震动传感器实验

震动传感器实验
震动传感器实验

震动传感器应用实验

一、实验目的:

1.了解单滚珠震动传感器的工作原理、性能和指标

2.学习单滚珠震动传感器的使用方法

3.使用CPU的I/O管脚模拟震动传感器的接口协议,实现震动信息的采集

4.掌握通过C51单片机编程的方法,实现震动信息的采集

二、实验环境:

1.PC机一台(KEIL编程软件STI烧写软件)

2.传感器实验箱一个

https://www.360docs.net/doc/9614196879.html,B转串口线一条

三、实验原理:

滚珠开关的基本工作原理就是:通过珠子滚动接触导针的原理来控制电路的接通或

者断开的。利用开关中小珠的滚动,制造与金属端子的触碰或者改变光线进行的线

路,就能产生导通或不导通的效果。滚珠开关的感应角度的变化,最好平铺使用,滚珠开关的灵敏度,就是感应角度的大小,将感应结果传递到电路装置使用电路启

动。

四、实验步骤:

1.打开传感器实验箱,用USB转串口线的串口端插到51核心板的串口上,U口端连

接到PC机的串口。

2.将25针灰排线的一端连接到主板左下角的接口上。

3.连接好实验箱后,连接无误后打开实验箱主板的电源开关。

4.打开STI烧写软件,选择好芯片型号以及串口号,然后在传感器实验箱程序中选择

单滚珠震动传感器程序的.hex文件进行烧写。

5.晃动传感器模块观察液晶屏上的显示信息。

6.实验结束,先关闭主板电源,再关闭传感器模块电源和51核心板电源。

五、实验结果:

六、实验心得:

通过本次实验,我能深刻了解了课堂上还有些不太懂的内容,熟悉了单滚珠震动传感器的内部构造和其工作原理,还更能熟练的应用烧录软件以及单滚珠震动实验的代码的内部框架,这对我以后写代码有很大的帮助。

传感器实验指导书

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358;

4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为 电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 序号 1 2 3 4 5 6 7 8

五、实验报告 1、 画出电路图,并说明设计原理。 2、 列出数据测试表并画出负载特性曲线。电源电压5V ,测试表格1. 曲线图:画图说明,x 坐标是滑动电阻器不带负载时电压;y 坐标是对应1000欧姆(负载两端电压)或100k 欧姆(负载两端电压),100欧和100K 欧两电阻可以得到两条曲线。 O 1 2 3 4 5 UK UR1UR2 3、 说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困 难及解决方法。

化学传感器的研究背景及发展趋势

引言 化学传感器(Chemical sensor)是由化学敏感层和物理转换器结合而成的,是能提供化学组成的直接信息的传感器件。它用来某种化学物质敏感并将其浓度转换为电信号进行检测来进行化学测量。化学传感器在生产流程分析、环境污染监测、矿产资源的探测、气象观测和遥测、工业自动化、医学上远距离诊断和实时监测、农业上生鲜保存和鱼群探测、防盗、安全报警和节能等多个方面有重要应用。 对化学传感器的研究是近年来由化学、生物学、电学、热学微电子技术、薄膜技术等多学科互相渗透和结合而形成的一门新兴学科。化学传感器的历史并不长,但世界各国对这门新学科的开发研究,投以大量的人力、物力和财力。研究人员俱增,正在向产业化方面开展有效的工作。化学传感器是当今传感器领域中最活跃最有成效的领域。 化学传感器的重要意义在于可把化学组分及其含量直接转化为模拟量(电信号),通常具有体积小、灵敏度高、测量范围宽、价格低廉,易于实现自动化测量和在线或原位连续检测等特点。国内外科研人员很早就致力于研究化学传感器的检测方法和控制方法,研制各式各样的化学传感器分析仪器,并广泛应用于环境监测、生产过程中的监控及气体成分分析、气体泄漏报警等。 第一章化学传感器的研究背景 1.1 化学传感器的产生与发展阶段 1906年Cremer首次发现了玻璃膜电极的氢离子选择性应答现象。随着研究的不断深入,1930年,使用玻璃薄膜的pH值传感器进人了实用化阶段。以后直至1960年,化学传感器的研究进展十分缓慢。1961年,Pungor发现了卤化银薄膜的离子选择性应答现象,1962年,日本学者清山发现了氧化锌对可燃性气体的选择性应答现象,这一切都为气体传感器的应用研究开辟了道路。 真正意义上的化学传感器的发展可分为两个阶段,在60年代和70年代,化学

