卷积神经网络全面解析之问题总结

卷积神经网络全面解析之问题总结
卷积神经网络全面解析之问题总结

深度学习(卷积神经网络)一些问题总结

涉及问题:

1.每个图如何卷积:

(1)一个图如何变成几个?

(2)卷积核如何选择?

2.节点之间如何连接?

3.S2-C3如何进行分配?

4.16-120全连接如何连接?

5.最后output输出什么形式?

①各个层解释:

我们先要明确一点:每个层有多个Feature Map,每个Feature Map通过一种卷积滤波器提取输入的一种特征,然后每个Feature Map有多个神经元。

C1层是一个卷积层(为什么是卷积?卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音),由6个特征图Feature Map构成。特征图中每个神经元与输入中5*5的邻域相连。特征图的大小为28*28,这样能防止输入的连接掉到边界

之外(是为了BP反馈时的计算,不致梯度损失,个人见解)。C1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)*6=156个参数),共156*(28*28)=122,304个连接。

S2层是一个下采样层(为什么是下采样?利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息),有6个14*14的特征图。特征图中的每个单元与C1中相对应特征图的2*2邻域相连接。S2层每个单元的4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid函数计算。可训练系数和偏置控制着sigmoid函数的非线性程度。如果系数比较小,那么运算近似于线性运算,亚采样相当于模糊图像。如果系数比较大,根据偏置的大小亚采样可以被看成是有噪声的“或”运算或者有噪声的“与”运算。每个单元的2*2感受野并不重叠,因此S2中每个特征图的大小是C1中特征图大小的1/4(行和列各1/2)。S2层有12个可训练参数和5880个连接。

图:卷积和子采样过程:卷积过程包括:用一个可训练的滤波器f x去卷积一个输入的图像(第一阶段是输入的图像,后面的阶段就是卷积特征map了),然后加一个偏置b x,得到卷积层C x。子采样过程包括:每邻域四个像素求和变为一个像素,然后通过标量W x+1加权,再增加偏置b x+1,然后通过一个sigmoid激活函数,产生一个大概缩小四倍的特征映射图

S x+1。

所以从一个平面到下一个平面的映射可以看作是作卷积运算,S-层可看作是模糊滤波器,起到二次特征提取的作用。隐层与隐层之间空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。

C3层也是一个卷积层,它同样通过5x5的卷积核去卷积层S2,然后得到的特征map

就只有10x10个神经元,但是它有16种不同的卷积核,所以就存在16个特征map了。这里需要注意的一点是:C3中的每个特征map是连接到S2中的所有6个或者几个特征map的,表示本层的特征map是上一层提取到的特征map的不同组合(这个做法也并不是唯一的)。(看到没有,这里是组合,就像之前聊到的人的视觉系统一样,底层的结构构成上层更抽象的结构,例如边缘构成形状或者目标的部分)。

刚才说C3中每个特征图由S2中所有6个或者几个特征map组合而成。为什么不把S2中的每个特征图连接到每个C3的特征图呢?原因有2点。第一,不完全的连接机制将连接的数量保持在合理的范围内。第二,也是最重要的,其破坏了网络的对称性。由于不同的特征图有不同的输入,所以迫使他们抽取不同的特征(希望是互补的)。

例如,存在的一个方式是:C3的前6个特征图以S2中3个相邻的特征图子集为输入。接下来6个特征图以S2中4个相邻特征图子集为输入。然后的3个以不相邻的4个特征图子集为输入。最后一个将S2中所有特征图为输入。这样C3层有1516个可训练参数和151600个连接。

S4层是一个下采样层,由16个5*5大小的特征图构成。特征图中的每个单元与C3中相应特征图的2*2邻域相连接,跟C1和S2之间的连接一样。S4层有32个可训练参数(每个特征图1个因子和一个偏置)和2000个连接。

C5层是一个卷积层,有120个特征图。每个单元与S4层的全部16个单元的5*5邻域相连。由于S4层特征图的大小也为5*5(同滤波器一样),故C5特征图的大小为1*1:这构成了S4和C5之间的全连接。之所以仍将C5标示为卷积层而非全相联层,是因为如果LeNet-5的输入变大,而其他的保持不变,那么此时特征图的维数就会比1*1大。C5层有48120个可训练连接。

F6层有84个单元(之所以选这个数字的原因来自于输出层的设计),与C5层全相连。有10164个可训练参数。如同经典神经网络,F6层计算输入向量和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数产生单元i的一个状态。

