传感器论文

传感器论文
传感器论文

论文题目:红外线传感器的发展与应用专业:电子信息工程系

姓名:胡松烨 ___ 学号:10731113 指导老师:钱月花

一.摘要

红外线传感器是利用物体产生红外辐射的特性,实现自动检测的传感器。在物理学中,我们已经知道可见光、不可见光、红外光及无线电等都是电磁波,它们之间的差别只是波长(或频率)的不同而已。下面是将各种不同的电磁波按照波长(或频率)排成的波谱图,称之为电磁波谱。红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外线传感器是利用物体产生红外辐射的特性,实现自动检测的传感器。本文所介绍的热释电红外传感器,是一种非常有应用潜力的传感器。它能检测人或某些动物发射的红外线并转换成电信号输出。本文先介绍热释电传感器的原理,然后再描述被动式热释电红外传感器相关的专用集成电路处理技术以及针对其缺陷作出的改进措施。

二.关键词

传感器定义,红外辐射,电磁波波普图

三. 正文

(1)红外线传感器的定义

红外线传感器【infrared transducer】是用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。它是一种不可见光,其光谱位于可见光中红色以外,所以称红外线。工程上把红外线占据在电磁波谱中的位置(波段)分为:近红外、中红外、远红外、极远红外四个波段。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。

(2)特点

红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。

(3)应用及其可测量的物理量

红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。

(4)原理

红外线传感器是利用物体产生红外辐射的特性,实现自动检测的传感器。在物理学中,我们已经知道可见光、不可见光、红外光及无线电等都是电磁波,它们之间的差别只是波长(或频率)的不同而已。下面是将各种不同的电磁波按照波长(或频率)排成如下图所示的波谱图,称之为电磁波谱。

电磁波波谱图

从图中可以看出,红外线属于不可见光波的范畴,它的波长一般在0.76—600μm之间(称为红外区)。而红外区通常又可分为近红外(0.73~1.5μm)、中红外(1.5一l0μm)和远红外(10μm以上),在300μm以上的区域又称为“亚毫米波”。近年来,红外辐射技术已成为一门发展迅速的新兴学科。它已经广泛应用于生产、科研、军事、医学等各个领域。

(5)实物图

(6)红外辐射的产生及其性质

红外辐射是由于物体(固体、液体和气体)内部分子的转动及振动而产生的。这类振动过程是物体受热而引起的,只有在绝对零度(-273.16℃)时,一切物体的分子才会停止运动。所以在绝对零度时,没有一种物体会发射红外线。换言之,在一般的常温下,所有的物体都是红外辐射的发射源。例如火焰、轴承、汽车、飞机、动植物甚至人体等都是红外辐射源。红外线和所有的电磁波一样,具有反射、折射、散射、干涉及吸收等性质,但它的特点是热效应非常大,红外线在真

空中传播的速度c=3×108m/s,而在介质中传播时,由于介质的吸收和散射作用使它产生衰减。

金属对红外辐射衰减非常大,一般金属材料基本上不能透过红外线;大多数的半导体材料及一些塑料能透过红外线;液体对红外线的吸收较大,例如厚l(mm)的水对红外线的透明度很小,当厚度达到lcm时,水对红外线几乎完全不透明了;气体对红外辐射也有不同程度的吸收,例如大气(含水蒸汽、二氧化碳、臭氧、甲烷等)就存在不同程度的吸收,它对波长为1~5μm,8~14μm之间的红外线是比较透明的,对其他波长的透明度就差了。而介质的不均匀,晶体材料的不纯洁,有杂质或悬浮小颗粒等,都会引起对红外辐射的散射。

实践证明,温度愈低的物体辐射的红外线波长愈长。由此在工业上和军事上根据需要有选择地接收某一范围的波长,就可以达到测量的目的。

(7)红外传感器的组成

红外线传感器包括光学系统、检测元件和转换电路,主要有两部分组成:红外辐射源,有红外辐射的物体就可以视为红外辐射源;

红外探测器,能将红外辐射能转换为电能的光敏器件

(8)红外传感系统的分类

光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。

红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:

<1>辐射计,用于辐射和光谱测量;

<2>搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;

<3>热成像系统,可产生整个目标红外辐射的分布图象;

<4>红外测距和通信系统;

<5>混合系统,是指以各类系统中的两个或者多个的组合。

(9)红外传感器工作原理

<1>待侧目标。根据待侧目标的红外辐射特性可进行红外系统的设定。

<2>大气衰减。待测目标的红外辐射通过地球大气层时,由于气体分子和各种气体以及各种溶胶粒的散射和吸收,将使得红外源发出的红外辐射发生衰减。

<3>光学接收器。它接收目标的部分红外辐射并传输给红外传感器。相当于雷达天线,常用是物镜。

<4>辐射调制器。对来自待测目标的辐射调制成交变的辐射光,提供目标方位信息,并可滤除大面积的干扰信号。又称调制盘和斩波器,它具有多种结构。

<5>红外探测器。这是红外系统的核心。它是利用红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出来的电学效应。此类探测器可分为光子探测器和热敏感探测器两大类型。