传感器实验

传感器实验 精04 张为昭 2010010591

实验二电涡流传感器变换特性 一、实验目的 1. 了解电涡流传感器的结构、工作原理及应用; 2. 了解电涡流传感器调频电路的特点,测试电涡流传感器变换特性。 二、实验装置及原理 1.装置 图2.1 电涡流传感器装置 2.原理 涡流传感器是七十年代以后发展较快的一种新型传感器。它广泛应用在位移振动监测、金属材质鉴别、无损探伤等技术领域中。 涡流传感器通常由扁平环形线圈组成。在线圈中通以高频(通常为2.5MHz 左右)电流,则在线圈中产生高频交变磁场。当导电金属板接近线圈时,交变磁场在板的表面层内产生感应电流即涡流。涡电流又产生一个反方向的磁场,从而减弱了线圈的原磁场,也就改变了原线圈的自感量L、阻抗Z及Q值。线圈上述参数的变化在其它条件不变的情况下仅是线圈与金属板之间距离的单值函数。 实验中采用了测量线圈自感量L的调频电路,即把线圈作为谐振回路的一个电感元件。当线圈与金属板之间距离h发生变化时,谐振回路的频率f也发生变化,再用鉴频器将频率变化转换成电压变化输出。 图2.2 电涡流传感器原理 三、实验内容及步骤 1. 测量前置器输出频率f与距离h之间的关系;输出电压V与距离h之间

(1)被测金属板先采用铝板。转动微调机构或千分尺使金属板与传感器端面接触即h=0,记下相应的输出信号频率,然后改变h并记下相应的输出频率f 的数值于表2-1中。 (2)改变h并记下涡电流传感器相应的输出电压峰峰值于表2-2中。 (3)改变h并记下测量电路最终的输出电压于表2-3中。 2. 换上钢板重复1的步骤,注意钢板在与传感器距离很小时传感器无输出,调整距离至有输出时作为零点,再开始进行后续测量。 3. 估测电涡流传感器的工作测量范围: 铝板:1.5mm 钢板:1.5mm(相对零点的位移) 四、数据整理及问题分析 1.实验数据整理

arduino 模拟传感器 声音传感器

声音传感器原型 No comments · Posted by flamingoeda in 传感器 有位同学曾经想过把声音信号经Arduino处理后,再传给另外一个设备进行处理,当时听了倒吸一口凉气,我想怕是俨然需要一个DSP系统才能处理他这样的要求吧。虽然对声音的波形进行处理不太可能,但是在Arduino上接一个声音传感器,来感知环境声音的大小还是可能的吧。 原理不算太复杂,用一个话筒(electret microphone)收集声音,将过放大之后接到Arduino的模拟输入端口上,这样当人对着话筒说话的时候,在Arduino 的模拟输入端口上就能感知到电压的变化,说话声音越大,电压变化的幅度越大。解释一下,由于声波是不断变化的,在模拟输入端口上读出的值相应地也是变化的,我们只能只根据某个时间点上读出的值来对声音进行判断,因为这时你有可能读到的是声波波形的最小值。然而,我们的确可以根据某一时刻读到的声波的最大值,来判断此时声音的强度的:) 在将原理研究清楚之后,我在万能板上手工焊接了一个声音传感器的原型板: 该传感器同样有三根连线,5V和Gnd分别接Arduino的5V和Gnd两个引脚,Signal则要接在Arduino上的模拟输入端口上。这里我用到的是Arduino Mini,正好测试一模拟输入接口:)

为了查看实验效果,我搬出了墙角里的示波器,首先看看不对着话筒喊话时的波形图:

