。 2 应用于特殊电机 变极电机:因电机的额定电流和标准电机不同,要确认电机的最大电流后再选用变频器。极数的切换务必在变频器停止输出之后进行。运转中进行极数切换,会产生过电压、过电流等保护动作,变频器会故障停机。 水下电机:一般水下电机额定电流比标准电机大,在变频器容量选择时应注意电机额定电流。另外电机和变频器之间配线距离较长时,可能因漏电流过大而引起变频器故障报警,此时应考虑加装变频器输出电抗器;配线距离较长时还会造成电机力矩下降,要配足够粗的电缆。 防爆电机:驱动防爆电机时,电机和变频器配套后的防爆检查是必要的。西林通用型变频器本身是非防爆结构,如果使用同通用型变频器,需要将变频器放在非防爆的地方。带减速机的电机:因润滑方式和厂家的不同,连续使用的速度范围也不同。特别是油润滑时,低速范围连续运转时因油润滑不足有烧毁危险。另外超过50Hz高速时,请咨询电机和减速机厂家。

电机转速是如何通过变频器控制的

电机转速是如何通过变频器控制的 1.变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱 动。 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 2.当变频器调速到大于50Hz频率时,电机的输出转矩将降低 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速。 (T=Te,Pv二Pe)变频器输出频率大于50Hz频率时,电机产生的转 矩要以和频率成反比的线性关系下降。 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生 转矩的1/2。因此在额定频率之上的调速称为恒功率调速。(P=Ue*Ie) 3.变频器50Hz以上的应用情况。 大家知道,对一个特定的电机来说,其额定电压和额定电流是不变的。 如变频器和电机额定值都是: 15kW/380V/30A ,电机可以工作在

50Hz 以上。 当转速为50Hz时,变频器的输出电压为380V,电流为30A。这 时如果增大输出频率到60Hz ,变频器的最大输出电压电流还只能为 380V/30A 。很显然输出功率不变。所以我们称之为恒功率调速。 这时的转矩情况怎样呢? 因为P=wT(w:角速度,T:转矩)。因为P不变,w增加了,所以转矩会相应减小。 我们还可以再换一个角度来看: 电机的定子电压U=E+I*R(I 为电流,R 为电子电阻,E 为感应电势) 可以看出,U,I 不变时,E 也不变。 而E=k*f*X , K常数,f:频率,X:磁通),所以当f由50-->60Hz 时,X 会相应减小 对于电机来说,T=K*I*X,(K:常数,I:电流,X:磁通),因此转矩T 会跟着磁通X 减小而减小。 同时,小于50Hz时,由于I*R很小,所以U/f=E/f不变时,磁通(X)为常数。转矩T 和电流成正比。这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力。并称为恒转矩调速(额定电流不变--> 最大转矩不变) 结论:当变频器输出频率从50Hz 以上增加时,电机的输出转矩会 减小。 4.其他和输出转矩有关的因素。 发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。

变频器控制电机运行最常用的两种方式

变频器控制电机运行最常用的两种方式 当变频器主电路接好电源线之后,要控制电动机的运行,还需要给有关端子接上外围接控制电路,并且将变频器的启动方式参数设为外部操作模式。 变频器控制电动机运转,常见的有两种方式,分别是开关控制方式和继电器控制方式: 一、开关控制的正转控制电路 开关控制的转控制电路如下图所示,它是依靠手动操作变频器STF端子外接开关SA,来对电动机进行正转控制。

电路工作原理说明如下: 1、启动准备:按下按钮SB2,接触器KM线圈得电,KM常开辅助触点和主触点均闭合,常开辅助触点闭合锁定KM线圈得电自锁,KM主触点闭合为变频器接通主电源。 2、正转控制:按下变频器STF端子外接开关SA,STF、SD端子接通,相当于STF端子输、输入正转控制信号,变频器U、V、W端子输出正转电源电压,驱动电动机正向运转。调节端子外电位器R,变频器输出电源频率会发生改变,电动机转速也随之变化。 3、变频器异常保护:若变频器运行期间出现异常或故障,变频器B、C端子间内部等效的常闭开关断开,接触器KM线圈失电,KM主触点断开,切断变频器输入电源,对变频器进行保护。 4、停转控制:在变频器正常工作时,将开关SA断开,STF、SD端子断开,变频器停止输出电源,电动机停转。

若要切断变频器输入主电源,可按下按钮SB1,接触器KM线圈失电,KM 主触点断开,变频器输入电源被切断。 二、继电器控制的正转控制电路 继电器控制的正转控制电路如下图所示 电路工作原理说明如下: 1、启动准备:按下按钮SB2,接触器KM线圈得电,KM主触点和两个常开辅助触点均闭合,KM主触点闭合为变频器接通主电源,一个KM常开辅助触点闭合,锁定KM线圈得电,另一个KM常开辅助触点闭合,为继电器K中间A线圈得电作准备。 2、正转控制:按下按钮SB4,继电器KA线圈得电,3 个KA常开触点均闭合,一个常开触点闭合锁定KA线圈得电,一个常开触点闭合将按钮SB1短接,还有一个常开触点闭合将STF、SD端子接通,相当于STF端子输入正转控制信号,变翻器U、V、W端子输出正转电源电压,驱动电动机正向

相关文档
最新文档