最后,输出层由欧式径向基函数(Euclidean Radial Basis Function)单元组成,每类一个单元,每个有84个输入。换句话说,每个输出RBF单元计算输入向量和参数向量之间的欧式距离。输入离参数向量越远,RBF输出的越大。一个RBF输出可以被理解为衡量输入模式和与RBF相关联类的一个模型的匹配程度的惩罚项。用概率术语来说,RBF输出可以被理解为F6层配置空间的高斯分布的负log-likelihood。给定一个输入模式,损失函数应能使得F6的配置与RBF参数向量(即模式的期望分类)足够接近。这些单元的参数是人工选取并保持固定的(至少初始时候如此)。这些参数向量的成分被设为-1或1。虽然这些参数可以以-1和1等概率的方式任选,或者构成一个纠错码,但是被设计成一个相应字符类的7*12大小(即84)的格式化图片。这种表示对识别单独的数字不是很有用,但是对识别可打印ASCII集中的字符串很有用。

使用这种分布编码而非更常用的“1 of N”编码用于产生输出的另一个原因是,当类别比较大的时候,非分布编码的效果比较差。原因是大多数时间非分布编码的输出必须为0。

这使得用sigmoid单元很难实现。另一个原因是分类器不仅用于识别字母,也用于拒绝非字母。使用分布编码的RBF更适合该目标。因为与sigmoid不同,他们在输入空间的较好限制的区域内兴奋,而非典型模式更容易落到外边。

RBF参数向量起着F6层目标向量的角色。需要指出这些向量的成分是+1或-1,这正好在F6 sigmoid的范围内,因此可以防止sigmoid函数饱和。实际上,+1和-1是sigmoid 函数的最大弯曲的点处。这使得F6单元运行在最大非线性范围内。必须避免sigmoid函数的饱和,因为这将会导致损失函数较慢的收敛和病态问题。

②问题讲解

第1个问题:

(1)输入-C1

用6个5*5大小的patch(即权值,训练得到,随机初始化,在训练过程中调节)对32*32图片进行卷积,得到6个特征图。

(2)S2-C3

C3那16张10*10大小的特征图是怎么来?

将S2的特征图用1个输入层为150(=5*5*6,不是5*5)个节点,输出层为16个节点的网络进行convolution。

该第3号特征图的值(假设为H3)是怎么得到的呢?

首先我们把网络150-16(以后这样表示,表面输入层节点为150,隐含层节点为16)中输入的150个节点分成6个部分,每个部分为连续的25个节点。取出倒数第3个部分的节

神经网络最新发展综述

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

基于卷积神经网络的文本分类研究综述

第34卷第3期2019年5月 内蒙古民族大学学报(自然科学版) Journal of Inner Mongolia University for Nationalities Vol.34No.3 May2019 基于卷积神经网络的文本分类研究综述 裴志利1,阿茹娜2,姜明洋2,卢奕南3 (1.内蒙古民族大学计算机科学与技术学院,内蒙古通辽028043;2.内蒙古民族大学数学学院,内蒙古通辽028000;3.吉林大学计算机科学与技术学院,吉林长春130012) [摘要]随着互联网及其相关技术的高速发展,网络数据呈现出井喷式的增长,其中主要以文本的形式大量 存在,数据在这种增长趋势下,文本分类已经成为越来越重要的研究课题.如今,采用深度学习技术对文本进 行表示受到研究者的极大关注.如采用卷积神经网络对文档进行表示和分类等自然语言处理.本文主要对基 于卷积神经网络的文本分类方法进行了研究,介绍了几个具有代表性的卷积神经网络模型结构.最后提出了 对基于该方法文本分类的展望. [关键词]卷积神经网络;文本分类;深度学习 [中图分类号]TP393[文献标识码]A[文章编号]1671-0815(2019)03-0206-05 Survey of Text Classification Research Based on Convolutional Neural Networks PEI Zhi-li1,Aruna2,JIANG Ming-yang2,LU Yi-nan3 (1.College of Computer Science and Technology,Inner Mongolia University for Nationalities,Tongliao028043,China; 2.College of Mathematics,Inner Mongolia University for Nationalities,Tongliao028000,China; 3.College of Computer Science and Technology,Jilin University,Changchun130012,China) Abstract:With the rapid development of the Internet and related technologies,network data has shown a spurt growth trend,which mainly exists in the form of text.Under this growth trend,text classification has become an increasingly important research topic.The use of deep learning technology to express the text has received great attention.For example, natural language processing such as convolutional neural network is used to represent and classify documents.The text classification method based on convolutional neural network is investigated.Several representative convolutional neural network model structures are introduced.Finally,the prospect of text classification based on this method is proposed. Key wrrds:Convolutional neural network;Text classification;Deep learning 0引言 随着网络媒体的出现,用户生成的内容以飞快的速度填充数据资源,这些数据的自动处理引起了研究者的巨大关注.文本分类是自然语言处理领域的重要任务,包括情感分析、对话分析、文献综述、机器翻译等[1].文本分类具有多种方法,传统的机器学习分类算法有支持向量机算法(Support Vector Machine,SVM)[2]、朴素贝叶斯算法(Naive Bayesian Classifier,NBC)[3]、决策树算法(Decision Tree,DT)[4]、K-最近邻算法(K-Nearest Neighbor,KNN)[5]等,采用传统算法文本分类时需要人工进行特征提取,耗费时间和精 基金项目:国家自然科学基金项目(61672301);内蒙古自治区“草原英才”工程产业创新人才团队(2017);内蒙古自治区科技创新引导奖励资金项目(2016);内蒙古民族大学特色交叉学科群建设项目(MDXK004);2019年度内蒙古自治区高等学校“青年科技英才支持计划”(NJYT-19-B18) 作者简介:裴志利,内蒙古民族大学计算机科学与技术学院教授,博士. DOI:10.14045/https://www.360docs.net/doc/9613394047.html,ki.15-1220.2019.03.005