这个是让我的声音传感器听MP3时的波形图: 看起来还是有明显变化的。有了这样的实验结果,再写程序的话就算是有所依据了: int soundPin = 0; int value = 0; void setup() { Serial.begin(9600); } void loop() { value = analogRead(soundPin); if (value > 400) { Serial.println(value, DEC); delay(300); } } 上述程序不断地从模拟输入端口0上读入声音传感器的值,一当发现其值大于400,随即激活相应的动作。这里只是简单地将值从串口输出来,你完全可以根据自己的实际需要做相应的处理。当然,到底需要设置多大的门限值是合适的,需要根据你自己的实际情况进行设置,多试几次你一定能够找到合适的值的 Arduino实验代码: void setup() {

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

实验 传感器之火焰篇

物质为主体的高温固体微粒构成的。火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的 1 ~ 2 μm 近红外波长域具有最大的辐射强度。例如汽油燃烧时的火焰辐射强度的波长。 火焰传感器是机器人专门用来搜寻火源的传感器,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。 火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。 火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。 理; 2、通过该实验项目,学生能够学会编写火焰传感器的程序。

1、编写一个读取火焰传感器输出电平信号的程序; 2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1; 3、用按键KEY1控制ZIGBEEN是否发送数据。 6.4.1硬件部分 1、ZIGBEE调试底板一个; 图6-1 ZIGBEE调试底板 2、20PIN转接线一条和带USB的J-Link仿真器一个; 图6-2 J-Link仿真器 3、转接板一个; 实验内容 6.3 实验设备 6.4 电 源 开 关 电 源 传感器C端口 指示灯 2 J-LINK接 ZigBee_DEBUG 复位键 节点按键 拨码开关 ZigBe按键 红 外 发 射 指 示 灯 1 ZigBee复位键 可 调 电 阻传 感 器 A 端 口 传感器B端口 方口USB线,另一端连接电上电指示灯 20PIN转接线,另一端接转接板 20PIN转接线接口 10PIN转接线接口 串口接口

人教版信息技术(三起)六下第8课《使用声音传感器》教案

人教版信息技术(三起)六下第8课《使用声音传感 器》教案 第8课使用声音传感器教学设计 教学目标: 1.知识目标:真实机器人声音传感器的检测与应用。 2.技能目标:培养学生上机操作的能力。 3.情感目标:通过学习,增加对机器人学习的兴趣。 教学重、难点: 真实机器人声音传感器的检测与应用 教学课时: 1课时 教学过程: 一、课堂引入 我们人和动物是用耳朵来“听声音”的,你知道机器人用什么“听声音”吗?机器人的“耳朵”又是什么样的? 本节课,我们将认识机器人的“耳朵”,并学会检测和使用。让机器人“听到”发令时,能够根据任务做出相应的动作。 二、新课教学 1.使用真实机器人前的准备工作 步骤1:检查计算机是否安装了“能力风暴vjc2.0”的应用软件。 步骤2:认识真实机器人。 步骤3:检查实验用机器人是否已充电。 步骤4:检查下载程序的usb数据线是否已经插在计算机的usb接口上。 2.机器自检

步骤1:双击桌面图标,打开VJC窗口。 步骤2:选择“流程图程序”,单击“确定”按钮进入编程界面。 步骤3:在“工具”栏中选择“机器人自检程序”。打开“编译和下载”窗口。 步骤4:将下载线与机器人连接。 步骤5:按下机器人“开关”键。 步骤6:下载结束,下载窗口关闭后,关闭机器人电源,拔下机器人一端的下载线。 3. 问题研究——“听力”检测 (1)编写声音检测程序 步骤1:进入流程图编辑区,编写声音检测程序。 步骤2:用usb下载线连接计算机与机器人。 步骤3:单击“下载”按钮,打开机器人电源。 步骤4:关闭机器人电源,拔出下载线。 (2)运行“听力”检测程序 步骤1:按下机器人电源开关。 步骤2:按下“运行”键。 (3)研究结论 机器人在“听”到我们发出的声音或者是环境的噪声时,会在显示屏上显示出一些数据,这些数据表示“听”到的声音。环境声音大,显示数值大,反之数值小。 4.问题研究——机器人如何“听令”出发 (1)编写“听令”回复程序 (2)运行“听令”回复程序 (3)实验结果 (4)编写“听令”出发程序 (5)研究结论