<6>探测器制冷器。由于某些探测器必须要在低温下工作,所以相应的系统

必须有制冷设备。经过制冷,设备可以缩短响应时间,提高探测灵敏度。

<7>信号处理系统。将探测的信号进行放大、滤波,并从这些信号中提取出信息。然后将此类信息转化成为所需要的格式,最后输送到控制设备或者显示器中。

<8>显示设备。这是红外设备的终端设备。常用的显示器有示波器、显象管、红外感光材料、指示仪器和记录仪等。

(10)结论

由于红外传感器的优越性,人们越来越多的应用这种探测器,而且对它的要求也越来越高。它的红外吸收和探测率要高,相应时间要短,而且,随着越来越广泛的应用,我们要求增大红外传感器的相应波长,探测器波长趋向长波段。根据上述要求,红外传感器会随着微电子技术的发展和传感器的应用领域的不断扩大,从单一元件、单一功能相集成化、多功能化方向发展。另外,由于双色及多色探测器具有较好的抗干扰能力,能获得精确可靠的目标信息,今后这种探测器可能会更加引起人们的关注,此外,红外传感器还趋向于对原有探测器的改进、对新的制作材料的开发、以及向红外焦平面阵列的高密集度方面的发展。这方面的研究者和学者正在向这些方向努力研究,相信随着时间的推移会有更多更好的材料应用于红外传感器的制作中来,更多类型的红外传感器应用于更加广泛的领域。

传感器技术文献综述_百度文库重点

传感器技术文献综述 学校邕江大学专业 09信息学号 40号姓名赵丽霞 一、摘要 传感器技术是综合多种学科的复合型技术, 是一门正在蓬勃发展的现代化传感器技术。本文通过将所看的传感器相关文献总分为传感器、智能传感器以及无线传感器网络三个类别, 对每一类别进行综述, 分析每类别传感器研究中所存在的不足,探讨了相应的解决方案。 二、关键词:传感器 三、引言 传感器技术是一门正在蓬勃发展的现代化传感器技术, 是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术, 而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。在伴随着“信息时代” 的到来,作为获取信息的重要手段——传感器技术得到飞速发展, 其应用领域越来越广, 人们对其要求越要越高, 需求也越来越迫切。但传感器技术的广泛应用以及飞速发展并不代表着该技术已经成熟, 相反在很多方面它还只是一项新兴的技术, 依然存在很多的问题等待我们去解决。如何能够让我们的传感器装置很快的适应周围的环境, 迅速准确的处理传输客户所需求的信号, 并可以根据客户的要求作出相应的反应以及如何可以尽量的延长传感器装置的生存时间等等。这些问题都是我们在研究传感器技术的过程中所应该解决的问题。 四、传感器 传感器是一种物理装置, 能够探测、感受外界的信号、物理条件 (如光、热、温度、湿度等或化学组成, 并将探知到的信息传递给其他装置。该装置相当我们的人类的眼睛、鼻子、舌头、耳朵以及皮肤等一些感知器官。这样,精确快速地感

受外界的信号就是迅速正确作出反应实施行动的前提条件。现在的物理传感器、生物传感器都是力图解决感知、精确以及快速这三个难题。例如气体流量监测就有很多种的感知方法,但每种方法都存在着精确以及反应速率方面的问题, 所以还需要不断的改进。然而,有很多的问题大自然已经很好的为我们解决了, 我们应该取其精华。因此, 我认为仿生传感器一定会解决很多传感器方面的问题。 模仿沙漠蚂蚁利用太阳偏振光在沙漠中很好的辨别方向机理设计了偏振测角传感器。在我们的生活中, 大自然还有很多聪明的发明, 这些都可以应用到我们现在所讨论的传感器技术中。比如鲸鱼、鸽子能够探测到地球微弱的磁场并根据其来确定旅行路线; 双髻鲨能都根据探测到微弱的生物电来捕食, 在它的双髻上分布着许多微小的孔,传感器也可以设计成与此相同的结构来探测微弱的电磁波, 并可以将此项技术应用到医学中来检测人体的健康;苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到,仿生学家根据苍蝇嗅觉器官的结构和功能,利用活的苍蝇,把非常纤细的微电极插到苍蝇的嗅觉神经上仿制成一种十分奇特的小型气体分析仪,用来检测舱内气体的成分。此外,还有很多的动物都具有特异功能,可以利用这些大量的自然资源来实现我们对自然界一些信息的需求,可以直接利用动物,降低成本,可以根据研究其特异功能的机制, 改进现在的传感器。 目前的传感器往往仅能感知一种或几种物理量。因此, 要尽量集成传感器的功能。在实际中, 需要检测的物理量往往不是唯一的, 这样就需要多种传感器共同工作来完成对这些物理量的检测, 浪费了大量资源, 比如人力资源——我们要花费大量的时间与精力去部署以及维护这些节点, 通信资源——每个节点都会向基站发送信号, 占用带宽, 容易造成数据拥堵。要求一种传感器可以同时感知多种物理量比较困难, 这样可以将多种传感器固定在同一装置上, 通过程序让它们在分配间隙时间内轮流工作发送数据, 间隙时间越短, 该传感器的整体测量效率也就越高。但如果对测量的实时性要求不高的话, 一个传感器装置就可以达到预期效果。也可以在监测区域分布多个的装置, 编制程序, 使在同一时刻能够测量到多种物理量。 五、智能传感器