卷积神经网络CNN原理、改进及应用

一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet 大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。这两种操作形成了CNN的卷积层。此外,卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,即池化层,这种特有的两次特征提取结构减小了特征分辨率。

综述卷积神经网络:从基础技术到

1 引言 1.1 动机 过去几年来,计算机视觉研究主要集中在卷积神经网络(常简称为ConvNet 或CNN)上。这些工作已经在广泛的分类和回归任务上实现了新的当前最佳表现。相对而言,尽管这些方法的历史可以追溯到多年前,但对这些系统得到出色结果的方式的理论理解还很滞后。事实上,当前计算机视觉领域的很多成果都是将CNN 当作黑箱使用,这种做法是有效的,但其有效的原因却非常模糊不清,这严重满足不了科学研究的要求。尤其是这两个可以互补的问题:(1)在被学习的方面(比如卷积核),究竟被学习的是什么?(2)在架构设计方面(比如层的数量、核的数量、池化策略、非线性的选择),为什么某些选择优于另一些选择?这些问题的答案不仅有利于提升我们对 CNN 的科学理解,而且还能提升它们的实用性。 此外,目前实现CNN 的方法需要大量训练数据,而且设计决策对结果表现有很大的影响。更深度的理论理解应该能减轻对数据驱动的设计的依赖。尽管已有实证研究调查了所实现的网络的运行方式,但到目前为止,这些结果很大程度上还局限在内部处理过程的可视化上,目的是为了理解 CNN 中不同层中发生的情况。 1.2 目标 针对上述情况,本报告将概述研究者提出的最突出的使用多层卷积架构的方法。要重点指出的是,本报告将通过概述不同的方法来讨论典型卷积网络的各种组件,并将介绍它们的设计决策所基于的生物学发现和/或合理的理论基础。此外,本报告还将概述通过可视化和实证研究来理解 CNN 的不同尝试。本报告的最终目标是阐释 CNN 架构中涉及的每一个处理层的作用,汇集我们当前对CNN 的理解以及说明仍待解决的问题。

1.3 报告提纲 本报告的结构如下:本章给出了回顾我们对卷积网络的理解的动机。第2 章将描述各种多层网络并给出计算机视觉应用中使用的最成功的架构。第3 章将更具体地关注典型卷积网络的每种构造模块,并将从生物学和理论两个角度讨论不同组件的设计。最后,第4 章将会讨论CNN 设计的当前趋势以及理解CNN 的工作,并且还将重点说明仍然存在的一些关键短板。 2 多层网络 总的来说,本章将简要概述计算机视觉领域中所用的最突出的多层架构。需要指出,尽管本章涵盖了文献中最重要的贡献,但却不会对这些架构进行全面概述,因为其它地方已经存在这样的概述了(比如 [17, 56, 90])。相反,本章的目的是为本报告的剩余部分设定讨论基础,以便我们详细展示和讨论当前对用于视觉信息处理的卷积网络的理解。 2.1 多层架构 在近来基于深度学习的网络取得成功之前,最先进的用于识别的计算机视觉系统依赖于两个分离但又互补步骤。第一步是通过一组人工设计的操作(比如与基本集的卷积、局部或全局编码方法)将输入数据变换成合适的形式。对输入的变换通常需要找到输入数据的一种紧凑和/或抽象的表征,同时还要根据当前任务注入一些不变量。这种变换的目标是以一种更容易被分类器分离的方式改变数据。其次,被变换的数据通常用于训练某些类型的分类器(比如支持向量机)来识别输入信号的内容。通常而言,任何分类器的表现都会受到所使用的变换方法的严重影响。 多层学习架构为这一问题带来了不同的前景,这种架构提出不仅要学习分类器,而且要从数据中直接学习所需的变换操作。这种形式的学习通常被称为「表征学习」,当应用在深度多层架构中时即被称为「深度学习」。