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

传感器测试实验报告

实验一直流激励时霍尔传感器位移特性实验 一、实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生 电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍 尔电势 U H= K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中 沿水平方向移动,则输出的霍尔电动势为U H kx ,式中k—位移传感器的灵敏度。这样它就 可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场 梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座 中,实验板的连接线按图9-1进行。 1、 3 为电源±5V , 2、4 为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1 使数显表指示为零。 图 9-1直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填 入表 9-1。 表9- 1 X ( mm) V(mv)

作出 V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

实验四 声音传感器实验

信息工程学院实验报告 课程名称:传感器原理及应用 实验项目名称:实验四声音传感器实验实验时间:2016.10.21 班级:姓名:学号: 一、实验目的 1. 学习CC2530 单片机GPIO 的使用。 2. 学习声音传感器的使用 二、实验原理 1. CC2530 节点与三轴加速度传感器的硬件接口成绩: 指导老师(签名):

(1). 声音传感器模块(MIC)引脚 GND:外接GND DO:数字量输出接口(0 和1) +5V:外接5V 电源 (2). 传感器模块与CC2530 模块之间的连接 传感器模块CC2530 模块 GND GND DO P1_4 +5V VDD(5V) 2. GPIO (1). 简介 CC2530单片机具有21个数字输入/输出引脚,可以配置为通用数字I/O或外设I/O信号,配置为连接到ADC、定时器或USART外设。这些I/O口的用途可以通过一系列寄存器配置,由用户软件加以实现。 I/O端口具备如下特性: ●21个数字I/O引脚 ●可以配置为通用I/O或外部设备I/O ●输入口具备上拉或下拉能力 ●具有外部中断能力。 这21个I/O引脚都可以用作于外部中断源输入口。因此如果需要外部设备可以产生中断。外部中断功能也可以从睡眠模式唤醒设备。 (2). 寄存器简介 本次实验中主要涉及到GPIO的寄存器如下:

3. MIC 声音传感器 (1). 概述 声音传感器的作用相当于一个话筒(麦克风)。它用来接收声波,显示声音的振动图象。但不能对噪声的强度进行测量。 该传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V 的电压,经过比较器转换数字信号后,被数据采集器接受,并传送给计算机。 传感器特点: ●具有信号输出指示。 ●输出有效信号为低电平。 ●当有声音时输出低电平,信号灯亮。 应用范围: ●可以用于声控灯,配合光敏传感器做声光报警,以及声音控制,声音检测的场合。 (2). 使用方法 本实验利用CC2530 的GPIO 读取声音传感器模块的检测结果输出端,当检测到一定的声音时,此输出端为低电平;未检测到一定的声音时,此输出端为高电平。因此在实际应用中可以根据这种情况判断是否有声音在传感器附近产生。 4.程序流程

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

传感器实验

传感器实验

实验一金属箔式应变计性能——应变电桥 实验目的: 1、观察了解箔式应变片的结构及粘贴方式。 2、测试应变梁变形的应变输出。 3、比较各桥路间的输出关系。 实验原理: 本实验说明箔式应变片及直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也 随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/ R1、△R2/ R2、△R3/ R3、△R4/ R4 ,当使用一个应变片时, ∑ ? = R R R;当二个应变片组成差动状态工作,则有∑ ? = R R 2 R;用四个应变片 组成二个差动对工作,且R1= R2= R3= R4=R,∑ ? = R R 4 R。 实验所需部件:(括号{ }内为2001B型内容) 直流稳压电源+4V、公共电路模块(一){公共电路模块}、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表 实验步骤: 1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