传感器与检测技术论文

2301436245 传感器与检测技术论文 1、传感器的定义、组成、分类及基本特征。 传感器源自“感觉”一词。人类的“五官”可以说就是最原始的传感器。 它是一种能够感受被测量信息同时又能够将感受到的被测量信息按照一定的规律转换或电、信号或其他所需形式的信号输出,以达到便于传输、处理、显示和控制等目的的检测装置。 从各行各业到日常生活,传感器几乎是无处不在,无处不用,其主要作用就是信息的采集和获取。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 传感器也称为变换器、换能器、变松器、发送器与探测器等,由于传感器元件的输出信号往往都非常微弱,传感器在除敏感元件两大组成部分之外,所以还必须加入转换电路以便对弱小的信号进行放大。另外,还应有辅助电源,以供传感器和转换电路工作。随着集成电路技术在传感器应用中的深入,传感器的各个组成部分可以集成在同一半导体芯片上,构成集成传感器。 传感器种类众多,原理各异分类方式也不尽相同。按输入被测量进行分类,一般可分为速度传感器、温度传感器、位移传感器、压力传感器等。这种分类方法直接反应了检测的目的;按输出量形式可分为数字传感器与模拟传感器两类;按工作机理可分为结构型和物性型;按转换原理可分为电阻式、电容式、电感式、压电式、光电式、热点式传感器等;按信息的传递方式可分为能量转换传感器与能量控制型传感器两类。 随着计算机辅助设计,辅助制造技术,集成电路技术和微机械电子系统技术等新技术以及新工艺、新材料的应用,出现了精度更高,性能更优、用途更广的现代传感器。现代化传感器正在向智能化、集成化、多功能化方向发展。 传感器有其基本特性,可分为静态特性和动态特性。静态特性是指静态信号作用下的输出输入关系特性,而所谓动态特性是指动态信号下的输入输出关系特性。衡量传感器其静态特性优劣的重要性能指标线是性灵敏度、迟滞、重复性、分辨率与稳定性。 传感器它是一种能够感受被测量信息的,在检测系统中传感器有着广泛的应用,现代自动检测是以计算机技术为核心,以传感器技术为基础构成的。 检测系统的各个组成部分是以信息流的过程进行划分的。传感器处于整个系统的第一个环节,其作用是将直接感受到的被测量转换为容易进行测试的电信号或其他所需形式的信号。检测技术是科学实验中必不可少的手段。任何一项现代自然科学成就或技术发明,总是通过检测技术获取大量准确的数据。检测技术能够涉及的测量范围与能够达到的测量精度,很大程度上决定着现代科技进步的深度与广度。如在国防科技中,没有检测技术,导弹发射与卫星上天是不可能的。利用检测技术处理获取的数据信息,能对产品的质量和性能做出客观的评价,为工艺人员进行制造工艺提供依据。在现在大工业生产中,如果没有检测技术,新设备的研制以及复杂工艺流程的具体实现是不可能的。 传感器的应用作为自动检测的首要环节,进行正确的选用是首先要考虑的。在选用传感器时,不能片面追求其线性度好、灵敏度高、迟滞小、重复性优、分辨力强,而是应该根据检测的具体要求和条件,保证主要性能指标满足要求即可,即选用时应遵循下列几项原则:考虑检测系统内部的要求;考虑检测系统外部的条件;考虑传感器自身的技术指标。 传感器作为感知、获取和检测信息的窗口,提供着人类赖以进行判断、决策与处理所必

传感器论文传感器论文

KJT-FJ18GW型光电传感器 传感器——一种能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成,并将探知的信息传递给其他装置或器官的物理装置或生物器官。它早已因它的强大的功能而渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。咨询公司INTECHNOCONSULTING的传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。由此可见,传感器发展之快速。相信在我们的生活中无时无刻都能见到它的身影。 传感器按人体的五大感觉器官来划分的话,其又可分为:光敏传感器——视觉;声敏传感器——听觉;气敏传感器——嗅觉;化学传感器——味觉;压敏、温敏、流体传感器——触觉等。 光电传感器,传感器中的视觉,其因检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此光电传感器在检测和控制中应用非常广泛。它的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、CCD和CMOS图像传感器等。它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。光传感器不只局限于对光的探测,它还可以作为探测元件组成其他传感器,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。光传感器是目前产量最多、应用最广的传感器之一,它在自动控制和非电量电测技术引中占有非常重要的地位。最简单的光敏传感器是光敏电阻,当光子冲击接合处就会产生电流。而我今天要介绍KJT-FJ18GW型光电传感器亦属于其中。 工作原理: 光电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器.模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系.模拟式光电传感器按被测量(检测目标物体)方法可分为透射(吸收)式,漫反射式,遮光式(光束阻档)三大类.所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关.而我们的KJT-FJ18GW型光电传感器就采用了漫反射式.反射板式.对射式三种工作方式。 物理量范围: 工作温度:-40~140℃;工作电压:交直流通用24-250VAC/DC ; 工作环境照度:工作环境照度<=3000,太阳光(受光面照度)<=10000 ;

关于传感器的论文.

光电传感器 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单, 形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。关键字:光电效应光电元件光电特性传感器分类传感器应用 正文: 一、理论基础——光电效应 光电效应一般有外光电效应、光导效应、光生伏特效应。 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为 hv(v为光波频率,h 为普朗克常数,h =6.63*10-34 J/HZ,由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,A 微电子所做的功。 由上式可知,要使光电子逸出阴极表面的必要条件是h>A。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称为

无线传感器网络技术与应用现状的研究毕业论文 精品

1 绪论 1.1 课题背景和研究意义 无线传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术等多种先进技术。其主体是集成化微型传感器,这些微型传感器具有无线通信、数据采集和处理、协同合作的功能。无线传感器网络就是由成千上万的传感器节点通过自组织方式构成的网络,它通过这些传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端,使用户完全掌握监测区域的情况并做出反应[1]。 无线传感器网络的自组织性和容错能力使其不会因为某些节点在恶意攻击中的损坏而导致整个系统的崩溃,所以传感器网络非常适合应用于恶劣的战场环境,包括监控我军兵力、装备和物资状态;监视冲突区域,侦察敌方地形和布防,定位攻击目标;评估损失,侦察和探测核、生物及化学攻击等。在战场上,铺设的传感器将采集相应的信息,并通过汇聚节点将数据送至数据处理中心,再转发到指挥部,最后融合来自各战场的数据,形成我军完备的战区态势图。也可以更隐蔽的方式近距离地观察敌方的布防,或直接将传感器节点撒向敌方阵地,在敌方还未来得及反应时迅速收集有利于作战的信息。在生物和化学战中,利用传感器网络,可及时、准确地探测爆炸中心,这会为我军提供宝贵的反应时间,从而最大可能地减小伤亡。 无线传感器网络是继因特网之后,将对21世纪人类生活方式产生重大影响的IT 热点技术。如果说因特网改变了人与人之间交流、沟通的方式,那么无线传感器网络则将逻辑上的信息世界与真实物理世界融合在一起,将改变人与自然交互的方式[2][3]。无线传感器网络是新兴的下一代传感器网络,最早的代表性论述出现在1999年,题为“传感器走向无线时代”。随后在美国的移动计算和网络国际会议上,提出了无线传感器网络是下一个世纪面临的发展机遇。2003年,美国《技术评论》杂志论述未来新兴十大技术时,无线传感器网络被列为第一项未来新兴技术。同年,美国《商业周刊》又在其“未来技术专版”中发表文章指出,传感器网络是全球未来四大高技术产业之一,将掀起新的的产业浪潮。美国《今日防务》杂志更认为无线传感器网络的应用和发展,将引起一场划时代的军事技术革命和未来战争的变