一文读懂卷积神经网络

一文读懂卷积神经网络 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、 cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。 第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。 第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。 第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。 接下来话不多说,直接奔入主题开始CNN之旅。 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。 一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个

一文读懂卷积神经网络CNN

一文读懂卷积神经网络CNN ★据说阿尔法狗战胜李世乭靠的是卷积神经网络算法,所以小编找到了一篇介绍该算法的文章,大家可以看一看。★ 自去年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。第一点,在学习Deep learning 和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。接下来话不多说,直接奔入主题开始

CNN之旅。卷积神经网络简介(Convolutional Neural Networks,简称CNN)卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel 和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网 络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid 函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少

基于卷积神经网络的图像复原(一改)

基于卷积神经网络的图像复原技术 摘要 数字图像的处理就是将图像的信号转换成为数字格式,并用计算机进行加工和处理的过程。图像复原是数字图像处理领域一个重要的研究方向,它是指去除或减轻在数字图像过程中发生的图像质量下降(退化),这些退化包括由光学系统、运动等造成的图像模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像,图像数字化包括量化和取样。 图像复原的基本思路:预先建立图像退化的数学模型,然后对退化图像进行拟合。图像的复原模型可以用连续数学和离散数学处理,预处理项的实现可在空间域卷积,或在频域相乘。 经典的图像复原方法有逆滤波法、卡尔曼滤波法。奇异值分解伪逆法、最大熵复原法等等,这些要么面临着高维方程的计算问题,要么要求恢复过程必须满足广义平稳过程假设,这些大大降低了图像复原广泛的应用。而神经网络以其强大的自学习、强鲁棒性、自适应性以及并行处理方面的优势被广泛运用到各个领域。 本文从卷积神经网络的基本概念和算法出发,深入研究卷积神经网络理论, 旨在传统的神经网络结构基础上改进其固定结构,并基于此理论算法进一步开展图像复原的深入研究。 (1)首先,简单介绍人工神经网络与卷积神经网络国内外研究现状以及其 基本概念和基本原理,阐述其基本结构和网络参数,指出目前卷积神经网络的优缺点。 (2)为了验证卷积神经网络对图像复原的优越性,本文将列举一些传统图像复原前后图片以突出卷积神经网络的优越,此外设计了适应本系统的卷积核和激励函数。并通过实验证明了卷积神经网络比传统模式识别方法更高效的识别性能。 (3)针对传统卷积神经网络缺乏对于具体问题的网络配置设计理论,网络

卷积神经网络n代码解析

deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是Rasmus Berg Palm)代码下载:rasmusbergpalm/DeepLearnToolbox 这里我们介绍deepLearnToolbox-master中的CNN部分。 DeepLearnToolbox-master中CNN内的函数: 调用关系为: 该模型使用了mnist的数字作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。 网络结构为: 让我们来看看各个函数: 一、Test_example_CNN: (1) 三、 (2) 四、 (2) 五、 (2) 五、 (2) 六、 (3) 一、Test_example_CNN: Test_example_CNN: 1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅 2cnnsetup函数初始化卷积核、偏置等

3cnntrain函数训练cnn,把训练数据分成batch,然后调用 cnnff完成训练的前向过程, cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量) cnnapplygrads把计算出来的梯度加到原始模型上去 4cnntest函数,测试当前模型的准确率 该模型采用的数据为, 含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。 把数据转成相应的格式,并归一化。 设置网络结构及训练参数 初始化网络,对数据进行批训练,验证模型准确率 绘制均方误差曲线 二、 该函数你用于初始化CNN的参数。 设置各层的mapsize大小, 初始化卷积层的卷积核、bias 尾部单层感知机的参数设置 * bias统一设置为0 权重设置为:-1~1之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))

深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/9613394047.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本 文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