(图1) 2、观察贴于悬臂梁根部的应变计的位置与方向,按图(1)将所需实验部件连接成测试桥路,图中R1、R2、R3分别为固定标准电阻,R为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。 将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。 3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的W D电位器,使桥路输出为零。 4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm ,每位移1mm记录一个输出电压值,并记入下表: 位 移 mm 电 压V 根据表中所测数据在坐标图上做出V—X曲线,计算灵敏度S:S=X V? ?。 / 注意事项: 1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。 2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。 3、实验中实验者用螺旋测微仪进行位移后应将手离开仪器后方能读取测试

YAV Z3声音传感器(交流电压输出)

YAV Z3定向声音传感器(交流输出) 技术手册V1801 武汉亚为电子科技有限公司 0.产品概述 YAV Z3定向声音传感器具有声级计的全部功能,克服了传统手持式声级计信号输出复杂、感应不远的缺点,可采集声音波形信号。十分方便的与PLC、PC、DCS等控制设备兼容而组成的精细噪声测量系统,特别适合集成于各种环境、产品监控设备,组成单点或多点噪声监控网络,是各类噪声源的噪声监控、检测、监测、实验的理想选择。尤其是与YAV RJ45 8AD HS采集卡结合,可定向采集声音波形、分析设备声音频率,乃至达到故障诊断的效果。

技术指标 输入输出功能指标 硬件特点 ●能直接输出线性模拟量,AD采集更加方便解决了很多客户直接采集波形的痛苦,也可以直接作为 分贝传感器使用。 ●可还原声音波形信号(采样率44.2khz,AD精度大于等于16位) ●电压与噪音成线性关系,具体可以根据噪音计校准。 ●灵敏度高,店主亲测,在封闭环境中,正常说话10米内可以检测到。 ●供电电压范围宽,本次设计的模块,电源范围可从5-15V。

1.传感器的安装及固定 ●室内外安装 ●简易万能固定夹 ●定点噪声测试架 ●需做防风防雨处理

2.测试方向 测试探头正前方110°内的近距离信号,其他方向或远处的声音,可以自动滤除。相比之下,Z2一般用于测试远距离的声音,测试环境音。Z3用于测试特定设备声音规律。尤其是与YAV RJ45 8AD HS采集卡结合,可定向采集声音波形、分析设备声音频率,乃至达到故障诊断的效果。 如上图所示,YA V Z3属于单一指向型传感器。可以隔离其他方向的噪音。YA V Z2属于无指向性传感器。

常见传感器原理介绍

Pellistoren Pellistors使用催化燃烧来测量可燃气体或蒸气在空气的含量直到达到该气体的LEL*。 标准传感器包括一对元件,主要指典型地指探测器和平衡器(参照元件)。探测器包括一颗催化材料的小珠子和其中埋置的铂金导线卷。平衡器和探测器很类似,但小珠子不具有催化作用所以是惰性的。 Figure 1 - Pellistors 两个元件通常被管理在Wheatstone桥梁电路中,如果探测器的阻力与平衡器不同,将导致产品只有输出。 500-550°C的恒定直流电压通过搭桥对元件加热,只有在探测器元件上可燃气体才被氧化,增加的热量会加大电阻,产生的信号与可燃气体的浓度成比例。平衡器帮助平衡四周温度、压力和湿度。 大多数pellistors中的元件被分开放置在金属罐中。在一台完整的气体探测器中(被用于可能爆炸的大气),金属罐通常被放在耐火封套中,这种耐火封套通常由金属多孔状淀土和外套组成。这种封套可以保证气体能到达传感器,但热的传感器元件不会点燃该易爆的气体混合物。因为这种设计十分重要,所以这种封套通常经符合国家标准的特许测试机构检验合格。在不同的国家,这种检测很可能费时及相当昂贵的过程。作为另一种选择,我们提供的完整的探测器将两个元件放入了耐火封套,并符合最新的欧洲(ATEX)并且北美(CSA & UL)标准。 对易爆大气的测量依赖于对可燃气体低于LEL浓度的精确测量。所以在该安全应用中,通常不考虑气体浓度。该测量通常被表示为气体LEL浓度的百分比(%LEL)。