曲轴位置传感器波形分析2

曲轴位置传感器波形分析2

————————————————————————————————作者:————————————————————————————————日期:

曲轴位置传感器波形分析 一、磁脉冲式曲轴位置传感器信号波形分析 波形检测方法 连接示波器,起动发动机,怠速运转,而后加速或按照行驶性能发生故障的需要驾驶等,获得波形, 典型的磁脉冲式曲轴位置传感器信号波形如图所示。

二、 对于将发动机转速和凸轮轴位置传感器制成一体的具有两个信号输出端子的曲轴位置传感器可用双通道的示波器同时进行检测其信号波形,其典型信号波形如图所示。

三、波形分析 1.触发轮上相同的齿形应产生相同型式的连续脉冲,脉冲有一致的形状、幅值(峰对峰电压)并与曲轴(或凸轮)的转速成正比,输出信号的频率(基于触发的转动速度)及传感器磁极与触发轮之间的间隙对传感器信号的幅值影响极大。 2.靠除去传感器触发轮上一个齿或两个相互靠近的的齿所产生的同步脉冲,可以确定上止点的信号。 3.各个最大(最小)峰值电压应相差不多,若某一个峰值电压低于其他的峰值电压,则应检查触发轮是否有缺角或弯曲。 4.波形的上下波动,不可能在0V电位的上下完美地对称,但大多数传感器的波形相当接近,磁脉冲式曲轴(或凸轮轴)位置传感器的幅值随转速的增加而增加,转速增加,波形高度相对增加。 5.波形的幅值、频率和形状在确定的条件下(如相同转速)应是一致的、可重复的、有规律的和可预测的。也就是说测得波形峰值的幅度应该足够高,两脉冲时间间隔(频率)应一致,形状一致并可预测。 6.波形的频率应同发动机的转速同步变化。能使两脉冲间隔时间改变的唯一理由,是触发轮上的齿轮数缺少或特殊齿经过传感器,任何其他改变脉冲间隔时间的波形出现都可能意味着传感器有故障。

生物传感器综述

生物传感器综述

————————————————————————————————作者: ————————————————————————————————日期: ?

生物传感器课程论文 论文题目:生物传感器技术在环境分析 与检测方面的应用研究进展专业: 分析化学 姓名:雷杰 学号:12015130529 指导教师:晋晓勇 时间:2015年10月23日

生物传感器技术在环境分析与检测方面的应用研究进展 摘要:生物传感器作为一类新兴传感器,它是以生物分子敏感元件,将化学信号、热信号、光信号转换成电信号或者直接产生电信号予以放大输出,从而得到检测结果。文章综述了生物传感器在环境监测,包括水环境、大气环境等领域的应用和最新进展,并展望了环境监测生物传感器的发展前景及发展方向。 关键词:生物传感器技术;环境分析检测;

0.前言 生物传感器这门课属于分析化学和生物化学的一门交叉学科,它涉及到生物化学、电化学等多个基础学科。就目前生物传感器研究的历史阶段,它仍然处于十分活跃的研究阶段,生物传感器的研究逐渐变得专业化、微型化、集成化、也有一些生物相容的生物传感器,生物可控和智能化的传感器制成[1]。基于生物传感器的基本结构和性能,从它的选择性,稳定性,灵敏度和传感器系统的集成化发展的特点和趋势,科研人员主要研究生物传感器在医疗、食品工业和环境监测等方面,它的发展对生产生活都有极大影响,尤其是生物传感器专一性好、易操作、设备简单、可现场检测、便携式、测量快速准确、适用范围广,从而深受研究者的青睐。本文主要概述了近三年来生物传感器在环境分析与检测方面的应用研究,从而对以后生物传感器技术的研究有所帮助与借鉴。 1.生物传感器技术 1.1生物传感器的组成及工作原理 生物传感器主要是由生物识别和信号分析两部分组成。生物识别部分是由具有分子识别能力的生物敏感识别元件构成,包括细胞、生物素、酶、抗体及核酸。信号分析部分通常叫换能器。它们的工作原理一般是根据物质电化学、光学、质量、热量、磁性等,物理化学性质将被分析物与生物识别元件之间反应的信号转变成易检测、量化的另一种信号,比如电信号、焚光信号等,再经过信号读取设备的转换过程,最终得到可以对分析物进行定性或定量检测的数据[2]。 生物传感器识别和检测待测物的工作原理:首先,待测物分子与识别元素接触;然后,识别元素把待测物分子从样品中分离出来;接着,转换器将识别反应相应的信号转换成可分析的化学或物理信号;最后,使用现代分析仪器对输出的信号进行相应的转换,将输出信号转化为可识别的信号。生物传感器的各个部分包括分析装置、仪器和系统也由此构成。生物传感器中的识别元素决定了传感器的特异性,是生物定性识别的决定因素;识别元素与待测分子的亲合力,以及换能器和检测仪表的精密度,在很大程度上决定了传感器的灵敏度和响应速度。