卷积神经网络全面解析之代码注释

卷积神经网络全面解析之代码注释 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可以放到博客上面与大家交流。因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流. 下面是自己对代码的注释: cnnexamples.m [plain]view plain copy 1.clear all; close all; clc; 2.addpath('../data'); 3.addpath('../util'); 4.load mnist_uint8; 5. 6.train_x = double(reshape(train_x',28,28,60000))/255; 7.test_x = double(reshape(test_x',28,28,10000))/255; 8.train_y = double(train_y'); 9.test_y = double(test_y'); 10. 11.%% ex1 12.%will run 1 epoch in about 200 second and get around 11% error. 13.%With 100 epochs you'll get around 1.2% error 14. 15.c https://www.360docs.net/doc/9613394047.html,yers = { 16. struct('type', 'i') %input layer 17. struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convol ution layer 18. struct('type', 's', 'scale', 2) %sub sampling layer

卷积神经网络全面解析之算法实现

卷积神经网络全面解析之算法实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN 在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: ?局部区域感知 ?权重共享 ?空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与采样层交

卷积神经网络

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经认知机。 Trotin 等人提出了动态构造神经认知机并自动降低闭值的方法[1],初始态的神经认知机各层的神经元数目设为零,然后会对于给定的应用找到合适的网络规模。在构造网络过程中,利用一个反馈信号来预测降低阈值的效果,再基于这种预测来调节阈值。他们指出这种自动阈值调节后的识别率与手工设置阈值的识别率相若,然而,上述反馈信号的具体机制并未给出,并且在他们后来的研究中承认这种自动阈值调节是很困难的【8】。 Hildebrandt将神经认知机看作是一种线性相关分类器,也通过修改阈值以使神经认知机成为最优的分类器。Lovell应用Hildebrandt的训练方法却没有成功。对此,Hildebrandt解释的是,该方法只能应用于输出层,而不能应用于网络的每一层。事实上,Hildebrandt没有考虑信息在网络传播中会逐层丢失。 Van Ooyen和Niehuis为提高神经认知机的区别能力引入了一个新的参数。事实上,该参数作为一种抑制信号,抑制了神经元对重复激励特征的激励。多数神经网络在权值中记忆训练信息。根据Hebb学习规则,某种特征训练的次数越多,在以后的识别过程中就越容易

卷积神经网络全面解析之代码详细讲解

卷积神经网络全面解析之代码详解 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Convolutional Neural Networks (LeNet)。 一、CNN卷积神经网络原理简介 要讲明白卷积神经网络,估计得长篇大论,网上有很多博文已经写得很好了,所以本文就不重复了,如果你了解CNN,那可以往下看,本文主要是详细地解读CNN的实现代码。 CNN的最大特点就是稀疏连接(局部感受)和权值共享,如下面两图所示,左为稀疏连接,右为权值共享。稀疏连接和权值共享可以减少所要训练的参数,减少计算复杂度。 至于CNN的结构,以经典的LeNet5来说明:

这个图真是无处不在,一谈CNN,必说LeNet5,这图来自于这篇论文:Gradient-Based Learning Applied to Document Recognition,论文很长,第7页那里开始讲LeNet5这个结构,建议看看那部分。 我这里简单说一下,LeNet5这张图从左到右,先是input,这是输入层,即输入的图片。input-layer到C1这部分就是一个卷积层(convolution 运算),C1到S2是一个子采样层(pooling运算),关于卷积和子采样的具体过程可以参考下图: 然后,S2到C3又是卷积,C3到S4又是子采样,可以发现,卷积和子采样都是成对出现的,卷积后面一般跟着子采样。S4到C5之间是全连接的,这就相当于一个MLP的隐含层了(如果你不清楚MLP,参考《DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解》)。C5到F6同样是全连接,也是相当于一个MLP的隐含层。最后从F6到输出output,其实就是一个分类器,这一层就叫分类层。 ok,CNN的基本结构大概就是这样,由输入、卷积层、子采样层、全连接层、分类层、输出这些基本“构件”组成,一般根据具体的应用或者

卷积神经网络总结

1 卷积神经网络 卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。神经网络参数的中文名称主要参考文献 [18] 卷积神经网络的结构和反向传播算法主要参考文献[17] 。 网络结构 卷积层 在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组 合卷积多个特征图的值[17] : ()l l j j x f u = 1j l l l l j j ij j i M u x k b -∈= *+∑ 其中, l j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层输出 特征图1l j x -进行卷积求和与偏置后得到的, l j x 是卷积层l 的第j 个通道的输出。()f 称为激活函数, 通常可使用sigmoid 和tanh 等函数。j M 表示用于计算l j u 的输入特征图子集, l ij k 是卷积核矩阵, l j b 是对卷积后特征图的偏置。对于一个输出特征图l j x ,每个输入特征图1l j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。 ; 下采样层 下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]: ()l l j j x f u = 1()l l l l j j j j u down x b β-=+ 其中, l j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1 l j x -进行下采样

相关文档
最新文档