多数可燃气体检测技术用于检测多种气体,理想化的传感器应该是不同的气体有不同的测量结果。但实际上不同的化学形态影响了测量的结果,催化氧化传感器也没有例外。因此,pellistor对不同气体的相同浓度做出的判断是不同的,但当暴露在相同%LEL 浓度的不同气体中时,输出信号的变化相对小于其它检测技术。但因为此安全应用重视%LEL测量也使其成为主要优势。 我们将不同气体产生同样%LEL浓度命名为“相对敏感性”。我们进行了许多实验为CiTipeLs确定一定范围内可燃气体“相对敏感性”的实验价值。 催化毒 某些物质对催化传感器负面影响,有两种可能性: 毒 一些化合物会分解在催化剂并在催化剂表面形成坚实的屏障,这种分解是逐渐形成的,而长时期的曝光会导致传感器的敏感性发生无法恢复的减退。典型的毒物是有机铅和硅化合物。 被抑制 某些其他化合物,特别是硫化氢和被卤化的碳氢化合物,会被被吸收、或形成由催化剂吸收的化合物。这种吸收作用很强大,会使得催化剂的反应点被封闭而造成正常反应被迫停止。由于这种原因造成的传感器敏感性损失是暂时的,大多数情况下放在干净的空气中一段时间后,传感器将恢复工作。 大多数化合物属于上述两类中的一个,可能有些表现出更大或更小的程度。在毒化或被抑制可能存在的应用中,CiTipeLs产品应该被避免暴露于它们不能抵抗的所有化合物中。 LEL说明 * 气体的LEL是指用火源使空气中的该气体爆炸的最低气体浓度。

《传感器与检测技术》实验指导书(四个实验)

实验一金属箔式应变片单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,英电阻值发生变化,这就是电阻应变效应,描 述电阻应变效应的关系式为: △R/R=K£ 式中AR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,t =Al/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,输出电压UO=EK£(E为供桥电压),对单臂电桥而言,电桥输出电压,U01=EK e /4o (E为供桥电压)。 三、器件与单元:应变式传感器实验模板、应变式传感器、磁码(每只约20g)、数显表、±15V电 源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的 Rl、R2、R3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=35OQ,加热丝阻值约为50Q左右。 应变片托盘 图1-1应变式传感器安装示意图 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上 主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调丹到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱而板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电 桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块已连接好),接好电桥调零电位器Rwl,接上桥路电源±4V(从主控箱引入),检査接线无误后,合上主控箱电源开关,先粗调VTRwl,再细调RW4使数显表显示为零。

传感器原理及应用习题答案(完整版)