传感器设计论文

传感器 课程论文 课程名称:传感器技术 论文题目:温度的传感器设计 学院:合肥通用职业技术学院 系别:机械工程系 专业:机电一体化机电1301 学号: 11130156 学生姓名:张印 指导教师:邢老师 日期: 2015 年 1 月 4日

传感器的应用、发展前景及其目前的发展趋势 近年来,国内外温度传感器研发领域取得了很大的进步。温度传感器正从结构复杂、功能简单向集成化、智能化、多参数检测的方向迅速发展,为开发新一代温湿度测控系统创造了有利条件,也将温度测量技术提高到新的水平。国内数字温度仪测量温湿度采用的主要方法有:“温—阻”法,即采用电阻型的温度传感器,利用其阻值随温度的变化测量空气的温度。受传感器灵敏度的限制,这类温湿度仪的精度不是很高,一般条件下还可以满足需要,但是在环境实验设备等对精度要求较高的场合就难以满足要求了。 随着信息产业的发展及工业化的进步,温度不仅仅表现在以上几个方面直接或间接影响着人类基本生活条件, 还表现在对工生物制品、医药卫生、科学研究、国防建设等方面的影响。针对以上情况,研制可靠且实用的温度控制器显得非常重要。常用温度传感器的非线性输出及一致性较差,使温度的测量方法和手段相对较复杂,且给电路的调试带来很大的困难。传统的温度测量多采用模拟小信号传感器,不仅信号调理电路复杂,且温度值的标定过程也极其复杂,并需要使用昂贵的标定仪器设备。因此对于温湿度控制器的设计有着很大的现实生产意义。 随着光学技术在传感器领域的应用,出现了开关式温度测量器、辐射式温度测量器等温度测量器,使得温度测量精度和范围都有较大的提高,其中应用激光技术测温打破了传统的近距测温,可以针对远程温度测量[4-5]。 随着电子技术和自动化的发展,研究开发出数字式集成温度传感器。这种传感器是将温度和数字电路集成在一起,内部包含了温度传感器、A/D转换器、信号处理器、接口电路等,有的还有单片机的中央处理器、随即存取存储器和只读存储器集成在一起,成功的实现了温度传感器的数字化结构。数字式温度传感器的采集精度高、测试的可靠性高、又很强的抗干扰能力,这些都是模拟式温度传感器不能达到的,由于引入了数字式的温度反馈,有效地改善了比较器的失调和零点漂移对温度精度的影响。目前,数字温度传感器已经结合了总线技术、等接口和主机进行通信,这种数字化、集成化的传感器是将温度传感器的一个新的发展方向。 温度传感器的工作原理 热敏电阻温度测量传感器所采用的材料为铂金,该传感器应用了激光调阻和溅射成膜等技术制作形成的。选用铂电阻的原因是因为其电阻值可以随着温度的变化而近似线性的变化,且具有良好的温度重现性和良好的测试稳定性。 本文设计所使用的是铂膜温度传感器,该传感器零度时的阻值为1000Ω,该电阻的变化率为0.3851Ω/℃,在测量中薄膜铂电阻具有体积小,响应快,寿命长,测温范围宽,在氧化介质中性能稳定,线性度及精确度高等优点,很适合在便携式测量仪中使用。 由于热电阻随温度变化而引起电阻的变化值较小,如铂电阻 Pt1000 在零温度时的阻值 R0=1000,因此,在传感器与测量仪器之间的引线过长会引起较大的测量误差,在实际应用时,通常是热电阻与仪器或放大器采用两线或四线制的接线方式。两线制的引线电阻:铂电阻不超过 R0的0.1%,铜电阻不超过 R0的 0.2%。采用四线制可消除连线过长而引起的误差。

传感器论文

沈阳工学院 结课论文设计验收报告题目:车类电机转速测量的设计 院系:信息与控制学院 专业:电子信息工程 班级学号: 12309129 学生姓名:宋明亮 指导教师:付丽华 成绩: 年月日

1 需求分析 (3) 2 设计方案要求 (4) 2.1 功能及技术要求 (4) (1)测速范围 (4) 2.2 测速及倒车提示系统设计方案论证 (4) 3 硬件电路的设计 (7) 3.1 超声波测距电路 (7) 3.1.2方案二:光电传感器 (9) 4. 转速检测电路 (11) 4.2数码管显示电路 (13) 4.3 直流电机控制电路 (15) 5结束语 (10)

1 需求分析 随着人们生活水平的不断提高,汽车已经成为生活中主导的交通工具,汽车产业蓬勃发展。为保障汽车驾驶时的舒适性和安全性世界各国对汽车防撞技术的研究和发展投入了大量的人力、物力和财力,据统计,危机情况时,如果能给驾驶员半秒钟的预处理时间,则可分别减少追尾事故的30%,路面相关事故的50%,迎面撞车事故的60%,所以现在汽车安装各类测距系统以保障行车安全。 针对我国高速公路交通安全的需要,以及国内外汽车电子技术的应用现状和发展趋势,综合汽车电子技术、通讯技术和控制技术等多学科理论,从必要性、可行性、实用性和经济性等角度出发,提出开发研制汽车测速及倒车提示系统。目的在于当行车处于高速及倒车状态时,提醒驾驶员或自动采用相应措施,从而减少或避免高速公路碰撞事故的发生。