2-4、现有栅长为3mm 和5mm 两种丝式应变计,其横向效应系数分别为5%和3%,欲用来测量泊松比μ=的铝合金构件在单向应力状态下的应力分布(其应力分布梯度较大)。试问:应选用哪一种应变计为什么 答:应选用栅长为5mm 的应变计。由公式ρρ εμd R dR x + +=)21(和[]x m x K C R dR εεμμ=-++=)21()21(知应力大小是通过测量 应变片电阻的变化率来实现的。电阻的变化率主要由受力后金属丝几何尺寸变化所致部分(相对较大)加上电阻率随应变而变的部分(相对较小)。一般金属μ≈,因此(1+2μ)≈;后部分为电阻率随应变而变的部分。以康铜为例,C ≈1,C(1-2μ)≈,所以此时K0=Km ≈。显然,金属丝材的应变电阻效应以结构尺寸变化为主。从结构尺寸看,栅长为5mm 的丝式应变计比栅长为3mm 的应变计在相同力的作用下,引起的电阻变化大。 2-5、现选用丝栅长10mm 的应变计检测弹性模量E=2×1011N/m 2、密度ρ=cm 3的钢构件承受谐振力作用下的应变,要求测量精度不低于%。试确定构件的最大应变频率限。 答:机械应变波是以相同于声波的形式和速度在材料中传播的。当它依次通过一定厚度的基底、胶层(两者都很薄,可忽略不计)和栅长l 而 为应变计所响应时,就会有时间的迟后。应变计的这种响应迟后对动态(高频)应变测量,尤会产生误差。由][]e l v f e l l 66max max ππλ<= <或式中v 为声波在钢 构件中传播的速度; 又知道声波在该钢构件中的传播速度为: kg m m N E 336211108.710/102--????= = ρ ν; s m kg s m Kg /10585.18.7/8.91024228?=???=; 可算得kHz m s m e l v f 112%5.061010/10585.1||63 4max =???= = -π 。 2-6、为什么常用等强度悬臂梁作为应变式传感器的力敏元件 现用一等强度梁:有效长l =150mm ,固支处宽b=18mm ,厚h=5mm ,弹性模量E=2×105N/mm 2,贴上4片等阻值、K=2的电阻应变计,并接入四等臂差动电桥构成称重传感器。试问: 1)悬臂梁上如何布片又如何接桥为什么 2)当输入电压为3V ,有输出电压为2mV 时的称重量为多少 答:当力F 作用在弹性臂梁自由端时,悬臂梁产生变形,在梁的上、下表面对称位置上应变大小相当,极性相反,若分别粘贴应变片R 1 、 R 4 和R 2 、R 3 ,并接成差动电桥,则电桥输出电压U o 与力F 成正比。等强度悬臂梁的应变E h b Fl x 206= ε不随应变片粘贴位置变化。 1)、悬臂梁上布片如图2-20a 所示。接桥方式如图2-20b 所示。这样当梁上受力时,R1、R4受拉伸力作用,阻值增大,R2、R3受压,阻值减小,使差动输出电压成倍变化。可提高灵敏度。 2)、当输入电压为3V ,有输出电压为2mV 时的称重量为: 计算如下: 由公式: o i i x i o U KlU E bh F E h b Fl K U K U U 66220=?==ε代入各参数算F =; 1牛顿=千克力;所以,F=。此处注意:F=m*g ;即力=质量*重力加速度;1N=1Kg*s 2.力的单位是牛顿(N )和质量的单位是Kg ;所以称得的重量应该是。 ; 2-7、何谓压阻效应扩散硅压阻式传感器与贴片型电阻应变式传感器相比有什么优点,有什么缺点如何克服 答:“压阻效应”是指半导体材料(锗和硅)的电阻率随作用应力的变化而变化的现象。 优点是尺寸、横向效应、机械滞后都很小,灵敏系数极大,因而输出也大,可以不需放大器直接与记录仪器连接,使得测量系统简化。 缺点是电阻值和灵敏系数随温度稳定性差,测量较大应变时非线性严重;灵敏系数随受拉或压而变,且分散度大,一般在(3-5)%之间,因而使得测量结果有(±3-5)%的误差。 压阻式传感器广泛采用全等臂差动桥路来提高输出灵敏度,又部分地消除阻值随温度而变化的影响。 2-8 、一应变片的电阻R=120Ω,k=,用作应变片为800μm/m 的传感元件。

传感器实验

传感器实验 实验十四差动变压器性能 一、实验目的: 了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。二、实 验原理: 差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。差动变压器是开磁路,工作是建立在互感基础上的。其原理及输出特性见图(9) 图(9) 三、实验所需部件: 差动变压器、音频振荡器、测微头、示波器。四、实验步骤: 1.按图(10)接线,差动变压器初级线圈必须从音频振荡器LV 端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv /格。 2.音频振荡器输出频率5KHZ ,输出值V P -P 2V 。 3.用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变 两个次级线圈的串接端。 示波器 图(10) 4.旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次级输出电压V P -P 值,读数过程中应注意初、次级波形的相位关系。 5.仔细调节测微头使次级线圈的输出波形至不能再小,这就是零点残余电压。可以 看出它与输入电压的相位差约为π/2,是基频分量。 6.根据表格所列结果,画出Vop-p -X 曲线,指出线性工作范围。 五、注意事项: 示波器第二通道为悬浮工作状态。 实验二十激励频率对电感传感器的影响