2 设计方案要求 2.1 功能及技术要求 (1)测速范围 测速范围分为四档:第一档速0—130cm/s,第二档速130—200cm/s,第三档速200—260cm/s,第四档速260—300cm/s。 (2)倒车测距范围。 该模拟系统的测量范围在2—3米之间。当距离小于20cm时,电机自动停止,或者说在大于20cm时,也可以通过按键使电机停止。 (3)按键功能如表2-1所示。 表2-1 按键功能表 按键名称 K1 倒转键 K2 减速键 K3 加速键 K4 正转键 K5 复位键 S1 S2 进入倒车状态 (4)显示功能。 该系统具备显示功能,显示内容有正常运行的转速及倒车状态时障碍物与汽车尾部的距离,其显示精度为1cm。 2.2 测速及倒车提示系统设计方案论证 2.2.1发射与接收模块 方案一:采用后视摄像进行倒车 这种方法可以获得障碍物的直观图像,但无法测得准确的距离;虽然其可靠性高但是价格较高,得不到普遍的推广使用;这种方法还存在一些其他的缺陷,如其在夜间会受到影响,无法重现图像,使其在晚间如同虚设,不仅如此,它还会受到天气的影响,在阴雨、雾雪天气,后视摄像这种方法同样起不到效果。

传感器论文

压力传感器的温控系统的研究 班级:学号: 姓名: 摘要:针对压力传感器易受温度影响,产生零点漂移、测量误差增大,从而产生测量误差等问题,本文设计了一种温度控制系统,根据科恩-库恩公式建立了系统的数学模型,采用参数自整定PID控制算法,克服了纯 PID 控制有较大超调量的缺点,从而减少了温度漂移对于测量值的影响,实现了一个温度控制系统。同时利用仿真软件建立系统的仿真模型,通过仿真和测试验证系统满足设计要求。很大程度上补偿了温度所应起的温漂对于测量值影响产生的误差,是压力传感器在高温工作情况下的稳定性的得到极大的提高。 关键字:温度传感器,温漂腔体仿真操作 0 引言 针对我国当对于压力传感器材料的研究的现进成果以及压力传感器技术在我国生产技术,社会生活,军事医学等方面的广泛运用,对于传感器各方面的研究就有极大的意义,同时也为我们研究传感器提供了有力的基础。sic的耐高温,抗腐蚀,抗辐射性能,因而使用SiC 来制作压力传感器,能够克服Si器件高温下电学、机械、化学性能下降的缺陷,稳定工作于高温环境,具有光明的应用前景。 但是界温度较大时,压力传感器受温度影响精度不高,会产生零点漂移等问题,从而增大测量误差。于是尝试加工一个腔体,把压力传感器和温度传感器放置在里面形成一个小的封闭腔体,在外界温度较高或较低的情况下,用加热装置先升温到几十度并维持这一温度,给压力传感器做零点补偿,提高压力传感器的测量精度。这样就克服了在大温度范围难以补偿的问题。本文对这个温度控制系统提出了解决方案,采用了PID参数自整定控制,模糊控制属于智能控制方法,它与 PID 控制结合,具有适应温控系统非线性、干扰多、时变等特点[1-3]。 1 硬件系统 用放置在腔体内的温度传感器测量恒温箱内的温度,产生的信号经过放大后输出反馈信号,再用单片机进行采样,由液晶显示恒温箱内的温度,并通过温度控制算法控制加热装置。所使用的单片机为STC125408AD,自带A/D转换、EPROM功能,内部集成MAX810专用复位电路(外部晶振20 MHz以下时,可省外部复位电路),ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器可通过串口(P3.0/ P3.1) 直接下载用户程序,数秒即可完成一片。 2 系统的控制模型 电加热装置是一个具有自平衡能力的对象,可用 一阶 惯性环节描述温控对象的数学模型[5-8] 。 G(S)=K/(t′S+1) (1) 式中: K为对象的静增益;t′为对象的时间常数。 目前工程上常用的方法是对过程对象施加阶跃输入信号,测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。具体用科恩-库恩(cohen-coon)公式确定近似传递函数。 cohn-coon 公式如下: K= Δ C/ Δ M

汽车传感器论文浅谈传感器技术在汽车领域的应用

浅谈传感器技术在汽车领域的应 用 院系信息工程系 专业 年级 学生姓名 指导教师

目录 1 摘要 1.1 汽车传感器举足轻重 1.2 国内传感器生产水平低 1.3 汽车上的主要传感器 1.4 汽车传感器的发展趋势 2 传感器类型 2.1里程表传感器 2.2安全气囊传感器 2.3 速度传感器 3 基本原理和发展 致谢 参考文献

1 摘要汽车传感器发展综述 在20世纪60年代,汽车上仅有机油压力传感器、油量传感器和水温传感器,它们与仪表或指示灯连接。 进入70年代后,为了治理排放,又增加了一些传感器来帮助控制汽车的动力系统,因为同期出现的催化转换器、电子点火和燃油喷射装置需要这些传感器来维持一定的空燃比以控制排放。80年代,防抱死制动装置和气囊提高了汽车安全性。 今天,传感器有用来测定各种流体温度和压力(如进气温度、气道压力、冷却水温和燃油喷射压力等)的传感器;有用来确定各部分速度和位置的传感器(如车速、节气门开度、凸轮轴、曲轴、变速器的角度和速度、排气再循环阀(EGR)的位置等);还有用于测量发动机负荷、爆震、断火及废气中含氧量的传感器;确定座椅位置的传感器;在防抱死制动系统和悬架控制装置中测定车轮转速、路面高差和轮胎气压的传感器;保护前排乘员的气囊,不仅需要较多的碰撞传感器和加速度传感器。面对制造商提供的侧量、顶置式气囊以及更精巧的侧置头部气囊,还要增加传感器。随着研究人员用防撞传感器(测距雷达或其他测距传感器)来判断和控制汽车的侧向加速度、每个车轮的瞬时速度及所需的转矩,使制动系统成为汽车稳定性控制系统的一个组成部分。 老式的油压传感器和水温传感器是彼此独立的,由于有着明确的最大值或最小值的限定,其中一些传感器的实际作用就相当于开关。随着传感器向电子化和数字化方向发展,它们的输出值

压电式传感器论文

自动检测换技术 相关知识: 电感式传感器的概述; 电感式传感器的基本工作原理; 电感式传感器的测量转换电路; 典型事例; 电感式传感器的应用领域;

电感式传感器 电感式传感器是一种利用线圈自感或互感的变化来实现测量的一种传感器装置,常用来测量位移、振动、力、应变、流量、加速度等物理量。 电感式传感器是基于电磁感应原理来进行测量的。 电感式传感器的分类 自感型——变磁阻式传感器; 互感型——差动变压器式传感器; 涡流式传感器——自感型和互感型都有; 高频反射式——自感型; 低频透射式——互感型电感式传感器; 电感式传感器的概述: 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 为什么电感式传感器,一般采用差动形式?

采用差动式结构:1、可以改善非线性、提高灵敏度,提高了测量的准确性。2、电源电压、频率的波动及温度变化等外界影响也有补偿作用,作用在衔铁上的电磁力,由于是两个线圈磁通产生的电磁力之差,所以对电磁吸力有一定的补偿作用,提高抗干扰性。 目录 1 简介 2 特点 3 种类

电感式传感器- 简介 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。 电感式传感器- 特点 ①无活动触点、可靠度高、寿命长; ②分辨率高; ③灵敏度高; ④线性度高、重复性好; ⑤测量范围宽(测量范围大时分辨率低); ⑥无输入时有零位输出电压,引起测量误差; ⑦对激励电源的频率和幅值稳定性要求较高; ⑧不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。 电感式传感器- 种类 常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸

温度传感器论文

温度传感器 专业 班级 学生姓名 学号

目录 引言 (4) 1综述 (4) 2方案设计 (5) 2 元器件介绍 (5) 2.118B20的性能特点 (5) 2.218B20的工作原理及应用 (5) 2.3 AT89S52的介绍 (6) 3 总体设计 (8) 3.1 原理图 (8) 3.2 实验步骤 (9) 4 总结 (9) 引言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过 AI D转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本

较高。近年来,美国DALLAS公司生产的DSI8B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。DSI8B20集温度测量和 A/D转换于一体,直接输出数字量,传输距离远,可以很方便地实现多点测量,硬件电路结构简单,与单片机接口几乎不需要外围元件。文章将介绍DS18B2的结构特征及控制方法,给出以此传感器和 AT89S52单片机构成的最小温度测量报警系统。 1602液晶也叫1602字符型液晶它是一种专门用来显示字母、数字、符号等的点阵型液晶模块它有若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符。每位之间有一个点距的间隔每行之间也有也有间隔起到了字符间距和行间距的作用,正因为如此所以他不能显示图形.通过At89S52控制1602液晶的输出,将所测得的温度显示出来 一、综述 目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大 21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展 二、方案设计 2 元器件介绍 2.1SI8B20性能特点 美国DALLAS半导体公司的DS18B20是世界上第一片支持“单总线”接口的数字式温度传感器,能够直接读取被测物的温度值。它具有TO-92、TSOC、SOIC多种封装形式,可以适应不同的环境需求。其测量范围在-55~+125℃、-10℃~+85℃之内的测量精度可达±0 .5℃,稳定度为1%。通过编程可实现9、10、11、12位的分辨率读出温度数据,以上都

传感器论文传感器的论文

传感器论文传感器的论文 无线传感器网络故障检测研究 摘要:针对无线传感器网络资源受限特点,研究了故障管理相关内容,比较说明故障检测的几种常见方法,对无线传感器网络应用具有一定指导意义。 关键词:无线传感器;资源受限;故障管理;故障检测 无线传感器网络是由大量低成本且具传感、数据处理和无线通信能力传感器节点通过自组织方式形成的网络。它独立于基站或移动路由器等基础通信设施,通过特定分布式协议组织起来形成网络。它能协作实时监测、感知和采集网络分布区域内各种环境或监测对象信息,并对信息进行处理,使需要信息用户在任何时间、地点和环境条件下获取大量详实可靠信息。 随着无线传感器网络应用范围扩展,常被部署在极端环境来收集外部环境数据。由于传感器节点电源、存储和计算能力有限,且应用环境恶劣,使得传感器节点比传统网络节点更易失效。因此,对无线传感器网络故障管理非常重要。 1.无线传感器网络故障管理。 当网络或系统出现故障时,网络故障管理便成管理员首选手段。因此,故障管理事实上是整个网络管理重中之重。但由于网络故障涉及不同厂商和类型设备,涉及复杂网络拓扑结构,涉及不同组织对故障类型的不同定位规则。

对用户来说,希望日常工作和生活中网络运营畅通,信息传输不受任何网络故障干扰。对网络管理者来说,他们希望在网络运营过程中,能很快得到故障发生原因。这些方面因素使对无线传感器网络故障管理研究在近年来发展缓慢。下面参照传统网络故障管理,将无线传感器网络故障管理分三阶段:故障检测、故障诊断和故障恢复来分别说明。 (1)故障检测。 为确定故障存在,需收集与网络状态相关数据。一般来说,网络发生故障后,网络设备将处于不正常状态。通过获取设备状态信息,可及时发现网络故障。收集网络状态信息有两种方法:设备向管理系统报告关键网络事件;由网络管理系统定期查询网络设备状态,即主动轮询。 一般网络管理系统将两种方法结合使用。当对网络组成部件状态进行检测后,简单故障通常被记录在错误日志中,不作特别处理。而严重故障则需通过网络管理器,即所谓“告警”。 网络设备一般都具感知异常情况能力,当设备发现自身或网络严重异常时,它采用告警方式报告给网管中心,因此,故障检测一般由网络中设备完成。 (2)故障诊断。 故障会在网络中传播,所有感知到故障的网络对象(包括物理和逻辑对象)都会发生告警,在大型网络中,一个故障可能会引起大量