一、实验目的: 说明在不同的激励频率影响下差动螺管式电感传感器的不同特性。二、实验所需部件: 图(15) 三、实验步骤: 1.按图(15)接线,音频振荡器置5KHZ ,幅值居中,差动放大器增益适度。 2.装上测微头,调整衔铁处于线圈中间位置,调节电桥使系统输出为最小。 3.旋动测微头, 移动衔铁,每隔1mm 从示波器读出V P-P 值,填入表格 4.改变音频振荡器频率,并重新调好零位,重复2-3步骤,将结果填入下表。 5.根据所测数据在同一坐标上做出V -X 曲线,计算灵敏度,并做出灵敏度与频率 的关系曲线。 由此可以看出,差动螺管式电感传感器的灵敏度与频率特性密切相关,在某一个特定 频率时,传感器最为灵敏,在其两边,灵敏度都有所下降,故测试系统中应选用这个激励 频率。 实验二十一热电式传感器――热电偶 一、实验目的: 观察了解热电偶的结构,熟悉热电偶的工作特性,学会查阅热电偶分度表。二、实 验原理: 热电偶的基本工作原理是热电效应,当其热端和冷端的温度不同时,即产生热电动势。通过测量此电动势即可知道两端温差。如固定某一端温度(一般固定冷端为室温或0℃),则另一端的温度就可知,从而实现温度的测量。CSY 系列实验仪中热电偶为铜一康铜(T 分度)和镍铬-镍硅(K 分度)。三、实验所需部件: 热电偶、加热器、差动放大器、电压表、温度计(自备)四、实验步骤: 1.打开电源,差动放大器增益放100倍,调节调零电位器,使差放输出为零。 2.差动放大器双端输入接入热电偶,打开加热开关,迅速将差动放大器输出调零。 3.随加热器温度上升,观察差动放大器的输出电压的变化,待加热温度不再上升时(达到相对的热稳定状态),记录电压表读数。 4.本仪器上热电偶是由两支铜-康铜热电偶串接而成,(CSY 10B 型实验仪为一支K 分度热电偶),热电偶的冷端温度为室温,放大器的增益为100倍,计算热电势时均应考

传感器原理及应用

《传感器原理及应用》讨论课报告书 电感式传感器的基本原理及典型应用 学院:机械工程学院 班级:13-1机械电子工程(卓越) 组员:李响夏中岩张轩赫 贡献率:李响资料查询,整理40% 夏中岩资料整理,编辑30% 张轩赫PPT设计编写30% 指导教师:边辉 完成日期:2016.05

目录 摘要............................................................................................................................... - 2 - 1 物料分拣系统简述................................................................................................... - 3 - 2 物料分拣系统中的传感器....................................................................................... - 3 - 2.1 电机起停控制传感器.................................................................................... - 3 - 2.1.1 漫反射光电接近开关......................................................................... - 3 - 2.1.2 电容式接近开关................................................................................. - 4 - 2.1.3 霍尔接近开关..................................................................................... - 4 - 2.1.4 电感式接近开关................................................................................. - 4 - 2.1.5传感器应用比较.................................................................................. - 4 - 2.2 物料计数用传感器........................................................................................ - 5 - 2.2.1 对射型红外光电开关......................................................................... - 5 - 2.2.2 电涡流式传感器................................................................................. - 5 - 2.2.3 霍尔传感器......................................................................................... - 6 - 2.3 测速及定位传感器........................................................................................ - 6 - 2.3.1 光电耦合器,码盘............................................................................. - 7 - 2.3.2 增量编码器......................................................................................... - 7 - 2.3.3 传感器功能对比................................................................................. - 7 - 2.4 物料分类传感器............................................................................................ - 7 - 2.4.1色标传感器.......................................................................................... - 8 - 2.5 固态继电器.................................................................................................... - 8 - 3 传感器前景展望....................................................................................................... - 9 - 3.1 传感器在科技发展中的重要性.................................................................... - 9 - 3.2 先进传感器的发展趋势................................................................................ - 9 - 4 反思与收获............................................................................................................... - 9 -参考文献..................................................................................................................... - 10 -

相关文档
最新文档