气体传感器文献综述

气体传感器的发展概况 和发展方向 玛日耶姆·图尔贡 107551600545

气体传感器的发展概况和发展方向 【摘要】本文对气体传感器进行分类,介绍了半导体型气体传感器、电阻型气体传感器、非电阻型气体传感器等几种常见气体传感器的特性、总结了这些气体传感器的工作原理,并阐述这几种气体传感器在日常生活及特殊场合中的应用及其选用时的原则。探讨了气体检测仪器在检测对象、检测范围和检测方式上向小型化、智能化、多功能化和通用化等方面不断向前发展的方向。 【关键词】气体传感器;特性;应用;发展方向 一、前言 目前,随着人们环保意识的提高,环境问题日益受到政府和社会关注。环境问题变成了重要的民生问题,影响到人民生活幸福感,甚至环境问题严重威胁群众健康。 近年来生态环境污染状况日趋严重,各种工业废水,废气直接排入水体及空气,造成极为严重的环境污染。影响着人们的正常生活和生存发展,并导致环境污染的气体进行处理是十分急迫的问题。随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同;同时,随着近年酸雨、温室效应、臭氧层破坏、环境污染等,严重影响了人类的健康和生存,这就给气体传感器提出了新的研究课题和增加了新的研究内容和难度。检测气体的种类由原来的还原性气体(H2、 C4、 H10、 CH4等)扩展到毒性气体(CO、NO2、 H2S、NO、NH3、 PH3等)以及食品有关的气体(鱼、肉鲜度(CH3)3、醋酸乙脂等)[1]。气体传感器作为气体检测最基础的部分,为了满足这些需求,气体传感器必须具有较高的灵敏度和选择性,重复性和稳定性要好,而且能批量生产,性能价格要高等。 随着人们环保意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种气体传感器正在得到越来越广泛的应用。目前,随着生命科学、人工智能、材料科学等学科的发展,气体传感器的应用领域越来越广泛,在大气监测、食品工业、汽车尾气快速实时测定、有毒气体检测安全检查和航空航天等方面,越来越多地显示出气体传感器的重要作用[2]。 二、气体传感器的发展概况 2.1气体检测仪 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类。气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、显示单元以及控制单元组成,其中传感器是最关键的部分。 2.2传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器按其基本效应可分为:物理传感器,化学传感器,生物传感器。按检测对象,化学传感器分为气体传感器、湿度传感器、离子传感器。 物理传感器 传感器生物传感器气体传感器 化学传感器离子传感器 湿度传感器

机器人传感器论文

机器人传感器 正文: 传感器是机器人完成感觉的必要手段,通过传感器的感觉作用,将机器人自身的相关特性或相关物体的特性转化为机器人执行某项功能时所需要的信息。根据传感器在机器人上应用的目的和使用范围不同,可分为内部传感器和外部传感器。 内部传感器用于检测机器人自身状态(如手臂间角度、机器人运动工程中的位置、速度和加速度等);外部传感器用于检测机器人所处的外部环境和对象状况等,如抓取对象的形状、空间位置、有没有障碍、物体是否滑落等。 机器人传感器的要求和选择 机器人传感器的选择取决于机器人工作需要和应用特点,对机器人感觉系统的要求时选择传感器的基本依据。 机器人传感器的选择的一般要求: 精度高、重复性好; 稳定性和可靠性好; 抗干扰能力强; 重量轻、体积小、安装方便。 内部传感器 位移传感器 按照位移的特征,可分为线位移和角位移。 线位移是指机构沿着某一条直线运动的距离,角位移是指机构沿某一定点转动的角度。 (1)电位器式位移传感器 电位器式位移传感器由一个线绕电阻(或薄膜电阻)和一个滑动触点组成。其中滑动触点通过机械装置受被检测量的控制。当被检测的位置量发生变化时,滑动触点也发生位移,从而改变了滑动触点与电位器各端之间的电阻值和输出电压值,根据这种输出电压值的变化,可以检测出机器人各关节的位置和位移量。 (2)直线型感应同步器 直线感应同步器的组成是由定尺和滑尺组成。定尺和滑尺间保证与一定的间隙,一般为左右。在定尺上用铜箔制成单项均匀分布的平面连续绕组,滑尺上用铜箔制成平面分段绕组。绕组和基板之间有一厚度为的绝缘层,在绕组的外面也有一层绝缘层,为了防止静电感应,在滑尺的外边还粘贴一层铝箔。定尺固定在设备上不动,滑尺则可以再定尺表面来回移动。 (3)圆形感应同步器 圆形感应同步器主要用于测量角位移。它由钉子和转子两部分组成。在转子上分布着连续绕组,绕组的导片是沿圆周的径向分布的。在定子上分布着两相扇形分段绕组。定子和转子的截面构造与直线型同步器是一样的,为了防止静电感应,在转子绕组的表面粘贴一层铝箔 绝对速度传感器 绝对速度传感器,图4-11为国产CD-1型绝对速度传感器的结构图。途中磁钢6借铝架5固定在壳体4内,并通过壳体形成磁回路。线圈2和阻尼环3安装在芯杆2上,芯杆用弹簧1和8支承在壳体内,构成传感器的活动部分。当传感器的壳体与振动物体一起振动时,如振动的频率较高,由于芯杆组件的质量很大,故产生的惯性力也大,可以阻止芯杆随壳体一起运动。当振动频率高到一定程度时,可以认为芯杆组件基本不动,只是壳体随被测物体振动。这时,线圈以物体的振动速度切割磁力线而在线圈两端产生感应电压。并且线圈输出的电压与线圈相对可替代运动速度成正比。当振动速度高到一定程度时,线圈与壳体的相对速度就是被测振动物体的绝对速度。

相关文档
最新文档